EVALUATING THE MONOPHYLY OF EULIMNADIA AND THE LIMNADIINAE (BRANCHIOPODA: SPINICAUDATA) USING DNA SEQUENCES

W. R. Hoeh, N. D. Smallwood, D. M. Senyo, E. G. Chapman, and S. C. Weeks
(WRH, NDS, DMS, EGC) Evolutionary, Population, and Systematic Biology Group, Department of Biological Sciences, Kent State University, Kent, Ohio 44242-0001 U.S.A. (Corresponding Author: WRH: whoeh@kent.edu)
(DMS: dsenyo@kent.edu) (EGC: echapman@kent.edu);
(SCW) Program in Evolution, Ecology, and Organismal Biology, Department of Biology, The University of Akron, Akron, Ohio 44325-3908 U.S.A. (scw@uakron.edu)

A B S TRACT

Abstract

The evolutionary relationships among the six nominal genera within the spinicaudate clam shrimp family Limnadiidae, as well as the validity of the limnadiid genus Eulimnadia, have been much debated in the literature with little consensus emerging. The lack of resolution on these topics impedes evaluations of limnadiid biodiversity, phylogeny, and character evolution. To address these issues, we used Bayesian and parsimony methods to analyze DNA sequences from three genetic loci ($28 \mathrm{~S}, 12 \mathrm{~S}$, cytb) that were obtained from representatives of five nominal limnadiid genera and one undescribed limnadiid species. These analyses confirm the monophyly of Eulimnadia and the most taxonomically inclusive phylogenetic analysis (28S) produces the following tree topology: (()((Eulimnadia, Metalimnadia), undescribed limnadiid), Imnadia), Limnadopsis), Limnadia). This topology is inconsistent with prior estimates of limnadiid inter-generic relationships. Maximum likelihood-based constraint analyses demonstrate that the above topology is significantly better than prior hypotheses of limnadiid relationships, and support the monophyly of Eulimnadia. Morphological character optimization on this topology suggests that the postulated close relationship between Limnadia and Eulimnadia is based on shared ancestral characteristics rather than synapomorphies. Furthermore, the discovery of the genetically distinct undescribed limnadiid lineage strongly supports the necessity of efforts to better evaluate limnadiid biodiversity, especially those in poorly collected zoogeographic regions.

Introduction

Recent DNA-based phylogenetic analyses of branchiopod crustaceans (Spears and Abele, 2000; Braband et al., 2002) support the hypothesis that a monophyletic suborder Spinicaudata (Martin and Davis, 2001) comprises three families: Cyzicidae, Leptestheriidae, and Limnadiidae. Previous morphological analyses anticipated this view (Olesen et al., 1997; Olesen, 1998, 2000). The speciose and morphologically variable Limnadiidae comprises six genera: Eulimnadia, Imnadia, Limnadia, Limnadiopsium, Limnadopsis, and Metalimnadia (Straskraba, 1965; Pereira and Garcia, 2001), and relatively recent morphology-based taxonomic treatments support the monophyletic status of this family (Straskraba, 1965; Martin, 1989). According to Straskraba (1965), four limnadiid subfamilies have been erected which suggest some intrafamilial phylogenetic relationships: Imnadiinae (Imnadia), Limnadiinae (Eulimnadia+Limnadia), Limnadiopsinae (Limnadiopsium+Limnadopsis), and Metalimnadiinae (Metalimnadia). However, the monogeneric nature of two of these categories limits indications of evolutionary affinities. Furthermore, the lack of a clear-cut diagnosis has called into question the validity of the genus Eulimnadia (Webb and Bell, 1979; Brtek, 1997). Nonetheless, there has been little doubt expressed regarding the phylogenetic propinquity of its species with those of Limnadia. These morphology-based evaluations assume that the similarity of Eulimnadia and Limnadia specimens is due to recent common ancestry, rather than symplesiomorphy and/or convergence.

The phylogenetic analyses of Spears and Abele (2000) and Braband et al. (2002), while principally focused on clarifying higher-level branchiopod evolutionary relationships, also provide some insights regarding the status of the Limnadiidae and its inter-generic relationships. However, these insights are inherently limited due to each study's restricted taxonomic sampling within the Limnadiidae. Spears and Abele's analyses of 18 S rDNA included sequences from individuals representing Eulimnadia texana Packard, 1871 and Limnadia lenticularis (Linnaeus, 1761), while the Braband et al. study, analyzing the 12 S and EF1 α loci, sequenced DNA from representatives of Imnadia yeyetta Hertzog, 1935 and Limnadopsis birchii (Baird, 1860), as well as from the two aforementioned species. Both of these studies offer weak support for the monophyly of the Limnadiidae as judged by relatively low Bremer support and/or nonparametric bootstrap values. However, the Braband et al. analyses present an explicit, if not taxonomically complete, hypothesis of limnadiid intergeneric relationships: ((Imnadia, Limnadia) (Eulimnadia, Limnadopsis)). Implicit in this topology is the rejection of a close evolutionary relationship between Eulimnadia and Limnadia, i.e., evidence against a monophyletic Limnadiinae sensu Straskraba, 1965.

The above observations suggest fundamental questions that must be addressed to facilitate a deeper understanding of limnadiid phylogenesis and character evolution: (1) Is the Limnadiidae monophyletic? (2) Was there a relatively recent evolutionary divergence between Eulimnadia and Limnadia,
i.e., a monophyletic Limnadiinae sensu Straskraba, 1965? (3) Is Eulimnadia a monophyletic genus? (4) Is the Braband et al. (2002) limnadiid topology supported by additional data and analyses? We will evaluate these hypotheses by constructing robust estimates of evolutionary relationships for five limnadiid genera using DNA sequences from both nuclear and mitochondrial loci, and discuss the implications of these estimates for limnadiid character evolution and classification.

