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Synopsis The geometry of the musculoskeletal system, such as moment arms and linkages, determines the link between

muscular functions and external mechanical results, but as the geometry becomes more complex, this link becomes less

clear. The musculoskeletal system of snakes is extremely complex, with several muscles that span dozens of vertebrae,

ranging from 10 to 45 vertebrae in the snake semispinalis-spinalis muscle (a dorsiflexor). Furthermore, this span

correlates with habitat in Caenophidians, with burrowing and aquatic species showing shorter spans while arboreal

species show longer spans. Similar multi-articular spans are present in the prehensile tails of primates, the necks of birds,

and our own digits. However, no previous analysis has adequately explained the mechanical consequences of these multi-

articular spans. This paper uses techniques from the analysis of static systems in engineering to analyze the consequences

of multiarticular muscle configurations in cantilevered gap bridging and compares these outcomes to a hypothetical

mono-articular system. Multi-articular muscle spans dramatically reduce the forces needed in each muscle, but the

consequent partitioning of muscle cross-sectional area between numerous muscles results in a small net performance

loss. However, when a substantial fraction of this span is tendinous, performance increases dramatically. Similarly,

metabolic cost is increased for purely muscular multi-articular spans, but decreases rapidly with increasing tendon ratio.

However, highly tendinous spans require increased muscle strain to achieve the same motion, while purely muscular

systems are unaffected. These results correspond well with comparative data from snakes and offer the potential to

dramatically improve the mechanics of biomimetic snake robots.

Introduction

Muscle is the motor of vertebrate movement, and

indeed most animal movement. The intrinsic action

of muscles is to shorten along the fibers, and con-

verting this shortening to a range of other body

motions requires interaction with a skeleton, whether

soft/hydrostatic or rigid and jointed. The geometry

of these skeletal interactions can have tremendous

effects of the relationship between muscle fiber force

and motion and the resulting force and motion of

the body part. The simplest example is the mechan-

ical advantage of muscles which cross a single joint,

with musculoskeletal geometries being geared for ei-

ther high output speed or force (Smith and Savage

1956). Biarticular muscles such as the human

semimembranosus are common within vertebrate

limbs, and can play a variety of roles depending on

moment arms, activation levels, and the recruitment

of other muscles in the limb crossing the distal and

proximal joints (Bodine et al. 1982; Van Ingen

Schenau 1989; van Ingen Schenau et al. 1994).

The axial musculature of snakes presents a partic-

ularly challenging system for understanding the link

between musculoskeletal morphology and functional

outcome due to the exceptionally multi-articular na-

ture of many muscles (Mosauer 1935; Auffenberg

1962; Gasc 1974, 1981; Pregill 1977; Jayne 1982;

Fig. 1). Depending on the muscle group and species,

a given muscle may span anywhere from 1 to 45

vertebrae (Mosauer 1935; Auffenberg 1962; Gasc
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1974, 1981; Pregill 1977; Jayne 1982; Fig. 1).

Furthermore, many of the muscles with the largest

cross-sectional area and muscle mass, and thus pre-

sumably the greatest contribution to performance,

have high span and exhibit high variability across

species (Ruben 1977; Jayne 1982, 1988a, 1988b;

Jayne and Riley 2007; Penning 2018; Fig. 1).

Lizards show broadly homologous muscle arrange-

ments with muscles spanning much smaller numbers

of segments, though limbless lizards show more

snake-like morphology, suggesting this configuration

has functional benefits (Auffenberg 1962; Gasc 1974,

1981). The hypothesized functional benefit is further

supported by convergent evolution of this multi-

articular morphology in other elongate, flexible, seg-

mented systems, notably the prehensile tail of pri-

mates (Lemelin 1995) and the neck of birds (van der

Leeuw et al. 2001; Boumans et al. 2015; Böhmer

et al. 2019), as well as to a much lesser degree in

the human finger and erector spinae.

However, the functional consequences of this

morphology remain unclear. Detailed anatomical

data are available for only a few species and muscles,

though descriptive studies have noted trends

(Mosauer 1935; Gasc 1974, 1981). Ruben (1977)

noted differences in span and the relative proportion

of the span which is tendinous in a pair of constrict-

ing and non-constricting snakes, and suggested that

the shorter, more muscular span of constrictors con-

veyed advantages in the range of motion while the

more tendinous spans of non-constrictors were ben-

eficial for speed. However, the most comprehensive

study on this topic was Jayne’s (1982) examination

of the snake semispinalis-spinalis (SSP) muscle com-

plex (SSP in Fig. 1). The SSP is a large muscle which

dorsiflexes the vertebrae when bilaterally active (as in

gap bridging and sidewinding [Jayne 1988a;

Jorgensen and Jayne 2017]) and contributes to lateral

flexion when unilaterally active (during lateral undu-

lation and concertina [Jayne 1988a, 1988b]). This

study, and the subsequent phylogenetic re-analysis

(Tingle et al. 2017), showed that the SSP varied

extensively within Caenophian snakes and correlated

strongly with habitat and constriction (Jayne 1982;

Tingle et al. 2017). Highly arboreal snakes displayed

very long and tendinous spans of the SSP while ter-

restrial, burrowing, and aquatic habitats were corre-

lated with shorter and more muscular spans (Jayne

1982; Tingle et al. 2017). While the number of spe-

cies is lower, similar functional links have been

found in primate tails and bird necks (Lemelin

1995; Böhmer et al. 2019).

Despite these correlations, the mechanical conse-

quences of these systems has remained obscure.

Work on human finger and erector spinae muscles

has taken advantage of the well-described morphol-

ogy and minimal variability by using detailed models

of the anatomy to determine exact solutions

(Macintosh et al. 1993; Tveit et al. 1994; Fowler

et al. 2001; Pollard and Gilbert 2002; Daggfeldt and

Thorstensson 2003), which makes sense given the

highly limited anatomical variability of these system

but which cannot produce generalized insights which

apply interspecficially. The striking multi-articular

morphology of snake muscle has attracted attention

from the robotics community as well. Inoue et al.

