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ABSTRACT 

The accurate measurement of vehicle speed and classification is a highly valued factor in 
traffic operation and management, validation of travel demand models, freight studies, and even 
emission impact analysis of traffic operation. The capability of measuring vehicle lengths makes 
dual-loop detectors a potential real-time data source for speed and vehicle classifications. 
However, the existing dual-loop length-based vehicle classification model has been well 
evaluated against free traffic but not suitable for non-free traffic conditions (such as 
synchronized and stop-and-go congestion states).  This paper presents an innovative approach to 
evaluate dual-loop length-based vehicle classification models against concurrent ground-truth 
video vehicle trajectory data at the selected dual-loop traffic monitoring stations. The software 
VEVID (Vehicle Video-Capture Data Collector) is used to extract high-resolution vehicle 
trajectory data from the videotapes. Meanwhile, a probe vehicle equipped with a Global 
Positioning System (GPS) traveler data logger is applied to collect traffic pattern data for 
validating parameters involved in the new vehicle classification models. As a result, new dual-
loop length-based vehicle classification models are developed against the synchronized and stop-
and-go traffic flows, namely, VC-Sync model and VC-Stog model. Comparing to the obtained 
ground-truth data, the sample results show that the error of the estimated length by the VC-Sync 
model is reduced to 8.5% compared to 35.2% produced by the existing model, and the error of 
the VC-Stog model is reduced to 27.7% compared to 210% generated by the existing model. 
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INTRODUCTION 

Inductive loops are increasingly used specifically for traffic monitoring at highway traffic 
data collection sites. Single loop and dual-loop are two major types of inductive loop detectors. 
While lots of efforts have been reported on estimating vehicle speed and vehicle length by using 
single loop data [1-3], the configuration of the single loop disenables accurate estimate of vehicle 
speed and classification. The accurate measurement of vehicle speed and classification is a 
highly valued factor in validations of travel demand models and freight studies, as well as 
emission impact analysis of traffic operation.  Also, the detector data need to be sufficiently 
accurate since any errors will propagate to decision-making and traffic control actions. Many 
studies have proven that the vehicle speed can be estimated accurately by using dual-loop data 
under light traffic (or free traffic flow) condition, and then vehicle lengths can be estimated 
accurately. The capability of measuring vehicle lengths makes dual-loop detectors a potential 
real-time data source for vehicle classifications. However, the existing dual-loop length-based 
vehicle classification models produce high and unstable errors under non-free traffic conditions 
(such as synchronized and stop-and-go congestion states). The errors may be contributed by the 
complex characteristics of traffic congestion; but quantification of such contributing factors 
remains unclear.     

The dual-loop detector consists of two single loop detectors which are placed apart with a 
very short distance (e.g. 20 ft in Ohio), as shown by Figure 1. The dual-loop detector is also 
called “speed trap” by someone.  The current dual-loop model for estimating vehicle length is 
theoretically fitting to the case as vehicles run over the detection area at a constant speed [4]. 
This has been well validated only against light traffic but is unsuitable to non–free traffic flows, 
in particular the stop-and-go situation.  

 

Figure 1. Sketch of Dual-loop Detector Station 

The existing dual-loop length-based vehicle classification model is expressed as follows 
[4]: 
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Where, t1, t2, t3, and t4 are timestamps when a vehicle enters or leaves the upstream loop (M loop) 
or downstream loop (S loop), as illustrated by Figure 1. Other parameters are denoted as the 
following: 

 D = distance between two single loops in the dual-loop station (ft);  

 t = t3 - t1; 

 OnT1 = t2 - t1; and 

 OnT2 = t4 - t3. 

Kerner et al. defined traffic flows in three categories: free flow, synchronized flow, and 
stop-and-go flow [5, 6], as shown by Figure 2. The free flow has high travel speed and low 
traffic volume and density. The synchronized flow is viewed as a kind of congested traffic, 
which has relative low speed and high volume and density. The speed of the synchronized traffic 
stream fluctuates frequently but its average speed remains a relatively stable trend. The stop-and-
go traffic flow is the very congested traffic condition, which has very low speed, low volume and 
high density. The vehicle speed not only fluctuates frequently, but also stops from time to time. 
Thus, within the synchronized and stop-and-go traffic flows there is a high probability that 
vehicles run over the upstream and downstream loops at different speeds and acceleration or 
deceleration may exist as running over the dual-loop station. Within the stop-and-go traffic flow 
some vehicles may experience multiple stops within the detection area.  