Materials and Methods

Study Organisms

Species evaluated in this report, including GenBank accession numbers and locality information, are given in Table 1. In all of the phylogenetic analyses presented herein, the ingroup includes all available limnadiid taxa, while members of Cyzicidae and Leptestheridae were used as outgroups. The undescribed limnadiid specimen listed in Table 1 (collected from Mauritius Island by N. Rabet) shows some morphological affinity to Eulimnadia by sharing the characteristic dorsal organ and telson spine of this genus, but also has the caudal claw shape and antennal segment numbers more characteristic of Limnadia (C. Sassaman, personal communication).

Methods

Clam shrimp were preserved in $95-100 \%$ ethanol when collected from the field while lab-reared specimens were frozen at $-70^{\circ} \mathrm{C}$. Total DNA was isolated from individual clam shrimp using the Qiagen DNeasy Plant Kit. Portions of 28 S and 12 S rDNA and cytb were polymerase chain reaction (PCR; Mullis and Faloona, 1987) amplified using the primer pairs presented in Table 2. Each PCR reaction consisted of $5 \mu \mathrm{~L}$ 10X Qiagen PCR buffer, 1 $\mu \mathrm{L}$ dNTPs (0.2 mM each $), 2.5 \mu \mathrm{~L}$ each primer $(0.5 \mu \mathrm{M})$, between $1-5 \mu \mathrm{~L}$ of template DNA, $0.2 \mu \mathrm{~L}$ Qiagen Taq polymerase (1 unit), and enough $\mathrm{H}_{2} \mathrm{O}$ to bring the total volume to $50 \mu \mathrm{~L}$. PCR reactions were carried out in a PTC100 thermal cycler (MJ Research, Inc., Waltham, MA). The thermal cycler programs consisted of forty cycles, each containing three steps: denaturing at $94^{\circ} \mathrm{C}$ for 1 minute, annealing at $40^{\circ} \mathrm{C}$ for 28 S rDNA, $45^{\circ} \mathrm{C}$ for cytb and $46.5^{\circ} \mathrm{C}$ for 12 S rDNA for 1 minute, and extending at $72^{\circ} \mathrm{C}$ for $1-1.5$ minutes depending on the size of the fragment. PCR products were purified using 1.5% NuSieve (GTG agarose, FMC Bioproducts, Rockland, ME) lowmelting point gels. Sequencing-template purification was done using the Wizard PCR preps DNA purification system (Promega, Madison, WI).

The mitochondrial (mt) and nuclear amplicons were characterized by cycle sequencing using the PCR amplification primers. The protocols for cycle sequencing of the amplicons are as presented in Folmer et al. (1994). These protocols include cycle-sequencing of both strands of each purified template using labeled primers. The separation of cycle-sequencing-reaction products was done in 3.7% and 5.5% polyacrylamide gels on LI-COR (Omaha, Nebraska) 4200L-2 and 4200S-2 automated DNA sequencers, respectively. The resulting sequences were aligned initially using AlignIR (AlignIR v2.0, LI-COR, Inc.) with subsequent refinement done manually using MacClade v. 4.0 (Maddison and Maddison, 2000). All sequences generated for this project have been deposited in the GenBank database (see Table 1 for accession numbers). The alignment of the cytb sequences utilized herein was straightforward since no indels have been detected at this locus in the spinicaudatan sequences we have generated to date. However, both the 28 S and 12 S rDNA sequences contained indels and areas of ambiguous alignment were deleted prior to phylogenetic analyses. The cytb multiple-sequence alignment contained 401 characters, while the 12 S and 28 S rDNA matrices contained 436 and 987 characters, respectively. These data sets are not identical regarding taxonomic representation due to our inability to amplify Imnadia and Metalimnadia with the 12 S rDNA and cytb primers.

Phylogenetic analyses were conducted using the maximum parsimony (MP) and Bayesian inference (BI) algorithms in PAUP* (v.4.0b10; Swofford, 2001) and Mr. Bayes v3.0b4 (Huelsenbeck and Ronquist, 2003), respectively. Trees were constructed based on analyses of three datasets: (1) 28 S rDNA sequences only, (2) 12S rDNA and cytb sequences, i.e., mtDNA only, and (3) sequences from all three gene regions, i.e., total evidence. The 28 S rDNA only analyses are the most inclusive
taxonomically (as indicated above). Combined analyses typically included only those specimens for which genetic data from each locus was available (to minimize potential topological distortions due to relatively large amounts of missing data). Thus, the multigene analyses have fewer terminals than do the 28 S rDNA analyses. Limnadopsis parvispinus (NS44) 28S and L. birchii (W108) cytb and 12S sequences were combined so that Limnadopsis could be included in the combined analysis. All analyses that included cytb sequences were conducted using nucleotides representing all three codon positions. However, for the MP analyses, only transversions were coded since transitions were either saturated, e.g., at the third position, or beginning to show saturation, e.g., at the first position, at this level of divergence (analysis not shown). MP analyses were conducted using multiple runs and randomizing taxon addition order (1000 replicates) with tree-bisection-reconnection (TBR) branch swapping. For each MP analysis, consistency (CI), rescaled consistency (RI) and retention (RI) indices were calculated. The GTR $+\mathrm{I}+\mathrm{G}$ model, denoted as appropriate for each matrix by ModelTest (v. 3.06: Posada and Crandall, 1998), was used in the BI analyses (5 chains, 5 million generations, 2 million generation burn-in using default priors). The robustness of the resulting MP and BI trees was evaluated using 100,000 fast-heuristic nonparametric bootstrap (Felsenstein, 1985) replicates (expressed as bootstrap percentages (BSP)) and posterior probabilities (PP), respectively. Pair-wise uncorrected proportional distances (p-distances) were calculated using PAUP*.