(2010) performed simulations and designed a

wheeled snake-inspired robot, but did not evaluate

the results of either beyond noting qualitative simi-

larity with the motion of biological snakes; similarly,

a simulation study by Faraji and Barazandeh (2012)

also showed only that the system could generate si-

nusoidal motion. Our best insight into the conse-

quences of multi-articular morphology comes from

a modeling study of lateral undulation, showing that

for as muscle span increased from 1 to 5, the overall

locomotor speed increased and summed muscular

force decreased (Kano et al. 2011). While most snake

muscles span considerably higher numbers of seg-

ments, this study provides a strong indication that

multi-articular muscles provide substantial locomo-

tor benefits, though the paper did not assess the

detailed mechanics at the individual muscle level,

the consequences of tendons, or metabolic cost

Fig. 1 Diagram of selected snake axial muscles. Each muscle repeats segmentally in overlapping “bands” along the body. Anterior is to

the right. Muscle tissue is in light gray with dark lines indicating fiber direction and tendon/connective tissue is in dark gray. Muscles

shown: semispinalis-spinalis (SSP), multifidus (MF), longissimus dorsi (LD), iliocostalis (IC), levator costae (LC), and costocutaneous

superior (CCS) and inferior (CCI). The CCS and CCI insert onto the skin.
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(Kano et al. 2011). Rezaei et al. (2010) attempted to

model a single highly multi-articular muscle span-

ning numerous joints using inverse dynamics meth-

ods, and suggested that increased span reduced the

required tension in this single muscle. However, the

initial inverse dynamics solution included torsional

springs at the joints and friction between the muscle

and its constraints, but the spring constant and fric-

tional coefficient were set to zero later in the deri-

vation to simplify the subsequent computations

Rezaei et al. (2010)(and, presumably, to more closely

resemble the highly flexible vertebral column of bi-

ological snakes). This produced a system in which

there were multiple joints but only a single con-

straint (muscle length), allowing the system to adopt

a wide variety of combinations of dorsal and ventral

joint deflections to meet this constraint. When in a

cantilevered position, as in a snake bridging a gap

between trees, the system will collapse into the joint

configuration with the lowest potential energy, typi-

cally accomplished by ventral flexion of the posterior

joints nearest the anchor point and compensatory

dorsiflexion of the distal vertebrae to accommodate

the constraint of the muscle length (see proof in the

Supplementary Material and demonstration in

Supplementary Video S1). This failure mode shows

that the 1:1 correspondence of snake muscle seg-

ments to vertebrae is not only a consequence of a

fundamentally metameric body plan (though this

doubtless plays a role), but a mechanical necessity

to provide equal or greater constraints than the

degrees of freedom available. Attempts by the

authors to mechanically verify their calculations pro-

duced conflicting results (Rezaei et al. 2010).

In order to arrive at generalized insights for multi-

articular systems, I will use a mathematical model of

the SSP muscle to investigate the consequences of

muscular and tendinous span on horizontal

cantilevered gap bridging in snakes (Fig. 2). This be-

havior is an ideal starting point as electromyographic

evidence shows that the SSP is strongly active during

cantilevered gap bridging (Jorgensen and Jayne 2017),

as well as strong interspecific differences in SSP span

and tendon ratio (Jayne 1982; Tingle et al. 2017) and

animal performance (Lillywhite et al. 2000; Ray 2012).

I will model both the maximum gap crossed and the

metabolic cost. I hypothesize that increasing total

span and tendon ratio will increase both performance

metrics, at the cost of range of motion.

Methods

Assumptions

This paper uses several assumptions and simplifica-

tions to make the system analytically tractable.

(1) I assume a static or quasi-static posture, in which

accelerations are minimal and inertia can there-

fore safely be neglected; this corresponds well to

the observed gap bridging behavior of snakes, in

which movements are slow, with slight vertical

oscillations apparent only near maximal perfor-

mance (Jayne and Riley 2007).

(2) I do not include the head or cervical muscula-

ture (Fig. 2). These could easily be added via the

methods below, but would add an additional

variable to account for and would only add an

additional linear term to the external moment

equation (Equation (1)). Furthermore, only lim-

ited descriptions are available of the cervical

muscular anatomy (Pregill 1977). Thus, explicit

incorporation of the head and cervical muscula-

ture is left to future work.

(3) All intervertebral joints are assumed to be fric-

tionless (consistent with their synovial anatomy

[Winchester and Bellairs 2009]) and capable of

resisting all axial and shear loads applied, thus

restricting our concern to the moment at each

intervertebral joint.

(4) I consider only a single muscle, the SSP, and do

not consider the potential contributions of other

dorsiflexors such as the multifidus (Mosauer

1935; Gasc 1981; Jayne and Riley 2007; Fig. 2).

While these muscles are likely to contribute, the

addition of a parallel muscle precludes partition-

ing activation and force generation between

them, rendering the equations indeterminate

without simplifying assumptions (Winter 2009),

many of which are potentially dubious in a sys-

tem as sparsely studied as snake biomechanics.

(5) I assume that only one muscle originates from

each vertebrae and inserts on one vertebra

Fig. 2 Diagram of model system with a cantilever length of N¼ 6

and a multi-articular span of p¼ 3. Anterior is to the left, and

segment 7 is anchored to the substrate. Segments have a mass m

and a length L. A single muscle originates on each vertebra and

applies uniform tension along its length (FM(i, p)); all muscles have

the same lever arm (a), but have been offset for visual clarity

(dotted lines). Joints are numbered by their prior segment and

muscles are numbered according to the number of the anterior

segment.
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(Fig. 2). This is a simplification of the snake

anatomy, particularly for the posterior insertion,

which may span two to three vertebrae (Mosauer

1935; Gasc 1981; Jayne 1982). Combined with the

second assumption (no head or cervical muscu-

lature), this means that the most anterior joint

will be crossed only by a single muscle, while the

second joint will be crossed by two (if the span

�2) and so on (Fig. 2).

(6) I assume that all segments are identical in

length, mass, and muscle lever arm (Fig. 2).

While the vertebrae of snakes vary in dimen-

sions longitudinally (and thus presumably also

in mass) (Johnson 1955; Mccartney 2013), this

simplification is necessary to render the equa-

tions tractable and to avoid additional compli-

cating terms. Again, future analysis can make

these term (m, L, and a below) functions of

joint number to more closely match biological

reality, but I predict that for biological plausible

functions of these terms the overall conclusions

of this paper will remain valid.

Model

The model of the system is represented in Fig. 2, though

limited to only six segments for visual clarity. Each seg-

ment has a mass (m) and a length (L), connected by a

series of joints numbered (i) according to the anterior

segment; thus joint i¼ 1 is between the first and second

segment, joint i¼ 2 is between the second and third, etc.