 

 

Figure 2. Demonstrations of Three Traffic Patterns [5, 6] 

The Ohio Department of Transportation (ODOT) length-based classification scheme for 
dual-loop detectors was designed to be capable of classifying vehicles into three bins (or called 
3-bin scheme): vehicle length <= 28 ft (Bin 1), vehicle length <=46 ft (Bin 2), and vehicle length 
>46 ft (Bin 3) [7].  Meanwhile, The Washington State  Department of Transportation (WSDOT) 
length-based classification scheme for dual-loop detectors can classify vehicles into four bins (or 
4-bin scheme): vehicle length <= 26 ft (Bin 1), vehicle length <=39 ft (Bin 2), vehicle length 
<=65 ft (Bin 3), and vehicle length >65 ft (Bin 4) [4, 8]. Nihan et al. found that during both off-
peak hours and peak hours “dual-loop detectors often mistakenly assign Bin 3 vehicles to Bin 4, 
but reverse assignments (Bin 4 vehicles to Bin 3) do not occur”, and “dual-loop detectors have 
difficulties distinguishing Bin 2 vehicles from Bin 3 vehicles. They sometimes assign Bin 2 
vehicles to Bin 3”. For off-peak hour traffic, observed misclassification errors for truck ranges 
from 30 to 41 percent.  
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Event dual-loop data are usually applied to traffic analysis in order to obtain accurate 
travel features of individual vehicles traveling over the loop [4, 7-11]. The event loop data is 
referred to a kind of high-resolution data of the detected individual vehicles, such as the 
timestamps of vehicle arriving and leaving the loop. Meanwhile, it has been proven that vehicle 
trajectory data extracted from video files is a reliable ground-truth data source for the length-
based vehicle classification [4, 12]. In the study presented in this paper, the video-capture-based 
approach is proposed to extract the ground-truth trajectory data from videos by using the 
software, VEVID (Vehicle Video-Capture Data Collector). VEVID was originally developed by 
the author’s advisor and then upgraded by him along with other members at the Advanced 
Research in Transportation Engineering and System (ART-Engines) Laboratory at The 
University of Cincinnati [13, 14]. The ground-truth trajectory data includes the timestamps, 
speed and length of the vehicle running over the loops.  Accordingly, the proposed evaluation 
approach is also termed as VEVID-based approach.  

At the same time, the concurrent event dual-loop data is collected. The video ground-
truth trajectory data is then used to evaluate the existing dual-loop model against different traffic 
states. The results indicate that the existing model is unreliable to estimate vehicle length under 
synchronized and stop-and-go traffic conditions. In this study, a new length-based vehicle 
classification model, named as VC-Sync model, is developed for synchronized traffic flows, and 
a new set of models named, as VC-Stog model, is developed for the stop-and-go traffic condition. 
The study also indicates that under synchronized traffic the error of the vehicle lengths estimated 
by the VC-Sync model is reduced to 8.5% compared to the error of 35.2% by the existing model. 
Under the stop-and-go traffic the error of the VC-Stog model is 27.7% compared to the error of 
210% produced by the existing model. For the 3-bin scheme, the VC-Sync model increases the 
correction rate of the vehicle classification from 86% to 99% for Bin 1, and from 33% to 100% 
for Bin 2. For the 4-bin scheme, the correction rate of Bin 1 is increased from 83% to 99%, and 
that of Bin 4 is increased from 66% to 97%. The VC-Stog model increases the correction rate of 
Bin 1 from 43% to 92%, and Bin 3 from 85% to 91% in the case of the 3-bin scheme. For the 4-
bin scheme, the correction rate is increased from 43% to 92% for Bin 1.  

This paper is organized as follows: the developed methodology will be firstly introduced 
following the introduction. Then, data collection, vehicle classification modeling which includes 
evaluation of the existing model and development of new models against non-free traffic flows, 
as well as relevant results analysis are presented, respectively. Finally, the conclusions are 
presented. 

