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Abstract

Organismal solutions tonatural challenges can spark creative engineering applications.

However, most engineers are not experts in organismal biology, creating a potential

barrier to maximally effective bioinspired design. In this review, we aim to reduce that

barrier with respect to a group of organisms that hold particular promise for a vari-

ety of applications: snakes. Representing>10%of tetrapod vertebrates, snakes inhabit

nearly every imaginable terrestrial environment, moving with ease under many condi-

tions that would thwart other animals. To do so, they employ over a dozen different

types of locomotion (perhaps well over). Lacking limbs, they have evolved axial mus-

culoskeletal features that enable their vast functional diversity, which can vary across

species. Different species also have various skin features that provide numerous func-

tional benefits, including frictional anisotropy or isotropy (as their locomotor habits

demand), waterproofing, dirt shedding, antimicrobial properties, structural colors, and

wear resistance. Snakes clearly havemuch to offer to the fields of robotics andmateri-

als science.We aim for this review to increase knowledge of snake functional diversity

by facilitating access to the relevant literature.
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BACKGROUND AND PREMISE

Living organisms must overcome endless challenges as they interact

with their environments. The central premise of bioinspired design

is that human-engineered devices face many of the same problems

as do organisms in the natural world, allowing us to explore the

natural world for novel, efficient, and elegant solutions to these prob-

lems. Limbless terrestrial vertebrates represent a set of organisms

with major potential to inform engineering design, and whose poten-

tial has so far been only partly realized. Despite the role of limbs

in tetrapod diversification, an elongate body plan with reduced or
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absent limbs has evolved more than 25 times in the reptile order

Squamata (which includes snakes, other lizards, and amphisbaenians),

and in an amphibian order called the Gymnophiona, or caecilians.1–3

Of those, snakes have achieved by far the greatest taxonomic and

functional diversity, inhabiting nearly every imaginable terrestrial

environment4,5 (Figure 1). They are especially adept atmoving through

cluttered, confined, and complex environments, including dense grass,

underground burrows, weed-choked swamps, tangled branches, and

coral reefs, among others,6 though some species have subsequently

entered such uncluttered environments as dune seas or open ocean.

Thus, limbless locomotion clearly has applications to robots and
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2 ANNALSOF THENEWYORKACADEMYOF SCIENCES

F IGURE 1 Phylogenetic tree showing snake habitat diversity. This phylogenetic tree displays habitat data for snake species representing 26 of
31 currently described families, with branch lengths proportional to time. It includes 1040 of the 4038 snake species listed in the December 2022
release of Reptile Database.4,5 Habitat data were taken from field guides andmonographs. The tree was pruned from Tonini et al.299 and plotted
using the R package ggtree.300 Silhouettes not to scale and positioned near the branches representing their species; provided by authors J.L.T. and
H.C.A., and phylopic.org users Ignazio Avella, Bill Bouton, V. Deepak, GuillaumeDera, T.Michael Keesey, Blair Perry, Beth Reinke, Ferran Sayol, Alex
Slavenko, Felix Landry Yuan, and Christina Zdenek (full license information provided in Table S1).

other devices designed to move through similarly cluttered, confined,

and complex environments, including the natural ones that living

snakes navigate so successfully, as well as human environments like

building rubble after natural disasters, pipes or complex machines that

need inspected or repaired, or even inside the human body for medical

procedures.

In recent decades, scientists and engineers have taken inspiration

from these functionally diverse animals to design snake-like robots and

continuum robot arms for a variety of tasks. Most early work qual-

itatively mimicked snake body shape and/or movement, without the

benefit of quantitativedata from live snakes (e.g., Refs. 7–10), and some

of them departed from the snake body plan by inclusion of wheels or

treads (e.g., Refs. 11 and 12); however, some exceptional early studies

did verifymathematically derived theorywith snake experiments.13–16

More recently, the application of data from live snakes has increasingly

allowed snake-like robots tomore effectively replicate a range of func-

tions that snakes can perform but that remained outside the capability

of robots.17–21 Despite these advances, snake-like robots still cannot

replicate the versatility of living snakes, nor can they often achieve

the same level of performance, leaving open many areas for future
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 3

multidisciplinary collaborations to push the boundaries of snake-

inspired design.