Muscles will be designated according to the number of

the anterior segment which they originate on, for exam-

ple, the muscle originating on the first segment is muscle

1, regardless of how many vertebrae it spans before the

posterior insertion (Fig. 2). The number of vertebrae

spanned by a muscle is designated as p, and as a conse-

quence, the number of muscles crossing a given joint

will increase from 1 to p for the anterior joints 1<i�p,

after which each joint will be spanned by p muscles, and

the force of each muscle will be the function FM(i, p)

(Fig. 2). All muscles function at the same lever arm (a),

though they are offset for clarity in Fig. 2.

Method of sections

As the system is quasi-static, I can employ the sec-

tion “method of sections,” a mathematical practice

widely used in the analysis of static structures in

engineering (Bedford et al. 1997). For a static system

with known loads, one can take an imaginary, con-

tinuous “slice” through the structure which cuts N

elements, defining a force variable (F1, F2, . . ., FN)

for the tension/compression force of each member

(which must be parallel to this member). Because

the system is static, the summed forces in both hor-

izontal and vertical directions must be equal to zero,

as are the summed moments about a given point,

which allows us to create a system of equations. For

small N, the system will be solvable, but if not, dif-

ferent sections crossing some (but not all) of the first

set of beams will result in still more equations. For

systems with more unknowns than equations, addi-

tional simplifying assumptions can be used (such as

minimal strain energy), but those will not be neces-

sary for this study. In this case, a section passing

through joint i¼ 1 crosses two structures, the joint

itself (the location of the gravitational moment), and

the muscle, which generates a counteracting torque

via its tension and the lever arm (a) such that the

net moment is zero (otherwise the system would not

be static). At joints 2 and higher, sections cross ad-

ditional muscles and joints (which are subject to

different gravitational moments), but can be solved

based on calculations at prior joints (see below).

The analysis method outlined will first be used to com-

pute the force in each individual muscle segment via the

method of sections and to derive a continuous function

which approximates these forces. Forces will be

expressed in terms of three key variables: the anterior

origin of the muscle (i),the multi-articular muscular

span (p), consisting of the number of joints spanned

from anterior to posterior attachment and the tendon

ratio (t), defined as the fraction of the multi-articular

span which is tendinous (0 being purely muscular and

1 being purely tendinous). Three performance metrics

will be used: maximum gap spanned, metabolic energy

consumption, and range of motion.

Maximum gap bridging performance

The finding that the muscles crossing a given joint

are not contributing equally to the required force,

and that more posterior muscles contribute more

than anterior ones (Equations (4), (6), and (7),

Fig. 3), leads directly to the criterion which deter-

mines the maximal horizontal cantilever length.

Rather than failing when the required force exceeds

the combined maximum force of all muscles crossing

a given joint, failure will occur when the force which

must be contributed by a given muscle at a given

joint exceeds the maximal force which it is physio-

logically capable of contributing. This critical force

will be determined by the maximum available muscle

cross-sectional area, CSAMax multiplied by the peak

isometric muscle stress, P0 (typically �30 N/cm2 in

vertebrates). All else being equal, higher maximal

cross-sectional area will result in longer gap bridging.

However, when considering the effect of multi-
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articular muscle morphology, the effect increase in

muscle span must not be confounded by simulta-

neously increasing available cross-sectional area; if

each muscle is assumed to have a fixed cross-

sectional area regardless of span, a snake with a

span of 40 would have 40 times the total cross-

sectional area and 40 times the muscle mass of a

mono-articular snake! Instead, for snake of a fixed

length and SSP muscle mass, and thus a fixed total

cross-sectional area at any given joint, CSAMax, in-

creasing the span will require subdividing that cross-

section area across the muscles spanning that joint.

Thus, the maximum cross sectional area available to

a given muscle will be CSAMax divided by the span,

and the peak force will be this area multiplied by P0.

However, the SSP is highly tendinous, particularly

in arboreal species (Jayne 1982; Tingle et al. 2017),

and these tendons have a small cross-sectional area

compared with muscles (which can be neglected for

the purposes of these calculations). As a result, the

muscle can span many segments without nearly as

much loss of cross-sectional area if it is tendinous.

To formalize this, I introduce the tendon ratio (t)

denoting the proportion of the multi-articular span

which is tendinous. Thus, for a span of p, the tendi-

nous portion will span t * p vertebral joints and the

muscular section will span (1�t) * p vertebral joints.

However, certain combinations of t and p will pro-

duce unrealistic results, particularly those which would

result in muscular segments lengths shorter than a

single segment, as this would falsely inflate the avail-

able cross-sectional area beyond what is available for a

single segment of the snake’s body. Correspondingly,

all data for which the condition (1�t) * p� 1 is vio-

lated are excluded. I will evaluate the consequences of

both purely muscular multi-articular span (p, t¼ 0)

and tendinous multi-articular span on gap bridging

performance, relative to a system with no tendon

and mono-articular muscles.

I will also examine the effects of increased segment

length on gap bridging performance. The consequen-

ces of increasing segment length are more complex,

as doing so will increase the moment arm of each

segment and thus the gravitational moment at each

joint, but will also allow the snake to achieve greater

absolute cantilever distances with the same number

of joints, or the same distance with fewer joints.

Absolute performance will be the performance met-

ric in this analysis, defined as the number of joints

(i) multiplied by the segment length L.

Metabolic cost

While maximum performance is often a key metric

in biological systems, the metabolic cost of behaviors

can also be relevant, particularly for species like

snakes, which are often specialized for a low-energy

lifestyle. While precise predictions of the absolute

metabolic cost of this behavior would require a far

more detailed model of snake muscle physiology

than currently possible, particularly given the ab-

sence of all but the simplest measures of muscle

physiology for any snake, this metric can still be

explored with some simplifications. Because force

must be maintained along the entire length of the

muscle, the metabolic cost of a muscle will increase

with fiber length, and thus be proportional to total

active muscle volume (Biewener and Roberts 2000).

However, tendon is a passive tissue, requiring no

metabolic input to carry load, thus only the muscu-

lar volume is considered. This volume will be mul-

tiplied by an unknown constant, Q, representing the

cost per unit volume of an isometric contraction.

The key metric will be the metabolic cost savings,

defined as the difference between a mono-articular,

purely muscular system and a system with a given p

and t, divided by the cost of the mono-articular,

purely muscular system. Values greater than 0 rep-

resent the proportion of metabolic cost savings (e.g.,

0.5 indicates a 50% reduction in cost). Metabolic

cost savings will be assessed in terms of the conse-

quences of multi-articular span (p) and tendon ratio

(t). As previously, all data for which the condition

(1�t) * p� 1 is violated are excluded.