 
METHODOLOGY FOR EVALUATING DUAL-LOOP MODELS WITH VEVID DATA 

This study is to evaluate the dual-loop length-based vehicle classification models against 
concurred ground-truth video event vehicle trajectory data at the selected dual-loop detector 
stations that are in good working condition in reoccurring congestion areas. The software 
VEVID had been developed to extract accurate trajectory data [13], and the accuracy of its 
outputs has been improved [14]. In this study, traffic video data is collected in field and video 
event vehicle trajectory data is extracted with VEVID. With availability of both dual-loop and 
VEVID-based vehicle event trajectory data, the errors and possible causes in estimating length-
based vehicle classifications by dual-loop data could be effectively investigated against the 
congested conditions, i.e., synchronized and stop-and-go states. In addition, Global Positioning 
System (GPS) data is collected to provide supplementary data for identifying features of traffic 
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flows under stop-and-go condition. New models for synchronized and stop-and-go traffic flows 
are then developed. Figure 3 illustrates the framework for evaluating dual-loop vehicle 
classification models with VEVID-based trajectory data.  More details about main components 
involved in the framework and their applications are presented in the following sections.  

 

 
Figure 3. Framework of Evaluating Dual-loop Data Based Vehicle Classification Models 

DATA COLLECTION 

Ground-truth VEVID-based Trajectory Data 
Two loop stations, numbered as V1002 and V1003, in Columbus, Ohio were selected as 

the study sites (see Figure 4). Three-day videotaping of the traffic running over the two loop 
stations were completed from July 14, 2009 to July 16, 2009. (see Figure 5). Totally 26 hours of 
traffic video data were collected, including light traffic and congestion traffic flows (i.e., 
synchronized traffic and stop-and-go traffic). 
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Figure 4. Loop Station V1002 on I-70/71 in Downtown Columbus, OH 

 
Figure 5. Videotaping at the Selected Dual-loop Station 

The vehicle trajectory ground-truth data was extracted using VEVID, and the extracted 
data are used in the calibration and validation of the developed vehicle classification models. 
Table 1 shows examples of the sample data extracted by VEVID. Figure 6 shows a snapshot of 
VEVID interface as the vehicle trajectory is being extracted. 

 
Figure 6. Extracting Trajectory Data Using VEVID 

Study Site 

Camera Location 

Dual-loop detectors
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Table 1. Sample Data Extracted from Video using VEVID 
Vehicle 

No. 
Speed on 

 M loop (mph) 
Speed on  

S loop (mph) 
On_time 1 

 (M loop) (sec)
On_time 2 

 (S loop) (sec) 
Vehicle 

Length (ft)
1 18.24 17.74 0.6333 0.7000 8.7 
2 18.06 15.36 1.1000 1.2667 18.1 
3 16.14 13.96 1.1333 1.2667 16.1 
4 14.83 12.69 1.1333 1.3333 13.7 
5 13.85 12.32 1.2667 1.4667 15.8 
6 11.36 9.92 1.5333 1.6333 17.1 
7 10.26 9.54 1.6000 1.7667 14.8 
8 12.92 8.37 2.0000 2.1667 17.0 
9 8.99 8.62 2.2000 2.4333 19.4 
10 9.75 8.74 1.8333 2.0000 13.6 

Note: M loop refers to Upstream loop; S loop refers to Downstream loop. 

Event Dual-loop Data 
The concurrent dual-loop vehicle event data at the selected stations is obtained from the 

Traffic Management Center of Ohio Department of Transportation (ODOT) in Columbus, Ohio. 
The dual-loop vehicle event data records the timestamps of entering and leaving each loop for 
each detected vehicle. The timestamp with status value of “1” indicates the time when a vehicle 
enters the loop, and the timestamp with the status value of “0” is the time when the vehicle 
leaves the loop. Table 2 illustrates exemplary samples of the dual-loop vehicle event data. 