Our goal in this review is to provide an overview of exciting aspects

of snake biology that could provide inspiration for engineering design,

and that might not be well-known to scientists and engineers who are

not immersed in organismal biology. In so doing, we aim to provide

a robust list of references on various topics for those aiming to dig

deeper. Given the complexity of living organisms, we hope that this

review will serve as a resource to anyone who endeavors to discern

which biological aspects hold relevance to engineering challenges. Our

goal is not to exhaustively review the existing literature on applica-

tions (e.g., snake-inspired robotics), as several such reviews exist.22–26

We wish instead to encourage scientists and engineers working on

snake-inspired robots to continue incorporating relevant aspects of

snake biology into their inspiration and design process, while also

encouraging them to take inspiration from snakes for devices beyond

snakebots.

SNAKE LOCOMOTOR MODES

For the better part of a century, biologists have canonically (if overly

simplistically) recognized four modes of snake locomotion: lateral

undulation, sidewinding, concertina, and rectilinear27–33 (Figure 2).

Unfortunately, this categorization erases important variation within

categories, some of which actually represent more than one distinct

way of moving, and it also excludes a wide diversity of movement pat-

terns not captured within the categories (see Ref. 34 for a review and

discussion of this problem). Although this categorizationmay serve as a

starting point for understanding limbless locomotion, a more nuanced

and expansive view will help us to appreciate and more effectively

study the full diversity of snake locomotor capabilities. Here, we will

briefly describe the better-known modes of snake locomotion, point

out some additional ways that snakes can move in a variety of situ-

ations, and then touch on some nonlocomotor behaviors that could

inspire design.

Slithering: Lateral undulation plus vertical undulation

The most common locomotor mode used by limbless terrestrial ver-

tebrates is lateral undulation, or slithering (Figure 2A). All snakes can

use this mode of locomotion,29 as can the other limbless terrestrial

reptiles and amphibians, although the single term “lateral undulation”

belies much kinematic and mechanistic diversity.3,32,35–39 During lat-

eral undulation, the animal propagates a lateral bend down its body

from head to tail, generating propulsive force by pushing on rocks,

sticks, or other objects in the environment.27,29,40 As the animals

undulate, they can selectively lift portions of their bodies’ bends to

dynamically redistribute body weight in a way that enhances forward

progress,41 implemented in robots as a sinus-lifting gait (see Refs.

42 and 43). Recent work has shown that snakes can also generate

propulsive force via posteriorly propagating vertical bends, in amanner

Ant.Post.

(A)

(B)

(C) D

F IGURE 2 Diagram of several major snake locomotor modes. All
image sequences depict a snakemoving from left to right. (A)
Slithering/lateral undulation, used in cluttered habitats. Posteriorly
propagating bends press against objects in the environment to
generate forward force. Darker outlines indicate later stages of the
motion. (B) Tunnel concertina, showing extended, forward-moving
body regions and flexed, static anchor regions. Gray indicates static
body regions. The five vertically stacked concertina images represent
five instants during a cycle, proceeding from top to bottom. Note that
the term “concertina” also includes at least three additional
kinematically different modes of locomotion, which can be used in
various circumstances (see text). (C) Rectilinear, showing the lateral
view of a body segment rather than the whole snake. Propagating
regions of skin are lifted andmoved anteriorly, then lowered, and
retracted. Gray indicates static ground contact. The six vertically
stacked images represent instants in time, proceeding from top to
bottom. Dotted lines connect points on the body (black circles) at
different moments in time as the snake progresses. (D) Sidewinding,
used by several species in sandy deserts. Posteriorly propagating,
offset waves of lateral bending combinedwith waves of vertical lifting
and lowering produce propagating regions of static contact (gray) and
liftedmovement.