Range of motion

I will also quantify the effect of multi-articular span

and tendon ratio on range of motion. Muscle is lim-

ited in both the relative length change it can undergo

and the speed with which it can do so. While tendon

can change length (e.g., elastic energy storage for

energy conservation or power amplification), these

changes are typically very small relative to the length

change in muscle, and will be neglected for the pur-

poses of this paper.

Mechanical testing

In order to test the validity of the muscle force

equations, I constructed a simple mechanical model

for a system with a span of four (p¼ 4), consisting

of 3D printed segments joined with vertically ori-

ented 4 mm miniature barrel hinges, each with a

pair of screw eyelets to constrain “muscle” move-

ment (the same model as in Supplementary Video

S1). To determine force, Kevlar thread was tied to

the anterior eyelet on the first segment, threaded

through the remaining eyelets in the span, then at-

tached to a Pesola spring scale (various models to
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accommodate differences in force) held parallel to

the line of action. The model was then positioned so

that the joint was cantilevered and the force on the spring

scale recorded (lowest of three attempts). The Kevlar

thread was then tied at the posterior attachment point

appropriate for the span (in the case of the first “muscle”,

at segment 5) at a length which allowed it to remain

taught. This process was then repeated sequentially for

each of the posterior segments for a total of seven meas-

urements; beyond this point, imprecisions in the hinges

and attachment locations caused the system to “lock up”

due to small lateral forces. Forces are compared with

those predicted from derivations. Because the model is

only seven segments, the exact calculation (Equation (4))

is preferred, as the continuous approximation equation

(7) suffers from inaccuracies at small values of i and p.

Results

Muscular force calculations

For a beam consisting of discrete segments con-

nected by joints, as in our model of a horizontally

cantilevered snake (Fig. 2), the external moment

MExt at any joint will be

MExt ið Þ ¼ m � g � ið Þ � L � i

2
¼ m � g � L � i2

2
; (1)

where m is the mass of a single segment, L is the

length of a single segment, g is the acceleration due

to gravity, and i is the number of the joint from most

anterior (Equation (1)) to most posterior (N) (Fig. 2).

This equation corresponds well with the equation for

a solid cantilevered beam under uniform loading

(Bedford et al. 1997). For the snake to hold a static

position, it must counteract MExt(i) at each joint i

through some combination of muscles acting across

the joint (Fig. 2). Since all muscles have the same

moment arm a (see Assumptions, Fig. 2), the sum

of all muscular force at a given joint (FMtotal) is

0 ¼ MExt ið Þ � a�
X

FM

[
X

FM ¼ FM total ið Þ ¼ MExt ið Þ
a

¼ m�g�L�i2

2�a :

In the simplest case of the muscular span p¼ 1,

because each joint is spanned by only a single mus-

cle, this muscle is solely responsible for counteract-

ing the external moment at that joint and thus FM(i,

1)¼FMtotal(i). This system will serve as our baseline

for future comparison. For p> 1, in all cases, the

first joint is spanned only by a single muscle, and

thus FM(1, p)¼FMtotal(1). However, the second joint

is spanned by two muscles (Fig. 2), each of which

contribute to the summed muscular force

(FMtotal(i)). Because the tension in a muscle must

be equal at all points along its length, FM(1, p) is

known from the prior calculation, thus FM(2,

p)¼FMtotal(2)�FM(1, p). For p� 3, the third joint

is spanned by three muscles (Fig. 2), and with

FM(1, p) and FM(2, p) constrained by prior joints,

FM(3, p)¼FMtotal(3)�FM(2, p)�FM(1, p). Indeed, for

all i� p and for all p, FM(i, p) must only add enough

force to compensate for the increase from

FMtotal(i�1) to FMtotal(i), which simplifies to

for i � p; FM i; pð Þ ¼ FMtotal ið Þ � FM total i � 1ð Þ

[ FM i; pð Þ ¼ m�g�L
2�a � 2i � 1ð Þ ¼ CM�FF

where CM ¼
m�g�L

2�a & FF ¼ 2i � 1

At this point, it becomes convenient to talk about

the equation into two parts, consisting of a

“morphological coefficient” (CM) which includes all

of the constant terms defined by the geometry of

the system (mass, length, gravity, and lever arm) and

a “force function” (FF), which determines the value

which the morphological coefficient is multiplied by

to determine total force for a given muscle, based on

joint number and muscle span. As seen in Equation

(3), for i� p, the force function (FF) is 2i�1, which

will output the first p odd integers. This equation does

not depend upon p, though p will determine how

many joints are governed by this equation.

For i> p, the force function becomes more complex.

While joint i is still crossed by and thus still receives

contributions from muscles originating at more ante-

rior joints, the muscles with anterior origins more than

p away have terminated at their posterior insertions and

thus no longer contribute (Fig. 2). For example, in a

system with a span of p¼ 3, joint i¼ 3 is actuated by

muscles originating on segments 1, 2, and 3, but joint

i¼ 4 is actuated by muscles originating on segments 2, 3,

and 4 (Fig. 2). Thus, the muscle which originates imme-

diately anterior to the joint must now not only apply

sufficient force to meet the increased external demand,

but also compensate for the loss of the muscle which

originated on joint i�p. This applies for all i> p, and

results in FF(i, p) being defined by a piecewise equation:

FF i; pð Þ ¼

2i � 1 ; i � p

i2 �
Xk¼i�1

k¼i� p�1ð Þ
FM k; pð Þ ; i > p

:

8>><
>>: (4)

The dependence of the value of FF(i, p) on values

of FF for a variable number of lower i values makes

it cumbersome to deal with, though the force
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function can be readily computed with a simple

computer program (Supplementary Code S1). From

inspection of these results, it is clear that FF

decreases tremendously with p for any i> p, indicat-

ing that greater muscular span does indeed reduce

the force needed in each muscle (Fig. 3).

While the force function is simply i2 for p¼ 1

(due to equivalence with FMtotal/CM), as p increases,

it departs increasingly from the simple quadratic re-

lation (Fig. 3). Furthermore, the curve of the force

function for a given p is not actually a curve, but

rather a series of line segments (Figs. 3B and 4). To

progress further, this relationship must be approxi-

mated with a continuous function.