Table 2. Exemplary Sample of the Event Dual-loop Data 
M loop (Upstream) S loop (Downstream) 

Status Timestamp Status Timestamp 
1 3522267 1 3523667 
0 3524341 0 3524489 
1 3524504 1 3524652 
0 3524675 0 3524795 
1 3524817 1 3524919 
0 3525598 0 3525914 

GPS Data Collection 
GPS data can reflect vehicles’ speeds and changes of speeds during a very short period of 

time along a stretch of the roadway. It can be hence used to reveal the traffic features under stop-
and go traffic flow. A GPS travel data logger is equipped in a testing car, and this car runs along 
a freeway segment of I-70/71 which covers the two selected study sites. The GPS travel data 
logger enables accurate recording of travel speed at one second interval. Statistical analysis of 
the obtained GPS data results in the estimates of the following parameters: (1) the average 
acceleration or deceleration rate of vehicle; and (2) the average minimum speed. These 
parameters will be used to quantify some variables involved in the developed vehicle 
classification models under the stop-and-go traffic condition. 
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VEHICLE CLASSIFICATION MODELING 
Three sets of dual-loop data are used in the case study to evaluate the vehicle 

classification models. They include: 902 samples with free flow traffic, 147 samples with 
synchronized traffic, and 61 samples with stop-and-go traffic. The concurrent ground-truth video 
data is aligned with the above dual-loop data samples. 

Existing Vehicle Classification Model under Free Flow Traffic 

T-test is used to compare the ground-truth vehicle length data with the vehicle lengths 
estimated by using existing models based on the concurrent loop data. The hypothesis is set up 
assuming that the two variables have the same mean but different variations. According to the T-
test result, the t value = 0.7734, which is less than the critical t value = 1.96 with confidence 
level of 95%. So the hypothesis can be accepted that the two variables have the same mean value. 
In other words, the result confirms that the existing model is suitable for free flow condition. 

Vehicle Classification Model under Synchronized Traffic (VC-Sync model) 

Under the synchronized condition, the travel speed of the traffic flow is lower than that of 
the free flow, and higher than that of the stop-and-go flow. Based on related literature review 
[15-18] and verification with the collected data, a speed threshold for discerning the free flow 
traffic and the synchronized traffic is 45 mile per hour in this study. As mentioned earlier, the 
vehicles possibly run over the upstream and downstream loops at different speeds within the 
synchronized traffic flows. Acceleration or deceleration may play an influential role in 
measuring the vehicle length. In the proposed Vehicle Classification Model under Synchronized 
Traffic (VC-Sync model), vehicles’ acceleration or deceleration is therefore considered as one of 
contributing factors. If a vehicle passes the dual-loop detectors area at a stable acceleration or 
deceleration rate (without a stop), the VC-Sync model is expressed by the following equations: 

2
0 1 1

1 ( )
2s vL L v OnT a OnT+ = ⋅ +                                                   (3) 

2
2 2

1 ( )
2s v tL L v OnT a OnT+ = ⋅ +                                                   (4) 

0tv v at= +                                                                            (5) 

0

2
tv v D

t
+

=                                                                          (6) 

Where, 
Lv = length of the detected vehicle (ft); 
Ls = length of each single loop within the dual-loop (ft); 

 vo = speed of the vehicle entering the upstream loop (M loop) (ft/s); 
vt = speed of the vehicle entering the downstream loop (S loop) (ft/s); 

a = vehicle acceleration (ft/s2); and 

 D, t, OnT1, and OnT2 are the same as defined earlier in the paper (see Figure 1). 

Figure 7 shows the results in comparing the sample vehicle lengths that are estimated by 
the existing model and by the VC-Sync model, respectively. Compared to the ground-truth data, 
the error of the existing model is 35.2%, and the error of the VC-Sync model is 8.5%. This result 
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indicates that the developed VC-Sync model greatly improves the accuracy of vehicle 
classification under the synchronized flow condition.  
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Figure 7. Estimated Vehicle Lengths under Synchronized Traffic 

 
Table 3. Vehicle Assignment during Synchronized Traffic (3-Bin Scheme) 

By Ground-truth Data By Dual-loop Data (note: *correct identification) 

Bins # of 
Vehicles 

Bin type identified 
by vehicle length 

# of vehicles by 
existing model % # of  vehicles by 

VC-Sync model % 

*Bin 1 63 86% 72 99% 
Bin 2 9 12% 1 1% Bin 1 73 
Bin 3 1 1% 0 0 
Bin 1 2 67% 0 0 
*Bin 2 1 33% 3 100%Bin 2 3 
Bin 3 0 0 0 0 
Bin 1 0 0 0 0 
Bin 2 3 4% 1 1% Bin 3 71 
*Bin 3 68 96% 70 99% 