mechanistically similar to lateral undulation.38 When provided a fully

three-dimensional environment to move through, snakes will combine

both lateral and vertical bending (often simultaneously), suggesting

that this mode of locomotion is a fully three-dimensional behavior

(“slithering”), with pure lateral and vertical undulation being artifacts

of overly simplistic laboratory arenas.39

Numerous authors have provided quantitative descriptions of lat-

eral undulation,14,27,29,30,32,40,41,44,45 although some early descriptions

erred in some aspects of the mechanics, and other authors have
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4 ANNALSOF THENEWYORKACADEMYOF SCIENCES

investigated kinematics and muscle activity during lateral undulation

for a variety of species.33,46–48 In most snakes, the pattern of bends

tends to be irregular along the length of the body as the animal deforms

itself to make contact with environmental push-points; however, some

species might propagate very regular waveforms, exemplified by the

sand-dwelling specialist Chionactis occipitalis.48 Despite the energetic

losses imposed by continuous sliding friction with the environment,

metabolic measurements reveal equivalent caloric cost per meter in

slithering snakes and limbed lizards of the samemass.49

Swimming and floating

All snakes can likely swim via undulation.50 Some species spend

substantial portions of their lives in the water (Figure 1), including

many in the family Homalopsidae51–55 and the colubrid subfamily

Natricinae.56–60 Themost specialized aquatic snakes include the Acro-

chordidae and certain marine members of the Elapidae, some of which

have evolved tails with a pronounced paddle shape.61–65 A few stud-

ies have provided data on biomechanics andmuscle activation patterns

for snake undulatory swimming, also known as anguilliform swimming,

which involves the propagation of a lateral traveling wave down the

entire body, the amplitude of which increases from the head to the

tail.46,66–72 Note that those looking to design an undulatory swimmer

would dowell to also examine the literature on other elongate animals,

especially eels and lampreys; after all, the eel genus Anguilla lent its

name to the term “anguilliform swimming.” Despite the superficial sim-

ilarity of undulatory swimming and terrestrial lateral undulation, they

differ in aspects of their kinematics and underlying muscle activity (for

a detailed discussion, see Refs. 34 and 46). As for terrestrial lateral

undulation, snakes show interesting variations in undulatory swim-

ming. For example, species from at least two distantly related families

can propagate a traveling wave in the reverse direction from normal

(tail-to-head instead of head-to-tail) to swim backward, the sea snake

Hydrophis platurus61 and the file snake Acrochordus granulatus.34

Some species can float on top of water, no small feat given the

extreme stability challenges of having an elongate form.73 Aquatic

species might assume a floating position with their heads positioned

above their bodies, such that they could conceivably sense the envi-

ronment around them more effectively than if they were actively

swimming. Theoretical modeling has provided insight into potential

mechanisms behind themaintenance of such a posture so that the prin-

ciples of this behavior can eventually be applied to elongate aquatic

robots.73

Sidewinding

Like lateral undulation, sidewinding involves the propagation of a trav-

eling wave from head to tail (Figure 2D). However, instead of sliding

along the ground, a sidewinding snake maintains some sections of

the body in static (or nearly static) contact with the ground while

lifting other sections up and forward to new contact patches far-

ther ahead.29,33,74–76 Although motor control of sidewinding in living

snakes remains an open question, sidewinding can be kinematically

represented by combining vertical and lateral waves with a phase

offset.18,77 As the waves propagate together, each point on the body

is cyclically lifted from the substrate, moved forward, and placed into

contact again, with subsequent points following at a slight lag.

Early papers on sidewinding sometimes described sidewinding as a

“rolling” motion, in large part because it leaves disconnected tracks in

the sand that resemble the result if one were to roll a helix along the

ground.27,75 More recent theoretical work has sometimes made use

of this model, using an elliptical spiral to define a backbone curve.9,10

Although this model might be useful in certain specific circumstances,

snake sidewinding locomotion is not correctly described as “rolling.”

In a rolling system, an element of the rolling object (e.g., a portion of

a tire or segment of a tank tread) undergoes a rotational transforma-

tion, which results in a reorientation of the element with respect to

the world. If the rotational axis is horizontal (as in most such systems),

the element will reorient such that the lowermost surface becomes

uppermost and vice versa, as in a wheel. Furthermore, in true rolling

systems, rotation will continue in the same direction until the original

orientation has been restored. In contrast, aside from some minimal

and transient tilting during lifting and lowering, the body segments of

sidewinding snakes always retain the same orientation, and there is

never a period in which the ventral surface of the snake is uppermost.