Upon closer inspection, the slope is constant for a

length p�1, followed by a single segment with a

slope 1 higher, followed by another series of length

p�1 with a slope 2 higher than the previous one

(Figs. 3B and 4). All slopes start at 2, and the seg-

ments of length p�1 are always even, with the inter-

vening slopes of length 1 having odd slopes

(Fig. 4A). Because the system is only valid at integer

values of i and p, rather than an integral, the appro-

priate mechanism for calculating the “area under the

curve” is summation rather than integration.

Therefore, the pattern of slopes can be used to derive

an approximation of FF(i, p):

FF i; pð Þ ¼
Xi=p

k¼1

ð2k � 1Þ þ p � 1ð Þ �
Xi=p

k¼1

2k

 !
: (5)

Sum identities can be used to simplify Equation

(5) to

FF i; pð Þ ¼ i2

p
þ p � 1

p
i

� �
: (6)

This continuous equation approximates the ex-

plicit calculation, but intersects only at every pth

point, otherwise under-predicting Equation (4)

(Fig. 4B). Further inspection reveals that the maxi-

mum underprediction is (p�1)2/4p, thus adjusting

Equation (6) upward by adding half of this function

yields

FF i; pð Þ ¼ i2

p
þ p � 1

p
i þ p � 1ð Þ2

8p

 !
: (7)

The predicted values of this approximation were

compared with the calculated values of Equation (4)

for all values of p and i in 1� p� 50 and 1� i� 200,

which showed that the force function has a maxi-

mum error of 6, corresponding to a mean relative

error of only 3.5%, being higher at small i and p.

However, these small values of i and p are of less

biological relevance, and thus Equation (7) provides

us with a highly accurate approximation for further

computations. Previous work has attempted to link

gap bridging performance to muscular anatomy us-

ing an approximation of FF(i, p) which assumed an

even distribution of force across all muscles of a

given segment (Jayne and Riley 2007). In that model,

the contribution of any individual muscle is simply

FMtotal (Equation (2)) divided by p. In Equation (7),

there indeed is a term in the force function which

matches this prediction, i2/p. However, Equation (7)

also includes a term which has a positive, linear re-

lationship with i, showing that this “even activation

Fig. 3 Force function FF (Equation (4)) versus i and p. (A) Force function value versus i for spans of 1–4 and 10. (B) Force function

value versus i for spans of 10, 20, 30, and 40.

146 H. C. Astley

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/60/1/140/5811566 by SIC

B M
em

ber Access,  hastley@
uakron.edu on 23 July 2020

https://academic.oup.com/icb/article-lookup/doi/10.1093/icb/icaa012#supplementary-data


model” will underestimate the actual force, and this

underestimation will be greater for higher i and p.

This can be observed even at small segment numbers

(Fig. 5B).

Mechanical validation

The predicted forces for Equation (4) were tested

using a mechanical model. A linear regression be-

tween force function (Equation (4), right side) and

observed tension in MATLAB showed a highly sig-

nificant linear fit (R2¼ 0.99, p< 0.0001) with a non-

significant intercept and a slope of 0.099 (Fig. 5A).

The slope corresponds to the morphological coeffi-

cient (CM) in Equation (4), and agrees closely with

the value calculated from the segments directly

(mass¼6.54 g, length¼5 cm, lever arm¼1.6 cm, cal-

culated CM ¼ 0.10 N).

Performance: maximum gap bridging

To determine the consequences of multi-articular

span on maximum gap bridging performance, I de-

termine the peak muscle force a single muscle is ca-

pable of generating, accounting for the subdivision

Fig. 4 Fitting a continuous function to Equation (4). (A) Slope of force function value (Equation (4), right side) for spans of 1–4, 10, and

20. Note that the slope increases discontinuously. (B) Force function value versus i for a span of 20, showing the results for Equations

(4), (6), and (7). Note that Equation (6) underpredicts Equation (4) except where i is an integer multiple of p. Equation (7) adjusts

Equation (6) upward to make these errors symmetrical.

Fig. 5 Results of mechanical testing. (A) Predicted force function value from Equation (4) versus observed tension (gray circles). The

black line indicates the linear regression (0.099 * (pred.)�0.10, R2 ¼ 0.99, P< 0.0001). The slope of this line corresponds to the

morphological terms in Equation (4), CM, which match predictions based on the model mass and geometry (CM ¼ 0.10). (B) Observed

(gray circle) and predicted (black line) tension versus segment number, in contrast to predictions from a simple “even activation

model” (dashed line).
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of the cross-sectional area into multi-articular

“bundles” (see the section “Methods”)

FM i; pð Þ ¼ P0

CSAmax

p

� m � g � L

2 � a
� i2

p
þ p � 1

p
i þ p � 1ð Þ2

8p

 !
; (8)

which can be re-arranged into a simple quadratic form

0 � i2 þ p � 1ð Þi þ p � 1ð Þ2

8
� 2 � a � P0 � CSAmax

m � g � L

(9)

and solved for i as a function of p via the quadratic

formula

Maximum i pð Þ ¼
�p þ 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1ð Þ2

2
þ 8�a�P0�CSAmax

m�g�L

q
2

;

(10)

with the positive value of Equation (10) providing

the maximum horizontal cantilever length in terms

of p (negative values of Equation (10) are meaning-

less). Equation (10) can be evaluated for 1� p� 50

and arbitrary values of the various constants and

divided by the result for p¼ 1 to see that increased

multi-articular span decreases the maximum cantile-

ver length (Fig. 6).

Careful inspection of the results of FF(i, p)

(Equation (7); Fig. 3) reveals that, while increasing

p reduces FF at any i> 1, the reduction from FF(i, 1)

to FF(i, p) is slightly less than the loss in cross-

sectional area over that same interval. More formally,

the partial derivative of Equation (10) with respect

to p is

@ Maximum iðpÞð Þ
@p

¼ � 1

2
þ p � 1

4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1ð Þ2

2
þ 8�a�P0�CSAmax

m�g�L

q
(11)

which, because all morphological constants are pos-

itive, is negative for all p> 0, proving that increasing

multi-articular span is always detrimental (Fig. 6).

This result is strongly contrary to expectations, as

increased multiarticular span is correlated with

arboreality and thus gap bridging demands in the

natural habitat.

To evaluate the consequence of tendons, which do

not trade off against muscular cross-sectional area, I

reformulate Equation (8) as

FM i; p; tð Þ ¼ P0

CSAmax

1� tð Þp

� m � g � L

2 � a
� i2

p
þ p � 1

p
i þ p � 1ð Þ2

8p

 !