Alternative topologies were evaluated by analyzing the 28 S rDNA and total evidence data sets using PAUP's maximum likelihood (ML) algorithm (100 random addition order replicates), with the model specifications $(\mathrm{GTR}+\mathrm{I}+\mathrm{G})$ and parameters from the output of ModelTest. In the former instance, the Braband et al. (2002) limnadiid topology was compared to the best unconstrained ML topology using the approximately unbiased (AU, Shimodaira, 2002), Kishino-Hasegawa (KH), Shimodaira-Hasegawa (SH; Shimodaira and Hasegawa, 1999), weighted Kishino-Hasegawa (WKH), and weighted Shimodaira-Hasegawa (WSH; Shimodaira, 2002) tests as implemented in CONSEL (Shimodaira and Hasegawa, 2001). These tests were also used to compare the best unconstrained ML topology obtained from the total evidence data set with one in which Limnadia + Eulimnadia was constrained to be monophyletic and another in which Eulimnadia was constrained to be non-monophyletic.

Results

28S rDNA Analyses

Topologies generated by BI and MP were generally concordant, as indicated by the positive correlation between the nodal-support values produced by the two methods (Fig. 1). The MP analysis resulted in 18 equally parsimonious trees (315 steps each; $\mathrm{CI}=0.7175 ; \mathrm{RC}=0.6883 ; \mathrm{RI}=$ 0.9593; trees not shown). The Limnadiidae is supported as a monophyletic group by PP and BSP of 100 and 99, respectively. Limnadia is not the sister taxon of Eulimnadia but rather the sister taxon of a clade containing all other limnadiids $(\mathrm{PP}=79, \mathrm{BSP}=74)$. Limnadopsis is the sister taxon to the clade of Imnadia+undescribed limnadiid + Metalimnadia + Eulimnadia $(\mathrm{PP}=97, \mathrm{BSP}=73$). The sister taxon to the undescribed limnadiid + Metalimnadia + Eulimnadia clade is Imnadia $(\mathrm{PP}=100, \mathrm{BSP}=91)$.

The BI and MP analyses of the 28 S rDNA matrix both indicate that the undescribed limnadiid is the sister lineage to Metalimnadia + Eulimnadia ($\mathrm{PP}=100, \mathrm{BSP}=100$), and that Metalimnadia is sister to a monophyletic Eulimnadia ($\mathrm{PP}=85, \mathrm{BSP}=68$). Eulimnadia is monophyletic and contains three subclades: E. texana + E. cylindrova $(\mathrm{PP}=77$, $\mathrm{BSP}=77)$, E. braueriana $(\mathrm{PP}=100, \mathrm{BSP}=98)$, and E. diversa + E. magdalensis + E. agassazii + E. colombiensis $(\mathrm{PP}=91, \mathrm{BSP}=54)$. The E. braueriana lineage is sister to the remaining two subclades ($\mathrm{PP}=91$). Comparisons of 28 S rDNA uncorrected p-distances indicate that the

Table 1. GenBank accession numbers and locality information for specimens utilized in this study. Abbreviations: nuclear locus: 28S ribosomal DNA (28S); mitochondrial loci: cytochrome b (cytb); 12S ribosomal DNA (12S). More specific locality data are available, upon request, from Steve Weeks (scw@uakron.edu).

Family	Species	Specimen No.	28 S	cytb	12 S	Locality
Limnadiidae	Eulimnadia agassizii Packard, 1874	NS58	AY851430	-	-	United States: MA
		NS59	AY851431	-	-	United States: MA
	E. braueriana Ishikawa, 1895	NS40	AY851425	-	-	Japan
		NS41	AY851426	-	-	Japan
		NS85	AY851443	AY779726	AY779679	Japan
	E. cylindrova Belk, 1989	NS11	AY851418	AY779697	AY779647	Mexico
		NS16	AY851422	AY779699	AY779650	Mexico
		NS17	AY851419	AY779698	AY779651	Mexico
		NS64	-	AY779701	AY779669	Ecuador: Galapagos Islands
		NS65	AY851432	AY779700	AY779670	Ecuador: Galapagos Islands
		NS103	AY851412	-	-	Venezuela
		NS104	AY851413	AY779716	AY779644	Venezuela
		NS105	AY851414	-	-	Venezuela
	E. colombiensis Roessler, 1989	NS106	AY851415	-	-	Venezuela
	E. diversa Mattox, 1937	NS4	-	AY779720	AY779664	United States: AZ
		NS8	AY851441	AY779721	AY779678	United States: AZ
		NS22	AY851420	-	-	United States: AZ
		NS23	AY851421	-	-	United States: AZ
		NS66	AY851433	AY779722	AY779671	Mexico
		NS67	AY851434	-	-	Mexico
	E. magdalensis Roessler, 1990	NS99	AY851445	AY779731	AY779681	Venezuela
		NS100	AY851411	AY779728	AY779643	Venezuela
		NS107	AY851416	-	-	Venezuela
		NS108	-	AY779730	AY779646	Venezuela
	E. texana Packard, 1871	JT5	AY851410	-	-	United States: NM
		NS9	AY851444	AY779708	AY779680	United States: NM
		NS5	AY851429	AY779714	AY779667	United States: NM
		NS34	AY851423	-	-	United States: NM
		NS35	AY851424	AY779712	AY779659	United States: NM
		NS50	AY851427	-	-	Mexico: Baja California
		NS51	AY851428	AY779703	AY779666	Mexico: Baja California
		NS70	AY851435	-	-	United States: NM
		NS71	AY851436	-	-	United States: NM
		NS72	AY851437	AY779711	AY779674	United States: NM
		NS73	AY851438	-	-	United States: NM
	Eulimnadia sp.	NS79	AY851440	AY779717	AY779676	Japan
		NS80	AY851442	AY779718	AY779677	Japan
		W132	AY851455	-	-	United States: IN
	Limnadia lenticularis (Linnaeus, 1758)	NS24	AY851399	-	-	United States: FL
		NS25	AY851400	AY779733	AY779655	United States: FL
		W66	AY851401	AY779732	AY779682	United States: FL
	Limnadopsis parvispinus Henry, 1924	NS44	-	AY779734	AY779665	Australia
	Limnadopsis birchii (Baird, 1860)	W108	AY851453	-	-	Australia
		W109	AY851451	-	-	Australia
		W116	AY851454	-	-	Australia
		W126	AY851452	-	-	Australia
	Imnadia yeyetta Hertzog, 1935	W125	AY851449	-	-	Austria
		W128	AY851446	-	-	Austria
		W129	AY851450	-	-	Austria
		W130	AY851447	-	-	Austria
		W131	AY851448	-	-	Austria
	Metalimnadia sp.	NS109	AY851417	-	-	Brazil
	Undescribed limnadiid	NS74	AY851439	AY779719	AY779675	Mauritius Island
Cyzicidae	Cyzicus gynecia (Mattox, 1950)	NS30	AY851402	-	-	United States: PA
		NS31	AY851403	AY779694	AY779656	United States: PA
		NS36	AY851404	AY779692	AY779660	United States: PA
		NS37	AY851405	AY779693	AY779661	United States: PA
	Eocyzicus digueti (Richard, 1895)	NS52	AY851406	-	-	Mexico: Baja California
		NS53	AY851407	AY779696	AY779668	Mexico: Baja California
Leptestheriidae	Leptestheria compleximanus (Packard, 1877)	NS14	AY851391	AY779683	AY779648	United States: NM
		NS15	AY851392	-	-	United States: NM
		NS20	AY851393	AY779684	AY779652	United States: NM
		NS21	AY851394	AY779685	AY779653	United States: NM
		NS32	AY851395	AY779687	AY779657	United States: NM
		NS33	AY851396	AY779688	AY779658	United States: NM
		NS38	AY851397	AY779686	AY779662	United States: NM
		NS39	AY851398	AY779689	AY779663	United States: NM
	L. dahalensis (Rüppell, 1837)	NS68	AY851408	AY779690	AY779672	Austria
		NS69	AY851409	AY779691	AY779673	Austria