 
Table 3 shows the comparison of the outcomes resulted from the existing model and VC-

Sync model based on 3-bin and 4-bin schemes. As mentioned earlier, the 3-bin scheme is 
currently used by ODOT and the 4-bin scheme is used by WSDOT. As shown in Table 3, the 
existing model results in 13% of vehicles of Bin 1 which are misidentified as vehicles of Bin 2 
and Bin 3. 67% of vehicles of Bin 2 are mistaken as vehicles of Bin 1. The accuracy for Bin 3 is 
good (97%). When the VC-Sync model is used, the accuracy of Bin 2 has been improved to 
100% while there is only 1% vehicle of Bin 1 which is misidentified as Bin 2. For 4-bin scheme, 
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VC-Sync model has resulted in a significant improvement in the accuracy of vehicle 
classification. As shown in Table 4, the accuracy for Bin 1 has been improved from 83% to 99%, 
and that for Bin 4 has been improved from 66% to 97%. 

Table 4. Vehicle Assignment during Synchronized Traffic (4-Bins Scheme) 
By Ground-truth Data By Dual-loop Data (note: *correct identification) 

Bins # of 
Vehicles 

Bin type identified 
by vehicle length 

# of vehicles by 
existing model % # of vehicles by 

VC-Sync model % 

*Bin 1 59 83% 70 99%
Bin 2 11 15% 0 0% 
Bin 3 1 1% 1 1% Bin 1 71 

Bin 4 0 0% 0 0% 
Bin 1 0 0% 0 0% 
*Bin 2 5 100% 4 80%
Bin 3 0 0% 1 20%Bin 2 5 

Bin 4 0 0% 0 0% 
Bin 1 0 0% 0 0% 
Bin 2 0 0% 0 0% 
*Bin 3 6 60% 7 70%Bin 3 10 

Bin 4 4 40% 3 30%
Bin 1 0 0% 0 0% 
Bin 2 1 2% 0 0% 
Bin 3 20 33% 2 3% Bin 4 61 

*Bin 4 40 66% 59 97%
 
Vehicle Classification Model under Stop-and-Go Traffic (VC-Stog model) 

Under the stop-and-go traffic state, vehicles will stop within the detection area frequently 
for at least one time. Based on collected data and related literature review [5, 6, and 19], a speed 
threshold of 15 mile per hour is determined to identify the synchronized and the stop-and-go 
flows. The Vehicle Classification under Stop-and-Go (VC-Stog) model is developed to estimate 
vehicle length under the stop-and-go traffic condition. To facilitate the modeling, eight scenarios 
are developed depending on the stopping locations of the detected vehicles within the detection 
area, and then different sub-models are developed compatible with those scenarios (Figure 8) as 
detailed as follows: 

Scenario 1: the vehicle runs across the loops without stop;   
Scenario 2: the vehicle stops only on the M loop;  
Scenario 3: the vehicle stops only on the S loop;  
Scenario 4: the vehicle stops only on both the M and S loops;  
Scenario 5: the vehicle stops on M loop and then move on, then stop on S loop; 
Scenario 6: the vehicle stops only on the M loop, and then stops on both the M and S 

loops; 
Scenario 7: the vehicle stops on both of the M and S loops, and then stops only on S loop; 

and  
Scenario 8: the vehicle stops only on the M loop and then stops on both of the M and S 

loop, and finally stops only on the S loop. 
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Figure 8. Different Scenarios of Vehicle Stopping on Loops under Stop-and-go Flow 