(12)

in which (1�t) * p is the length of the muscular

span, while t * p is the tendinous span. This can

be solved as above to express maximum gap spanned

as function of both t and p

Maximum i p; tð Þ ¼
�p þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1ð Þ2

2
þ 8�a�P0�CSAmax

m�g�L�ð1�tÞ

q
2

:

(13)

As previously, this can be graphed for arbitrary

values of the assorted constants and expressed as a

ratio of the value of p¼ 1, t¼ 0 to show that while

increased span mildly decreases the maximum canti-

lever length, increased tendon ratio dramatically

increases it (Fig. 7).

Partial derivatives with respect to both p and t

show that maximal cantilever performance decreases

for all increases of p for p> 1 (as above), but

increases continuously for all 0< t< 1

@ Maximum iðp; tÞð Þ
@p

¼ � 1

2

þ p � 1

4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1ð Þ2

2
þ 8�a�P0�CSAmax

m�g�L�ð1�tÞ

q ;

(14)

@ Maximum iðp; tÞð Þ
@t

¼
2�a�P0�CSAmax

m�g�Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�tÞ p�1ð Þ2

2
þ 8�a�P0�CSAmax

m�g�L

q :

(15)

Solving for the minimum t necessary to offset the

detriment due to increased p (relative to 1) yields

Fig. 6 Maximum cantilever performance (Equation (10)),

expressed as a fraction of the performance for a mono-articular

system, versus multi-articular span.
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Minimum Tendon Ratio pð Þ � 1� A

p þ
ffiffiffiffi
A
p
� 1

� �2 � p�1ð Þ2
2

;

where A ¼ 8�a�P0�CSAmax

m�g�L ;

where A is a combination of the morphological and

physiological constants, showing that relatively little

tendon is required in order to “break even” (Fig. 7).

As A increases, representing either increased strength

and leverage or reduced load, the required tendon

ratio decreases.

While most morphological constants in Equation

(13) behave as expected, increased segment length

(L) will decrease maximum number of segments

which can be cantilevered, but increase the absolute

distance. To examine this tradeoff, I compute the

maximum horizontal cantilever distance in absolute

length as the product of the maximum number of

joints and the segment length

Cantilever Distance p; t ; Lð Þ ¼ L �Max: i p; tð Þ

¼
�p � L þ L þ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1ð Þ2

2
þ 8�a�P0�CSAmax

m�g�L�ð1�tÞ

q
2

: (17)

If increasing L increases cantilever distance, the

derivative of Equation (17) with respect to L must

be greater than zero

@ Cantilever Distance p; t ; Lð Þð Þ
@L

¼ �p

2
þ 1

2
þ

p � 1ð Þ2L þ 8�a�P0�CSAmax

m�g�ð1�tÞ

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1ð Þ2L2

2
þ L � 8�a�P0�CSAmax

m�g�ð1�tÞ

q > 0; (18)

which can be satisfied when

L <

ffiffiffi
2
p
� 1

� �
8�a�P0�CSAmax

m�g� 1� tð Þ� p � 1ð Þ2
(19)

showing that there is indeed a limit to L, beyond

which increased vertebral segment length will cause

decreases in cantilever performance (Fig. 8). As coef-

ficients related to strength and muscular moment

Fig. 7 Maximum cantilever performance (Equation (13)), expressed as a fraction of the performance for a mono-articular, purely

muscular system, versus multi-articular span and tendon ratio. The plane is at 1, indicating that combinations of p and t above the plane

will have performance superior to the mono-articular, muscular system.

Fig. 8 Cantilever distance versus vertebral length (Equation

(17)). For any set of morphological parameters, span, and tendon

ratio, there exists an optimal vertebral length (Equation (18)),

beyond which cantilever distance declines (Equation (19)). Units

of both axes are arbitrary.
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(P0, CSAmax, and a) increase and as coefficients re-

lated to load decrease (m and g), this limit rises. As

with overall performance, increased multiarticular

span causes the maximum beneficial vertebral length

to decline, while this length increases with increasing

tendon ratio.

Metabolic cost

The metabolic cost of a single muscle in our system

is proportional to the volume of active muscle tissue.

Metabolic Cost per muscle p; tð Þ
¼ CSA�p�L� 1� tð Þ�Q; (20)

where Q is a constant representing the cost of iso-

metrically activating a given volume of muscle.

However, for submaximal loads, muscle will only

need to activate a portion of the total cross-

sectional area available. To determine the required

cross-sectional area for a given muscle, Equation

(12) is reformulated to solve for cross-sectional

area at a given i, p, and t.

Required CSA i;p; tð Þ¼m�g�L� 1� tð Þ
2�a�P0

� i2þ p�1ð Þiþ p�1ð Þ2

8

 !
;

(21)

which can be combined with Equation (20) to yield

a metabolic cost equation of

Metabolic Cost per muscle i;p; tð Þ

¼ p�Q�m�g�L2� 1� tð Þ2

2�a�P0

� i2þ p�1ð Þiþ p�1ð Þ2

8

 !
:

(22)

This can be summed over the interval from 1 to i

to give total cost of

Total Metabolic Cost i;p;tð Þ

¼p�Q�m�g�L2� 1�tð Þ2

2�a�P0

� i3

3
þp�i2

2
þ 3p2þ6p�5

24

� �
i

� �
(23)

based on distributivity, associativity, and sum iden-

tities (Supplementary Material S2). As would be

expected, longer cantilever distances (increasing i)

result in increasing cost, since required forces rise

and more muscles must become involved. Partial

derivatives with respect to each of the variables

show that metabolic cost increases with both i and

p, but decreases with t (Supplementary Material S2).

The nature of these relationships becomes clear

when metabolic cost is graphed as a function of

multi-articular span and tendon ratio for a given

cantilever length relative to the cost of a purely mus-

cular, mono-articular system (Fig. 9). The tendon

ratio at which the metabolic cost of a given mutli-

articular span decreases below that for the purely

muscular, mono-articular system is very high at

high cantilever distances (high values of i), but

Fig. 9 Metabolic cost savings vs. multi-articular span (p) and tendon ratio (t) at a gap of i¼ 100, expressed as the reduction in cost

below that of a mono-articular, purely muscular system, and divided by this same reference value (based on Equation (23)). A value of

0.5 represents a 50% reduction in metabolic cost. Negative values represent increased metabolic cost. For all but the most tendinous

systems, the metabolic cost is dramatically higher than a mono-articular, purely muscular system. This minimum margin is lower at

lower gap lengths (Supplementary Material S2).
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increases only modestly with span (Fig. 9 and

Supplementary Material S2).