Table 2. Primer pairs used in this study. Abbreviations: nuclear locus: 28 S ribosomal DNA (28S); mitochondrial loci: cytochrome b (cytb); 12 S ribosomal DNA (12S).

Gene	Primer	Primer sequence (5'-3')	Amplicon size/Citation
28 S	D1F	GGGACTACCCCCTGAATTTAAGCAT	$\sim 1100 \mathrm{bp}$
	D6R	CCAGCTATCCTGAGGGAAACTTCG	Park and O'Foighil, 2000
$12 S$	$12 S 30 F$	CTACTTTGTTACGACTTATCTC	~ 450 bp
	$12 S 501 R$	AACCAGGATTAGATACCCT	Designed by Hoeh \& Smallwood
cytb	UcytB151F	TGTGGRGCNACYGTWATYACTAA	~ 400 bp
	UcytB270R	AANAGGAARTAYCAYTCNGGYTG	Merritt et al., 1998

undescribed limnadiid is more divergent from all species of Eulimnadia than is the morphologically divergent genus Metalimnadia (Table 3). This finding is consistent with the topology presented in Figure 1. All topology test results (Table 4) indicate that the 28 S rDNA limnadiid topology (Fig. 1) is significantly better $\left(\mathrm{P}=1 \mathrm{e}^{-04}\right)$ than the topology presented in Braband et al. (2002).

mtDNA Analyses (12 S rDNA+cytb)

Topologies generated by BI and MP were generally concordant as indicated by the positive correlation between the nodal support values produced by the two methods (Fig. 2). The MP analysis resulted in 141,333 equally parsimonious trees (568 steps each; $\mathrm{CI}=0.6162 ; \mathrm{RC}=0.5449$; $\mathrm{RI}=0.8843$; trees not shown). The Limnadiidae is supported as a monophyletic group by PP and BSP of 100 and 98, respectively. Limnadia is not the sister taxon of Eulimnadia but rather represents the sister taxon of a clade containing all other limnadiids ($\mathrm{PP}=89, \mathrm{BSP}=71$). Limnadopsis, the undescribed limnadiid, and Eulimnadia form a trichotomy. Eulimnadia is monophyletic ($\mathrm{PP}=100$, $\mathrm{BSP}=89$) and contains three major lineages: E. texana+ E. cylindrova ($\mathrm{PP}=100, \mathrm{BSP}=96$), E. diversa+ E. magdalensis $(\mathrm{PP}=75, \mathrm{BSP}=88)$, and the E. braueriana lineage.

The E. diversa $+E$. magdalensis clade is the sister group to the remaining two lineages ($\mathrm{PP}=100, \mathrm{BSP}=93$). Comparisons of 12 S rDNA+cytb uncorrected p-distances (using non-transformed cytb sequences) indicate that the undescribed limnadiid is more divergent from all other species of Eulimnadia than are the Eulimnadia species from each other (Table 3). This finding is consistent with the topology presented in Figure 2.