Several researchers have put forth models of sidewinding locomo-

tion grounded in data from sidewinding snakes, which have allowed

snakelike robots to more effectively replicate a range of functions that

sidewinding snakes can perform, including ascending slopes, turning,

and negotiating obstacles.17–20 Additional studies address a variety of

additional questions related to sidewinding in living snakes, including

muscular mechanisms,78 maximal performance,79,80 the exception-

ally low energetic cost,80 among-species kinematic differences,33,81

within-species kinematic differences,82 scalingof kinematicswithbody

size,82 and substrate effects on kinematics83 (for a systematic review

of the literature on sidewinding through 2019, see Ref. 84).

Contrary to the archetype of snakes asmasters of confined and clut-

tered environments, sidewinding snakes maximize their potential in

wide open spaces, although sidewinding does allow certain maneuvers

as long as the environment does not become too cluttered.18,19 This

mode of locomotion is strongly associated with viper species inhab-

iting several of the world’s deserts, likely because it provides a way

for them to overcome the challenges associated with shifting sand.

Vipers tend to have stout bodies relative to many other snakes,85 and

perhaps because of their body dimensions, vipers that attempt to use

lateral undulation on sand tend to make little-to-no forward progress

while wasting their effort pushing sand from side to side,45 especially

if the ground is sloped to any degree.17 Sidewinding, even a heavy-

bodied snake canmove relatively rapidly andefficiently across the sand

and other shifting or smooth surfaces, including tidal mudflats and lab

floors (for a review, see Ref. 84).

Unlike lateral undulation, sidewinding evidently cannot be per-

formed by all snake species, and it has never been recorded for other

elongate, limbless tetrapods.17,19,84 About a dozen viper species (not
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 5

all closely related) use sidewinding as a primary mode of locomotion

when undisturbed in nature, and dozens of other species across the

snake family tree can sidewind with varying degrees of proficiency

when conditions elicit it.84,86 Someof the formerhavederivedmorpho-

logical features (e.g., muscle architecture87 and skin nanostructure88)

hypothesized to improve sidewinding performance, potentially at the

cost of reducing the performance of lateral undulation or other

behaviors.

Jumping and cartwheeling

In the course of very fast sidewinding, a snake might generate enough

impulse to propel itself from the ground, replacing one or more

sidewinding cycles with leaps or jumps, or a snake might jump from

a resting position after taking a pause during sidewinding.76 Some-

times, an individual from a species not renowned for sidewinding

might lunge or jump during an apparent attempt to sidewind as an

escape behavior.89–92 During these jumps, snakes can become fully air-

borne. Jumping (also known as saltation) is not restricted to snakes

among elongate tetrapods—it is considered a “characteristic behavior”

of many members of Pygopodidae,93 a family of geckoes that aban-

doned their famously sticky feet in favor of a snake-like body plan.

Other limbless lizards have also been known to jump,94–96 as have

amphisbaenians.97,98 Whereas jumpingmight lead to forwarddisplace-

ment, it does not necessarily do so, and jumping with no net displace-

ment may serve the function of startling potential predators.93,95,98

Small individuals jump more readily than do large individuals in

sidewinding South African horned adders (Bitis caudalis).76 A recent

preprint presents similar results for jumping in juvenile anacondas

(Eunectes murinus), demonstrating that only small individuals jump.99

The authors used mathematical modeling to demonstrate that as the

snakes grow, their body weight eventually passes a threshold beyond

which themuscles simply cannot generate enough torque to overcome

gravity.

That inertia dominates jumping distinguishes it from most other

modes of terrestrial snake locomotion, in which frictional forces tend

to far outweigh inertial forces.41 As a result, one would expect allo-

metric scaling relationships in jumping and the traits that enable it,

unlike other locomotor modes, where isometric scaling (i.e., geomet-

ric similarity)means that differently sized snakesmight largely be scale

models.82

Some old accounts present seemingly fantastical descriptions of

“hoop snakes,” reputed to rapidly bound forward in a cartwheeling

motion (e.g., Ref. 100). One could be forgiven for dismissing these as

the product of overactive imaginations. Astoundingly, though, at least

a couple of species really can jump so vigorously that they cartwheel

themselves away from perceived danger with truly shocking rapidity,

alternating between airborne and ground contact phases.101,102 This

movement is also notable for its incorporation of rolling, an extremely

rare form of movement by animals in contrast with its ubiquity in

engineered systems. This impressive locomotor feat clearly deserves

additional attention.