Range of motion

Consider a segment of the snake’s vertebral column

which is of uniform curvature k (defined as the in-

verse of the radius of curvature R) with a muscle at

constant lever arm a. The vertebral column will be

considered incompressible and of length Lvert, and

thus this arc of curvature k will subtend an angle

of h (in radians) such that Lvert¼R * h. Because h
must be the same for the muscle and the vertebral

column, the length of the muscle on the inner side

of the arc will be Lin=(R�a) * h. Since, when

straight, both muscles will be equal in length to

the segment of the vertebral column (Lvert¼Lin),

the strains for each muscle is

Straininner ¼
Lvert � Lin

Lvert

¼ R�h� R � að Þ�h
R�h ¼ a

R
¼ a�k

(24)

if the straight position is regarded as the “neutral”

length. A similar derivation can show that the strain

of the outer muscle is also a * k. Therefore if, during

a locomotor cycle, the segment was to start at cur-

vature k, straighten, and continue to bend to the

opposite side to the same curvature k, the muscle

would undergo a total strain of 2*a*k. Crucially, be-

cause this is a relative measurement of percentage

shortening, it remains constant regardless of how

many vertebral and muscular segments are in the

arc (as shown by the lack of a h, Lvert, or Lin term

in Equation (24)). Thus multi-articular span has no

effect on either the relative length change of a fiber

or the relative contractile velocity, provided that the

entire region is of constant curvature.

For extremely large multi-articular span, this may

not be the case. Because snakes have highly variable

numbers of vertebrae, the multiarticular span of a

given muscle may span anywhere from 4% to 22%

of the total body vertebrae (Jayne 1982). Because

local strain is only a function of lever arm and cur-

vature of an arc, a snake can be represented para-

metrically as a smooth curve from position 1 (the

head) to position s (the tip of the tail), with curva-

ture at all points along the body as a function of s,

k(s). Correspondingly, the strain of any multiarticu-

lar muscle spanning two locations on the snake

would be the definite integral of the curvature func-

tion k(s) over the given body segment, with negative

values of curvature denoting curves to one side and

positive values to the other, multiplied by the lever

arm and divided by the length of the integral region.

However, while snakes approximate smooth curves,

their axial system is ultimately comprised of rigid

segments separated by discrete joints. For vertebrae

of length L, the arc connecting the midpoint of each

vertebra (distance L/2 from the joint) and the center

of rotation of the joint between them has a curvature

of

k ¼
4�sin b

2

� �
L small angle approx:

									! 2�b
L
; (25)

where b is the angle between the two vertebrae. The

small angle approximation reduces this to a simpler

form (provided the angle is computed in radians),

and yields 98% accuracy within the range of motion

typical of snake vertebrae (Jayne 1988a; Sharpe et al.

2015; Morinaga and Bergmann 2019; Jurestovsky

et al. 2020). Therefore, strain can be expressed as a

function of intervertebral joint angle, vertebral

length, and lever arm

Strain ¼ 2�a�b
L

: (26)

However, because tendon changes length relatively

little, increased tendon ratio will require that the

length change be achieved only by the muscular por-

tion of the muscle–tendon unit

Strain ¼ 2�a�b
L� 1� tð Þ : (27)

Thus, as tendon ratio increase, the range of ver-

tebral motion for a given allowable muscle fascicle

strain range decreases. Correspondingly, increasing t

requires that the muscle strain and strain rate for a

given curvature and rate of curvature change

increases.

Discussion

These derivations above provide the first detailed

look into the mechanics of multi-articular muscle

systems at the individual muscle level. For our target

behavior, cantilevered gap bridging, I was able to

show that increasing the span of purely muscular

multi-articular systems result in a modest perfor-

mance decrease, but increasing the tendon ratio for

a given span produced large gains in gap bridging

performance. In contrast, metabolic cost was usually

higher than mono-articular, purely muscular systems

except for a very few, highly tendinous configura-

tions. Range of motion was unaffected multi-

articular span itself, but was adversely affected by

increased tendon ratio.

Biomechanics of Muscle–Tendon Systems in Snakes 151

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/60/1/140/5811566 by SIC

B M
em

ber Access,  hastley@
uakron.edu on 23 July 2020

https://academic.oup.com/icb/article-lookup/doi/10.1093/icb/icaa012#supplementary-data


Biological context

Based on these results, the observed values of snake

SSP multi-articular span and tendon ratio can be

mapped onto the performance spaces for maximum

perfornace and metabolic cost. Because the snake

SSP varies not just in multi-articular span and ten-

don ratio but also relevant morphological variables

such as vertebral length, mass, muscle cross-sectional

area, and lever arm (Equations (13) and (20)), it is

difficult to compare species directly. However, this

can be mitigated by computing the ratio between the

computed values for a given multi-articular span and

tendon ratio and the value for mono-articular

muscles with no tendon, as previously in the results.

As a result, a given value is not the snake’s actual

performance, but rather a metric of how much their

multi-articular span and tendon ratio improves their

performance beyond this hypothetical baseline. To

avoid confounding the consequences of greater can-

tilever performance with metabolic cost, as increased

number of joints in the cantilevered body segment

must lead to increased metabolic cost, metabolic cost

was evaluated at a standard cantilever performance

of i¼ 100 (Fig. 10B). Values of multi-articular span

and tendon ratio were computed from Table 4 of

Jayne (1982).

These values show that snakes with the mean

morphology of each habitat cluster display elevated

performance relative to the alternative of a hypothet-

ical, mono-articular purely muscular system

(Fig. 10A). This is largely due to the combination

of multi-articular anatomy and high tendon ratio,

even for burrowers and aquatic species (Fig. 10A).

Examination of data for individual snake species

(Jayne 1982) showed that most would be fairly close

to the center of their clusters. The differences com-

puted, however, are far less substantial than the ob-

served differences in cantilever gap bridging

performance (Lillywhite et al. 2000; Ray 2012),

showing that morphological variables likely play a

large role in cantilever performance.

In contrast, the metabolic cost was greater in con-

figurations observed in real snakes than for the hy-

pothetical mono-articular purely muscular system.

However, biological values were very close to the

plane of equality (Fig. 10B), suggesting that selection

pressure for metabolic economy may still occur.