Total Evidence Analyses
 (28 S rDNA +12 S rDNA+cytb)

Topologies generated by BI and MP were generally concordant as indicated by the positive correlation between the nodal support values produced by the two methods (Fig. 3). The MP analysis resulted in 2,106 equally parsimonious trees (836 steps each; $\mathrm{CI}=0.6603 ; \mathrm{RC}=0.5987 ; \mathrm{RI}=$ 0.9067 ; trees not shown). The Limnadiidae is supported as a monophyletic group by PP and BSP of 100. Limnadia is not the sister taxon of Eulimnadia but rather represents the sister taxon of a clade containing all other limnadiids ($\mathrm{PP}=$ 100, $\mathrm{BSP}=92$). Limnadopsis is sister to the clade of Eulimnadia+undescribed limnadiid $(\mathrm{PP}=100, \mathrm{BSP}=94)$. Eulimnadia is monophyletic $(\mathrm{PP}=100, \mathrm{BSP}=100)$ and is
sister to the undescribed limnadiid. The genus Eulimnadia contains three major sublineages: E. texana + E. cylindrova $(\mathrm{PP}=100, \mathrm{BSP}=100)$, E. diversa + E. magdalensis $(\mathrm{PP}=$ $95, \mathrm{BSP}=87$), and the E. braueriana lineage. The E. diversa $+E$. magdalensis clade is sister to the remaining two lineages $(\mathrm{PP}=100, \mathrm{BSP}=93)$. All topology test results (Table 4), except the Shimodaira-Hasegawa $(P=0.094)$ test, indicate that the 28 S rDNA +12 S rDNA+cytb topology in Figure 3 is significantly better $(P \leq 0.016)$ than one in which Limnadia + Eulimnadia is constrained to be monophyletic. Furthermore, all topology test results indicate that a tree topology containing a monophyletic Eulimnadia is significantly better than a tree with Eulimnadia constrained as non-monophyletic ($P \leq 0.017$; Table 4).

In summary, all of our best trees support both limnadiid and Eulimnadia monophyly while rejecting sister-taxon status for Limnadia and Eulimnadia. Thus, the Limnadiinae (sensu Straskraba, 1965) is not a monophyletic taxon. Furthermore, analyses of 28 S rDNA sequences reject the Braband et al. (2002) hypothesis that Imnadia + Limnadia and Eulimnadia+Limnadopsis represent sister-taxon pairs.

Discussion

Taxonomic Status of Eulimnadia

The taxonomic status of the genus Eulimnadia has been an ongoing controversy in limnadiid systematics since its description by A. S. Packard in 1874 (Sars, 1895; Sayce, 1903; Daday, 1925; Ueno, 1927; Barnard, 1929; Brehm, 1933; Mattox, 1954; Straskraba, 1965; Webb and Bell, 1979; Belk, 1989; Martin, 1989; Martin and Belk, 1989; Brtek, 1997; Pereira and Garcia, 2001). The disagreement is founded on strongly differing opinions regarding the ability to morphologically differentiate specimens of Eulimnadia from those of Limnadia. Currently, the principal characteristic used to assign specimens to either Eulimnadia, or Limnadia is the presence or absence (respectively) of a welldeveloped spine on the posteroventral border of the caudal somite, e.g., Martin and Belk (1989). Webb and Bell (1979) question the usefulness of this characteristic to assign specimens generically and listed Eulimnadia as a junior synonym of Limnadia. The evidence used to support this position was the purported existence of character-state intermediates when comparisons were made using published figures of specimens representing multiple species of Limnadia and Eulimnadia. Nevertheless, the most recent taxonomic treatment of the Limnadiidae (Pereira and Garcia, 2001) supported the use of the caudal spine as a character diagnostic for Eulimnadia.

Fig. 1. Bayesian (BI) consensus tree generated from 28 S ribosomal DNA sequences with BI posterior probabilities above the branches and MP bootstrap proportions (BSP) below the branches (BSP ≤ 50 not shown). The solid circle indicates the root of the clade containing all Eulimnadia. Genus designations: Cyzicus (C.); Eocyzicus (Eo.); Eulimnadia (E.); Imnadia (I.); Leptestheria (Le.); Limnadia (L.); Limnadopsis (Ld.). Country designations: Australia (AU); Austria (AT); Brazil (BR); Ecuador (EC); Mauritius Island (MU); Mexico (MX); Japan (JP); United States (US); Venezuela (VE).

The phylogenetic analyses presented herein strongly support the validity of the genus Eulimnadia. The BI analyses produced posterior probability values of 85 (28 S rDNA), 100 (12 S rDNA+cytb), and 100 (28 S rDNA+ 12 S
rDNA+cytb) in support of a Eulimnadia clade. Similarly, the MP analyses supported the monophyly of Eulimnadia with values of 68,89 , and 100 , respectively, for the same three datasets. The lower values supporting monophyly

Fig. 2. Bayesian (BI) consensus tree from analysis of concatenated 12 S rDNA and cytb mtDNA sequences with BI posterior probabilities above the branches and MP bootstrap proportions (BSP) below the branches ($\mathrm{BSP} \leq 50$ not shown). The solid circle indicates the root of the clade containing all Eulimnadia. Genus designations: Cyzicus (C.); Eocyzicus (Eo.); Eulimnadia (E.); Imnadia (I.); Leptestheria (Le.); Limnadia (L.); Limnadopsis (Ld.). Country designations: Australia (AU); Austria (AT); Ecuador (EC); Mauritius Island (MU); Mexico (MX); Japan (JP); United States (US); Venezuela (VE).
produced by analyses of the 28 S rDNA dataset are likely due, in part, to a relatively reduced number of parsimonyinformative characters in that particular dataset relative to the mtDNA dataset (136 vs. 305). Nevertheless, the inde-
pendent and congruent support for Eulimnadia monophyly produced by the 28 S rDNA and mtDNA analyses, combined with the corroborating results from the total evidence analyses, offer robust confirmation of Eulimnadia as

Fig. 3. Bayesian (BI) consensus tree generated from analysis of concatenated 28 S rDNA, 12 S rDNA and cytb sequences with BI posterior probabilities above the branches and MP bootstraps below the branches ($\mathrm{BSP} \leq 50$ not shown). The solid circle indicates the root of the clade containing all Eulimnadia. The Limnadopsis sequences analyzed are a composite of L. birchii (W108) and L. parvispinus (NS 44). Genus designations: Cyzicus (C.); Eocyzicus (Eo.); Eulimnadia (E.); Imnadia (I.); Leptestheria (Le.); Limnadia (L.); Limnadopsis (Ld.). Country designations: Australia (AU); Austria (AT); Ecuador (EC); Mauritius Island (MU); Mexico (MX); Japan (JP); United States (US); Venezuela (VE).