Concertina locomotion

Concertina locomotion is an extremely common and kinemati-

cally diverse mode, despite being both slow and metabolically

expensive.33,34,49,103 In the broadest sense, snakes perform concertina

using a combination of static anchoring pointswith the substrate inter-

spersedwithmoving regionswhich use axial bending and straightening

to move portions of the body forward (Figure 2B); these regions typ-

ically propagate posteriorly and are quite large, with snakes rarely if

ever havingmore than three regions (one static and twomoving or vice

versa) on the body at any given time.33,34,104–106 Typically, a posterior

anchor section will grip the substrate, while the anterior body extends

until it establishes a new grip. With the anterior gripping section

established, an increasingly large section of the body will be pulled

forward into the anterior static contact region as it is released from

the posterior static contact region. Initiation of a new cycle of forward

movement at the anterior may or may not begin before the end of the

tail has become static. Thus, any given point on the body is cyclically

statically anchored, moved forward, then anchored again.33,34

However, beyond the generalized description, concertina varies

tremendously, and it may be the most kinematically diverse mode of

snake locomotion.34 Snakes can use concertina in a wide range of

habitats, including traversing tunnels of variable diameter and slope,

branches of variable diameter and slope, and flat surfaces which either

lack suitable contacts for slithering or in which those contacts are

too weak to withstand the forces needed without yielding.33,34,104–106

The fundamental mechanics of concertina must differ depending on

the environmental context. The static anchoring may be achieved in

a tunnel by laterally flexing the body outward to form bends which

brace against the walls (termed “tunnel concertina”), or on a flat

surface by simply anchoring via static friction (termed “flat-surface

concertina”).33,34 It may be achieved in at least two separate ways in

arboreal settings: through a combination of lateral and ventral flexion

to grip the sides of a tree branch or trunk, or by helically spiraling the

body around a tree trunk.34,104,105 The precise kinematics are similarly

variable. Bends may be propagated down the body as in slithering,104

or may be straightened and reformed with each cycle, not necessar-

ily at the same points on the body.33,34 The pattern of bending varies

with environment, species, and even from cycle to cycle.33,34,104–106

The distance moved per cycle may measure less than 2% to over 20%

of body length.33,34,104,105 Active use of the scales may help prevent

slipping.107

The distribution of various versions of concertina across the snake

family tree remains largely unknown, aside from knowledge of its

general presence in most snakes.32–34 Beyond snakes, concertina is

best known in amphisbaenians, a group of burrowing squamate rep-

tiles, and in a largely subterranean order of amphibians called the

caecilians.35,37,108,109 These groups add additional richness to con-

certina biomechanical diversity, as some of them can perform a rather

different version that has been called “internal concertina,” enabled by

loose skin.35,37,108 Although concertina has not been documented for

many groups of nonsnake limbless lizards, it is not completely unknown

in these groups; it has been reported that some Australian skinks use
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6 ANNALSOF THENEWYORKACADEMYOF SCIENCES

concertina when traveling through a pegboard at low speeds, though

the species was/were unspecified and a detailed paper was never

published.32 Concertina’s versatility comes at a steep metabolic cost:

it is far more metabolically expensive than any other known mode

of snake locomotion, which leads to very poor endurance.49,103 This

cost may result from the high forces produced during anchoring, which

causes concertina to reach 5x theminimumgripping force necessary to

counteract gravity during vertical climbing.107,110

Rectilinear locomotion

Rectilinear locomotion is a peculiar and distinctivemode of snake loco-

motion, in that it is the only one which does not rely on bending

the body axis,34,111 nor even on the motion of skeletal elements.112

Instead, rectilinear locomotion is achieved by cyclic motion of the ven-

tral skin, each segment of which is lifted clear of the substrate, moved

forward (relative to both the static substrate and the snake’s body),

placed into static contact with the substrate, and then retracted rel-

ative to the body, with minimal slip relative to the substrate34,111,112

(Figure 2C). Each cycle of motion propagates posteriorly, resulting

in traveling waves of lifted movement and static contact that gen-

erate propulsive force against the substrate.34,111,112 Although early

researchers postulated rib motion as a driving mechanism, much like

the legs of a millipede, X-ray videography showed that during recti-

linear locomotion, a snake’s body translates forward with no obvious

movement of skeletal features relative to each other.112

Instead, the motion is powered by two muscle groups that con-

nect the ribs to the ventrolateral edge of the skin (the costocutaneous

superior and inferior), plus cutaneous muscles.111,112 The resulting

locomotion is far slower than any other mode,27,34,112 though pre-

ciselywhy remains unknown. Similarly unknown are themetabolic cost

of transport, endurance, responses to environmental variation, and

frequency and circumstances of use in the wild.