These calculations also assumed a relatively simple

model for metabolic cost (proportional to active

muscle volume) while the real cost is likely more

complex. However, this behavior is also likely to be

subject to greater selection for performance than

economy, and thus these results are not entirely sur-

prising. The data on increased vertebral length aligns

well with biological data, in which arboreal snakes

with long, highly tendinous SSP muscles also have

Fig. 10 Caenophidian snake data plotted on performance and metabolic cost surfaces (Figs. 7 and 9). Values of multi-articular span

and tendon ratio were computed from Table 4 of Jayne (1982). Constrictors and non-constrictors were merged due to the closeness

of the points. (A) Performance of biological snakes when compared with a hypothetical, mono-articular purely muscular system.

Horizontal plane indicates a value of 1, equal to this baseline. Burrowing, aquatic, and terrestrial snakes show similar improvements

over the mono-articular systems (1.8, 1.6, and 1.7, respectively), while arboreal species showed an improvement of 2.1. (B) Metabolic

cost savings for a gap of i¼ 100, when compared with a hypothetical, mono-articular, purely muscular system. Horizontal plane

indicates a value of 1, equal to this baseline. All species showed negative values, indicating greater metabolic cost than a mono-

articular, purely muscular system, though they are close to the margin (burrowing¼ 14% higher cost, aquatic¼ 38% higher cost,

terrestrial¼ 72% higher cost, and arboreal¼ 13% higher cost).
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relatively elongate vertebrae (Lawing et al. 2012), but

not nearly so dramatic an elongation as in other taxa

(Li et al. 2004).

The notable tradeoff with range of motion also

corresponds well with biological data, though range

of motion is known only for a few species

(Jurestovsky et al. 2020). Dorsoventral range of mo-

tion is approximately 20� (less than half of the lateral

range of motion) and is greater ventrally than dor-

sally (dorsal ROM¼8.9–11.3�) (Jurestovsky et al.

2020), suggesting the highly tendinous SSP limits

range of motion and requires large muscle fiber

length changes for relatively small movements.

Whether this increased strain and contractile velocity

is beneficial is likely to depend on both the function

and the contractile properties of the muscle (Ruben

1977). While muscular lever arms have never been

quantified in snakes, length:width ratios from a dor-

sal view are reported as ranging from about 0.5 to 1

(Lawing et al. 2012). Range of motion has only been

quantified in a few snakes, but is approximately 0.3

radians dorsoventrally (total) and 0.3 radians later-

ally (straight to maximum joint angle) (Jayne 1988a;

Sharpe et al. 2015; Jurestovsky et al. 2020). For a

hypothetical constrictor using maximal lateral bend-

ing, a muscle with no tendon inserting on the most

lateral tip of the pre- and post-zygapophysis would

need to operate across a strain range of 30–60% (to

account for bending to each side); muscles inserting

on the ribs would be subject to even greater strains.

These strains are possible but are on the high end of

the range of reported muscle strain values

(Burkholder and Lieber 2001). Alternatively, laterally

undulating snakes typically use substantially less than

the limit of their range of motion, but rarely exceed

locomotor frequencies of 2 Hz (Jayne 1986), suggest-

ing muscle contractile velocities of substantially less

than 1 length per second. While no data exists on

the force velocity relationship of snake muscle, this is

far below the speeds which yield peak power for any

vertebrate locomotor muscle at physiologically rele-

vant temperatures (Hill 1938; Woledge 1968; Askew

and Marsh 2002; Roberts et al. 2011; Astley 2016).

Increasing tendon ratio for the muscle would result

in corresponding increases in strain rate, allowing

muscles to operate closer to optimally for peak iso-

tonic power, at the cost of range of motion and the

need to traverse a broader range of the length–ten-

sion curve.

Alternative loading regimes

The above calculations and results are limited to a

simple, horizontally cantilevered snake, but the

methods followed could be applied to any alternative

loading regime: a gap-bridging snake supported at

two points (“simply supported” in engineering

terms), a snake moving horizontally on a frictional

plane, a snake on a horizontal plane pressing against

one or more pegs, etc. Indeed, if there exist enough

conditions to make this analysis solvable, the exter-

nal moments (Equation (1)) could be any arbitrary

continuous function. The results of this paper, such

as that multi-articular span requires a tendinous

component to be beneficial, may not hold for these

conditions. Far from undermining this paper, this

may explain why different muscles in the snake axial

system have such tremendous differences is span and

tendon ratio (Fig. 1), or elucidate the mechanical

basis for tradeoffs between various behaviors (e.g.,

constriction vs. lateral undulation speed).

Robots

These findings have applications beyond biological

snakes, particularly with regard to snake robots,

and indeed most prior mechanistic analysis of these

systems has been with the goal of adapting it to

robots to improve their performance (Rezaei et al.

2010; Kano et al. 2011; Faraji and Barazandeh 2012).

Snake robots significantly under-perform compared

with biological snakes, particularly when considering

the relatively large portion of their mass dedicated to

motors, and multi-articular muscles may improve

their performance and help close this gap (Kano

et al. 2011). Because most snake robots are typically

actuated by electric motors, which function primarily

in rotation (e.g., DC motors and servomotors),

multi-articular systems would likely confine the mo-

tor to a single joint, with the remaining span accom-

plished via cables, producing an analog of a very

high tendon ratio and eliminating the tradeoff be-

tween span and force seen in Equation (8). Unlike

muscle, which has a limited length change, motors

capable of indefinite rotation, such as DC motors,

would face no tradeoff with range of motion, though

motors still face a tradeoff between torque and rpm

that is analogous to the muscle force–velocity rela-

tionship. Finally, unlike muscles, in which increased

fiber length will increase metabolic cost (Equation

(20)) (Biewener and Roberts 2000), electrical current

is directly proportional to torque, so any anatomy

which reduces mechanical loading will also reduce

electrical power. While current snake robots are

rather slow and cumbersome compared with the

speed and elegance of their biological counterparts,

the implementation of multi-articular morphology
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may allow increased performance, albeit potentially

at the cost of control complexity.

Conclusions

By using a mathematical model of horizontal canti-

levering behavior in snakes, I was able to show that

increased multi-articular muscle span improved both

maximum cantilever performance and metabolic sav-

ings, but only if a substantial fraction of that span is

tendinous. These results corresponded well with an-

atomical studies of snakes (Jayne 1982; Tingle et al.

2017) and previous robotic studies (Kano et al.

2011), and open the door for both a deeper under-

standing of how snake muscular morphology corre-

sponds to locomotor performance and the potential

for improved biomimetic snake robots. However,

many open questions remain in these areas, repre-

senting a rich area of future research.

Supplementary data

Supplementary data are available at ICB online.
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