Designation	Character	State 0	State 1	State 2
A	Shell covered by striae	partly,	partly, many striae present	whole
		few striae		
B	Umbo	absent		--------
C	Dorsum	smooth	carinate	------
D	Occiput	rounded	prominent	--------
E	Dorsal organ	on a pear- shaped appendage	directly on head	on a reduced appendage
F	Dorsal armiture by	setae	hooks	setae and spines
G	Upper corner of postabdomen	rounded	prominent	------
H	First antennae	many-	twosegmented	--------
		segmented, bar-shaped		
I	Terminal claws	long setae	smooth	--------

Fig. 4. Simplified topology from Figure 1 showing relationships among the limnadiid genera, with morphological character states (largely from Table 1 in Straskraba, 1965) parsimoniously plotted thereon.
a natural taxon. Furthermore, constraining Eulimnadia to be non-monophyletic using the total evidence dataset produces a tree that is significantly worse $(P \leq 0.017)$ than the unconstrained analysis, as judged by the topology tests (Table 4).

All phylogenetic analyses support the hypothesis that three distinct sublineages exist within our sampled

Eulimnadia specimens: (1) an E. texana $+E$. cylindrova clade, (2) an E. diversa + E. magdalensis clade, and (3) an E. braueriana lineage. The 28 S rDNA analyses place E. colombiensis and E. agassizii in the E. diversa+ E. magdalensis clade. The total evidence analyses suggest that E. braueriana and the E. texana $+E$. cylindrova clade are sister lineages with the E. diversa + E. magdalensis

Table 3. Pairwise uncorrected p-distances between clam shrimp species appearing in Table 1 (lower left: 28 S rDNA p-distances; upper right: 12 S rDNA+cytb p-distances). Limnadopsis (taxon 12) is the only taxon for which whave both nuclear and mitochondrial sequences, b(are from L. parvispinus (NS44). Genus designations: Cyzicus (C.); Eocyzicus (Eo.); Eulimnadia (E.); Imnadia (I.); Leptestheria (Le.); Limnadia (L.).
clade sister to the E. braueriana $+E$. texana $+E$. cylindrova clade.

Higher-level Evolutionary Relationships Within the Limnadiidae

The higher-level evolutionary relationships within the Limnadiidae have a history of instability and published articles on the subject offer relatively few explicit hypotheses for evaluation. Spencer and Hall (1896) described the genus Limnadopsis, which was given familylevel status by Tasch (1969). However, the Limnadopsidae has not been generally accepted by subsequent authors (Martin and Davis, 2001). The genus Imnadia was described by Hertzog (1935) and subsequently this lineage was given family-level status by Botnariuc and Orghidan (1941). This taxonomic view was modified by Straskraba (1965) who gave the lineage subfamilial status within the Limnadiidae. Mattox (1952) described the genus Metalimnadia and, although stating that its distinctive morphology might be consistent with subfamilial or familial status, retained it as a genus within the Limnadiidae. This lineage was subsequently given subfamilial status by Straskraba (1965). Roessler (1995) proposed the elevation of the Metalimnadiinae to familial status based on distinctive features that include valve structure, head morphology, and reproductive traits. Pereira and Garcia (2001), however, listed Metalimnadia as a genus within the Limnadiidae.

Explicit hypotheses of inter-generic evolutionary relationships for the limnadiids are limited to Straskraba's (1965) morphology-based subfamilies and Braband et al.'s (2002) DNA sequence-based estimates of phylogeny. The former suggests a sister-taxon relationship for Limnadia and Eulimnadia (defined as Limnadiinae), while the latter offer the same for Imnadia+Limnadia and Eulimnadia+Limnadopsis. These two explicit hypotheses offer mutually exclusive views of limnadiid inter-generic relationships, but are limited in scope due to the low resolution inherent in Straskraba's use of two monogeneric subfamilies (Imnadiinae and Metalimnadiinae) and the absence of Metalimnadia from the Braband et al. (2002) analyses.

Our phylogenetic analyses (Figs. 1-3) robustly support the monophyly of the Limnadiidae, which encompasses Limnadopsis, Imnadia, and Metalimnadia (Fig. 1), as well as reject close relationships between (1) Limnadia and Eulimnadia, as suggested by Straskraba's (1965) and Tasch's (1969) Limnadiinae concept, and (2) Imnadia + Limnadia and Eulimnadia + Limnadopsis as suggested by Braband et al. (2002).

Character Evolution Within the Limnadiidae

Given the inter-generic evolutionary relationships suggested by our 28 S rDNA phylogenetic analyses, the history of morphological character evolution within the Limnadiidae can be evaluated using parsimony optimization. A simplified version of our 28S rDNA topology (Fig. 1) is presented in Figure 4 with the morphological characteristics for the five limnadiid genera (largely from Table 1 in Straskraba,

Table 4. Results of the approximately unbiased (AU), Kishino-Hasegawa (KH), Shimodiara-Hasegawa (SH), weighted Kishino-Hasegawa (WKH), and weighted Shimodiara-Hasegawa (WSH) tests calculated using CONSEL.