Accordingly, the VC-Stog model is comprised of several sub-models which deal with 
different scenarios. For Scenario 1, the vehicle does not stop, so it can be treated against 
synchronized traffic and the VC-Sync model is applied to it. Based on the theoretical calculation, 
Scenarios 2 approximately equals to the situation that the vehicle just stops at the front edge of 
M loop and then leaves the detection area without stopping. Similarly, Scenarios 3 is close to the 
situation that the vehicle just stops at the rear edge of S loop. Thus, the VC-Sync model is also 
suitable to Scenarios 2 and 3. A Stop-on-Both-Loops-only (SBL) model is developed for 
Scenario 4. For Scenario 4 it is assumed that the vehicle stops in the middle between the two 
loops. After stopping a period of ts it starts to move again with the acceleration rate a, and then 
leaves the loop station area. The SBL model is expressed by the following equations: 
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 Lv = length of vehicle (ft); 
 Ls = length of each single loop within the dual-loop (ft); 
 tdec = time period from a vehicle entering the M loop to its stop (s); 
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tacc = time period from a vehicle starting to move to leaving the M loop (s); 
vmin = the minimum speed which can maintain a vehicle running without stop (ft/s); 
f1, f2, and f3  = adjusting factors for different vehicle types; and 
D, t, t2, t3, OnT1, and OnT2 = as the same as defined previously. 

In order to estimate vehicle lengths by this SBL model, it is necessary to determine the 
vehicle’s acceleration rate and deceleration rate and how long the vehicle stopped on both of the 
loops. As mentioned above, the GPS data can reflect vehicles’ speeds and changes of speeds 
during very short period of time along a stretch of road, so in order to quantify these parameters, 
the GPS data gained within stop-and-go traffic flows is employed to set up the acceleration rate a 
via statistical analysis. The minimum speed vmin is defined as the speed that a vehicle can 
maintain during the course of the “go” state in the stop-and-go stream. 

Scenarios 5, 6, 7, and 8 are more complicated. Each of these scenarios can be considered 
as the combination of 2 or more scenarios of scenarios 1-4. The models for scenario 5, 6, 7, and 
8 will be developed in the future research plan.  

 

 
Figure 9. A Flowchart for Identifying Traffic States and Vehicle Stopping Status 

Figure 9 is a flowchart for identifying which scenario a vehicle falls in. The thresholds of 
on-times on both upstream and downstream loops can be determined based on collected dual-
loop data. Based on the statistical analysis of dual-loop data under stop-and-go traffic, ts1 and ts2 

  VC-Stog model 

yes 

yes

Traffic speed v 

v >=45 
(mph) Existing model 

v >=15 
(mph) VC-Sync model 

OnT1<ts1, and 
OnT2<ts1 

Scenario 1          
VC-Sync model 

OnT1>ts1, and 
OnT2<ts1 

Scenario 2           
VC-Sync model 

OnT1<ts1, and 
OnT2>ts1 

Scenario 3           
VC-Sync model 

OnT1>ts1, OnT2>ts1, t3-
t1<ts2, and t4-t2<ts2 

Scenario 4               
SBL model 

Note: ts1 and ts2 are the thresholds of OnT1 and OnT2; t1, t2, t3, t4, OnT1, and OnT2 are the 
same as defined previously. 
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are determined as:  ts1 = 4.1s, and ts2 = 3.0s.  Among the 61 sample vehicles with stop-and-go 
traffic, there are 35 sample vehicles falling into the Scenario 4 and 26 sample vehicles in the 
Scenarios 2 and 3. Among the 35 sample vehicles, 25 sample vehicles are used to calibrate the 
SBL model. The rest of the 10 sample vehicles are used to validate the SBL model. Using the 
GPS data and the model calibration, the factors involved in the SBL model are determined as 
follows:  

• The average vehicle acceleration rate and deceleration rate are determined as 2.5 ft/s2 and 
3.0 ft/s2, respectively.  

• The minimum speed vmin is determined as 7 ft/s (4.77 miles/hour).  

Figure 10 shows the estimated the lengths of stop-and-go vehicles by using the existing 
model and the VC-Stog model (i.e. VC-Sync model + SBL model), respectively. Compared to 
the ground-truth data, the relative error of the estimated vehicle lengths resulted from the 
existing model is 210%, while the relative error of those resulted from the VC-Stog model is 
27.7%. Although the error of 27.7% remains unsatisfactory, a significant improvement has been 
achieved comparing to the error of 210% by the existing model.  