Tree	$-\ln \mathrm{L}$	Difference	Test				
			AU	KH	SH	WKH	WSH
28 S data: constraint $=(($ Limnadia + Imnadia $)($ Eulimnadia + Limnadopsis $)$)							
Unconstrained tree (Fig. 1) Constrained tree	$\begin{aligned} & -6695.47 \\ & -6833.43 \end{aligned}$	137.95	$\mathrm{p}=1 \mathrm{e}^{-04}$				
Cytb $+12 \mathrm{~S}+28 \mathrm{~S}$ data: constraint $=($ Limnadia + Eulimnadia $)$:							
Unconstrained tree (Fig. 3) Constrained tree	$\begin{aligned} & -15917.52 \\ & -15981.70 \end{aligned}$	64.19	$\mathrm{p}=0.003$	$\mathrm{p}=0.011$	$\mathrm{p}=0.094$	$\mathrm{p}=0.011$	$\mathrm{p}=0.016$
Cytb $+12 \mathrm{~S}+28 \mathrm{~S}$ data: constraint $=$ Eulimnadia not monophyletic:							
Unconstrained tree (Fig. 3) Constrained tree	$\begin{aligned} & -15917.52 \\ & -16018.24 \end{aligned}$	100.72	$\mathrm{p}=5 \mathrm{e}^{-04}$	$\mathrm{p}=0.001$	$\mathrm{p}=0.017$	$\mathrm{p}=0.001$	$\mathrm{p}=0.002$

1965) parsimoniously plotted thereon. The undescribed limnadiid species is not represented in Figure 4 due to the currently incomplete characterization of its morphology. A brief discussion regarding the evolutionary histories of the parsimony-informative character states follows. Our topology suggests that a rounded upper corner of the postabdomen (Fig. 4; character "G") is the ancestral character state for the Limnadiidae with the prominent upper corner interpreted as a synapomorphy for Imnadia+ Metalimnadia+Eulimnadia. The absence of an umbo (Fig. 4; character "B") appears ancestral for the family, but the shared presence of that characteristic in Limnadopsis and Metalimnadia is interpreted as convergent evolution. Similarly, a pear-shaped dorsal organ (Fig. 4; character " E ") is hypothesized as the ancestral character state for the Limnadiidae with the distinctive states observed in Imnadia and Metalimnadia construed as being independently derived. The topology and character optimization presented in Figure 4 suggest that the shared character states used to support a close evolutionary relationship between Limnadia and Eulimnadia, e.g., lack of umbo, rounded occiput, represent symplesiomorphies rather than synapomorphies.

Concluding Remarks

The analyses included herein represent the first use of molecular systematic techniques to address explicit hypotheses of limnadiid phylogeny and character evolution. Some of the evolutionary relationships and interpretations contained herein appear very robust. For example, we have presented phylogenetic analyses based on multiple independent genetic loci, which strongly support the monophyly and, hence, validity of the family Limnadiidae and the genus Eulimnadia. The apparent non-monophyly of the Limnadiinae (sensu Straskraba, 1965; Tasch, 1969) is also supported by independent analyses. However, other evolutionary relationships and interpretations presented herein are more provisional in nature due to limitations in both taxonomic and genetic data sampling. For example, we analyzed specimens representing a single species from the polytypic genus Limnadia. In future studies, however, the monophyly of all polytypic limnadiid genera should be explicitly evaluated by analyses that would ultimately include representatives of all nominal species. Our most
taxonomically inclusive estimate of limnadiid phylogeny, containing specimens representing five nominal genera, is that from analyses of 28 S rDNA sequences. Independent confirmation/refutation of the 28 S rDNA-based phylogeny was not possible due to the inability of our current mtDNA primer pairs to amplify Imnadia and Metalimnadia templates. Future phylogenetic studies of the Limnadiidae should employ multiple independent genetic markers that are comparable across all limnadiid taxa.

The description (Mattox, 1952) of the morphologically distinct limnadiid genus, Metalimnadia, suggests that other, currently unrecognized, major lineages within the family may yet require morphological and genetic characterization. The phylogenetically distinct nature of the undescribed limnadiid specimen from Mauritius Island, as reported herein, offers support for this view. The study of a greater number of limnadiid specimens from poorly sampled zoogeographic regions will likely be necessary to better comprehend the patterns and processes underlying limnadiid biodiversity, phylogeny, and character evolution.

Acknowledgements

We thank S. Reed, T. Sanderson, R. Posgai, and J. Walker for help in the lab, and E. Eder, A. Maeda-Martinez, G. Pereira, N. Rabet, and S. Richter for supplying clam shrimp samples. We thank A. Schwarzbach for access to additional computer facilities. The samples from Japan were provided by M. Grygier as part of Cooperative Research Project K0007 of the Lake Biwa Museum, "Research on Large Branchiopods (Fairy Shrimp, Tadpole Shrimp, Clam Shrimps) Inhabiting Rice Paddies," directed by Grygier and in which S. Weeks also participated. This work was funded by the National Science Foundation (DEB-0235301).

References

Barnard, K. H. 1929. Contributions to the crustacean fauna of South Africa. A revision of the South African Branchiopoda (Phyllopoda). Annals of the South African Museum 29: 181-270.
Belk, D. 1989. Identification of species in the conchostracan genus Eulimnadia by egg shell morphology. Journal of Crustacean Biology 9: 115-125.
Botnariuc, N., and T. Orghidan. 1941. Sur une nouvelle espece du genre Imnadia trouvee en Roumanie et sur les Imnadiidae n. fam. Bulletin Section Scientifique Academie Roumanie 24: 239-246.
Braband, A., S. Richter, R. Hiesel, and G. Scholtz. 2002. Phylogenetic relationships within the Phyllopoda (Crustacea, Branchiopoda) based on mitochondrial and nuclear markers. Molecular Phylogenetics and Evolution 25: 229-244.
Brehm, V. 1933. Phyllopoden, Mitteilungen von der Wallacea - Expedition Wolterek, 5. Zoologischer Anzeiger 104: 31-40.

Brtek, J. 1997. Checklist of the valid and invalid names of the "large branchiopods" (Anostraca, Notostraca, Spinicaudata and Laevicaudata), with a survey of the taxonomy of all Branchiopoda. Zbornik Slovenskeho Narodneho Muzea, Prirodne vedy 43: 3-50.
Daday, E. 1925. Monographie systematique des Phyllopodes Conchostraces. Troisieme partie. Annales des Sciences Naturelles, Zoologies 10e serie 8: 143-184.
Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
Folmer, O., M. Black, W. R. Hoeh, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
Hertzog, L. 1935. Notes faunistiques de Camargue, I Crustacea. Bulletin de la Societe Zoologique Francaise 60: 265-281.
Huelsenbeck, J. P., and F. Ronquist. 2003. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754-755.
Kishino, H., and M. Hasegawa. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order of the Hominoidea. Journal of Molecular Evolution 29: 170-179.
Maddison, W. P., and D. R. Maddison. 2000. MacClade: Analysis of phylogeny and character evolution. Sinauer Assoc., Inc., Sunderland, MA.
Martin, J. W. 1989. Eulimnadia belki, a new clam shrimp from Cozumel, Mexico (Conchostraca, Limnadiidae), with a review of Central and South American species of the Genus Eulimnadia. Journal of Crustacean Biology 9: 104-114.
__, and D. Belk. 1989. Eulimnadia ovilunata and Eulimnadia ovisimilis, new species of clam shrimps (Crustacea, Branchiopoda, Spinicaudata) from South America. Proceedings of the Biological Society of Washington 102: 894-900.
\longrightarrow, and G. E. Davis. 2001. An updated classification of the recent Crustacea. Natural History Museum of Los Angeles County, Contributions in Science 39: 1-164.
Mattox, N. 1952. A new genus and species of Limnadiidae from Venezuela (Crustacea: Conchostraca). Journal of the Washington Academy of Sciences 42: 23-26.

- 1954. A new Eulimnadia from the rice fields of Arkansas with a key to the American species of the genus (Conchostraca, Limnadiidae). Tulane Studies in Zoology 2: 3-10.
Merritt, T. J. S., L. Shi, M. C. Chase, M. A. Rex, R. J. Etter, and J. M. Quattro. 1998. Universal cytochrome b primers facilitate intraspecific studies in molluscan taxa. Molecular Marine Biology and Biotechnology 7: 7-11.
Mullis, K. B., and F. A. Faloona. 1987. Specific synthesis of DNA invitro via a polymerase-catalyzed chain-reaction. Methods in Enzymology 155: 335-350.
Olesen, J. 1998. A phylogenetic analysis of the Conchostraca and Cladocera (Crustacea, Branchiopoda, Diplostraca). Zoological Journal of the Linnean Society 122: 491-536.
_ 2000. An updated phylogeny of the Conchostraca-Cladocera clade (Branchiopoda, Diplostraca). Crustaceana 73: 869-886.
—_, J. W. Martin, and E. W. Roessler. 1997. External morphology of the male of Cyclestheria hislopi (Baird, 1859) (Crustacea, Branchiopoda, Spinicaudata), with a comparison of male claspers among the Conchostraca and Cladocera and its bearing on phylogeny of the ‘bivalved’ Branchiopoda. Zoologica Scripta 25: 291-316.
Park, J-K., and D. O'Foighil. 2000. Sphaeriid and corbiculid clams represent separate heterodont bivalve radiations into freshwater environments. Molecular Phylogenetics and Evolution 14: 75-88.
Pereira, G., and J. V. Garcia. 2001. A review of the clam shrimp family Limnadiidae (Branchiopoda, Conchostraca) from Venezuela, with the description of a new species. Journal of Crustacean Biology 21: 640652.

Posada, D., and K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818.
Roessler, E. W. 1995. Review of Colombian Conchostraca (Crustacea) ecological aspects and life cycles - families Lynceidae, Limnadiidae, Leptestheriidae and Metalimnadiidae. Hydrobiologia 298: 125-132.
Sars, G. O. 1895. Descriptions of some Australian Phyllopoda. Archiv for Mathematik og Naturvidenskab 17: 1-27.
Sayce, O. A. 1903. The Phyllopoda of Australia, including descriptions of some new genera and species. Proceedings of the Royal Society of Victoria 15: 224-261.
Shimodaira, H. 2002. An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51: 492-508.
_ _ , and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114-1116.
_ , and -. 2001. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17: 1246-1247.
Spears, T., and L. G. Abele. 2000. Branchiopod monophyly and interordinal phylogeny inferred from18S ribosomal DNA. Journal of Crustacean Biology 20: 1-24.
Spencer, W. B., and T. S. Hall. 1896. Crustacea report on the work of the Horn scientific expedition to central Australia. 11 Zoology. London (Dulau) and Melbourne 8: 227-248.
Straskraba, M. 1965. Taxonomical studies on Czechoslovac Conchostraca. I. Family Limnadiidae. Crustaceana 9: 263-273.

Swofford, D. L. 2001. PAUP*. Phylogenetic Analysis Using Parsimony (*and other Methods). Sinauer Associates, Sunderland, Massachusetts.
Tasch, P. 1969. Branchiopoda pp. 128-191. In, R. C. Moore (ed.), Treatise on invertebrate paleontology. Part R, Arthropoda 4, vol. 1, University of Kansas Press, Lawrence, Kansas.
Ueno, M. 1927. Freshwater Branchiopoda of Japan. 1. Memoirs. College of Science. Kyoto Imperial University B2: 259-311.
Webb, J. A., and G. D. Bell. 1979. A new species of Limnadia (Crustacea: Conchostraca) from the Granite Belt in Southern Queensland and Northern New South Wales. Proceedings of the Linnean Society of New South Wales 103: 237-245.

Received: 9 May 2005.
Accepted: 21 December 2005.