Similarly, 3-bin and 4-bin schemes are investigated using the outcomes resulted from the 
existing model and VC-Stog model, respectively. Table 5 shows the result for 3-bin scheme. 
58% vehicles of Bin 1 are misidentified as Bin 2 or Bin 3 by the existing model, and 15% 
vehicles of Bin 3 are mistaken as Bin 1 or Bin 2. With use of the VC-Stog model (VC-Sync 
model + SBL model), the accuracies for vehicles of Bin 1 and Bin 3 have been improved to 92% 
and 91%, respectively. For 4-bin scheme result as shown in Table 6, the accuracy for Bin 1 has 
been improved from 43% to 92%. However, it is not good for vehicles of Bin 3 and Bin 4. This 
implies a problem that will be addressed in the future research. 
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Figure 10. Estimated Vehicle Lengths under Stop-and-go Traffic 
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Table 5. Vehicle Assignment during Stop-and-go Traffic (3-Bin Scheme) 
By Ground-truth Data By Dual-loop Data  (note: *correct identification) 

Bins # of 
Vehicles 

Bin type identified 
by vehicle length 

# of vehicles by 
existing model % #  of vehicles by 

VC-Stog model % 

*Bin 1 17 43% 36 92%
Bin 2 4 11% 0 0% Bin 1 39 
Bin 3 18 47% 3 8% 
Bin 1 0 N/A 0 N/A
*Bin 2 0 N/A 0 N/ABin 2 0 
Bin 3 0 N/A 0 N/A
Bin 1 2 11% 2 9% 
Bin 2 1 4% 0 0% Bin 3 22 
*Bin 3 19 85% 20 91%

 
Table 6. Vehicle Assignment during Stop-and-go Traffic (4-Bin Scheme) 

By Ground-truth Data By Dual-loop Data  (note: *correct identification) 

Bins # of 
Vehicles 

Bin type identified 
by vehicle length 

# of vehicles by 
existing model % # of vehicles by 

VC-Stog model % 

*Bin 1 17 43% 36 92%
Bin 2 4 9% 0 0% 
Bin 3 6 15% 2 5% Bin 1 39 

Bin 4 13 34% 1 3% 
Bin 1 0 N/A 0 N/A
*Bin 2 0 N/A 0 N/A
Bin 3 0 N/A 0 N/ABin 2 0 

Bin 4 0 N/A 0 N/A
Bin 1 0 0% 0 0% 
Bin 2 0 0% 0 0% 
*Bin 3 0 0% 1 25%Bin 3 4 

Bin 4 4 100% 3 75%
Bin 1 2 11% 2 13%
Bin 2 0 0% 0 0% 
Bin 3 2 11% 8 50%Bin 4 16 

*Bin 4 12 78% 6 38%
 

CONCLUSIONS 

In this study, the dual-loop length-based vehicle classification models have been 
evaluated against the ground-truth vehicle trajectory data extracted from video. Different traffic 
conditions have been investigated: free flow, synchronized flow, and stop-and-go flow. It has 
been proved that the existing model has much larger error under both synchronized and stop-and-
go traffic conditions. In the new developed models against synchronized traffic and stop-and-go 
traffic, the impact of traffic flow characteristics is properly considered: 1) relative stable 
accelerations or decelerations are observed for individual vehicles within the synchronized traffic, 
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so the acceleration or deceleration rate is incorporated into the VC-Sync model; and 2) eight 
scenarios are defined depending on the vehicle’s stopping locations within the detection area as 
the stop-and-go traffic occurs, and the VC-Stog model is developed based on those assumed 
scenarios. The sample study results indicate that the VC-Sync model and VC-Stog model 
significantly increase the accuracy of the vehicle classification against synchronized and stop-
and-go traffic flows. However, more samples are needed for the future research, especially the 
cases under stop-and-go traffic conditions. Despite a total of 26 hours of traffic video data, the 
sampling size for stop-and-go traffic is likely insufficient. Nevertheless, the results are exciting. 
The innovation of the proposed VEVID-based approach has been fully exhibited and the 
significant increase of vehicle classification accuracy has demonstrated the advantages of the 
VC-Sync and VC-Stog models over the existing model under non-free traffic conditions. The 
author has developed a plan for further collecting more sample data to complete the research on 
VC-Stog modeling for Scenarios 5 through 8. Finally, VEVID-based approach plays a critical 
role in extracting the ground-truth vehicle event trajectory data. It would be difficult or even 
impossible to conduct this research without use of VEVID.  
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