While rectilinear locomotion is commonly associated with large,

heavy-bodied species such asmanypythons, boas, and vipers,most ter-

restrial species seem to have at least some capacity for it,27,32,34,113,114

even if only used in a portion of the body in combination with other

modes. Rectilinear locomotion is also seen in amphisbaenians (a clade

of predominantly limbless squamates), which can use it to move both

forward and backward.30,32,115 However, presence/absence or relative

use across species has not been systematically tested. We also lack

data on other aspects of rectilinear locomotion, includingwhether high

body mass per unit length might be an advantage for this mode or

merely a disadvantage for other, faster modes.

Burrowing

Although many snakes will use pre-existing burrows or push their

way through leaf litter, a few clades specialize in excavating their

own tunnels. These burrowing (or fossorial) snakes appear through-

out the snake family tree (Figure 1). The largest such group are the

five families commonly known as blind snakes, most of which are each

other’s closest relatives: Typhlopidae, Leptotyphlopidae, Xenotyphlop-

idae,Gerrhopilidae, andAnomalepididae.Among the rest of the snakes,

many members of the families Uropeltidae, Atractaspididae, and Cala-

mariinae have fossorial or semi-fossorial habits, along with various

other species spread throughout the phylogeny. Not alone in their pro-

clivity for adopting a subterranean lifestyle, snakes share the under-

ground realm with other elongate, limbless tetrapods that burrow in

soil or sand, including various lizards,116–119 amphisbaenians,97,120 and

caecilians.121,122 These species might inspire the design of machines

that need to excavate tunnels and/or move through subterranean

environments.

Fossorial species must overcome many challenges. These include

the requirement of generating high forces when burrowing in soil,

which could be compacted and/or contain obstacles like rocks and

roots, a task that they might accomplish with either a rigid, rein-

forced skull or with more kinetic skulls where the parts might

be independently mobile, and perhaps also with derived trunk

morphology.37,123–129 High forces combined with rough particles

induce substantial abrasion. Some species burrow in sand or other

granular media, which impose specific challenges due to their mix of

solid-like and fluid-like properties, and which, like many other sub-

strates, can pose different problems when wet than when dry.130–135

Underground, animals must contendwith reduced visibility, which cre-

ates a need to sense the environment through tactile or chemical cues,

or detection of vibrations propagated through the substrate.136–138

They must also resist the infiltration of dirt or sand into the body,

which they may overcome through derived anatomical features or

behavior.139,140 Some aquatic snakes (especially in the family Homa-

lopsidae and colubrid subfamily Natricinae) burrow into the muddy or

rocky bottoms or banks of their watery habitats, likely facing very par-

ticular problemsassociatedwith aquatic burrowing.54,59,60 Meanwhile,

in the driest of Earth’s biomes, certain dune-dwelling vipers move

their ribs in a way that lets them sink into the sand, termed “vertical

burrowing.”141

The study of burrowing has posed logistical challenges. Subsurface

animals cannot be seen, although imaging via X-ray video has made it

possible to study someburrowingorganisms.Additionally, themechan-

ics of burrowing through mud remains a particularly open question,

likely due to the difficulty of experimental preparations involving damp

or wet media. Several studies have shed light on the mechanics of

aquatic and mud burrowing in elongate invertebrates,142–145 although

size differences likely lead to very different mechanical environments

formost of these species compared to snakes; a few studies have exam-

ined themechanics of aquatic burrowing in eels,146,147 whichwewould

expect to be more similar to snakes. Recent technological advances

combined with clever experimental setups should provide opportuni-

ties for researchers to make major progress in the study of fossorial

snake locomotion in the coming years.
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 7

Climbing, cantilevering, and gliding

Arboreal environments challenge animals to move on branches and

trunks that vary in diameter, incline, flexibility, and surface texture,

while also contending with secondary branches and vegetation both

emerging from and impinging into a desired path as well as gaps

between supports of highly variable distances.148 Failure imposes a

high cost, with larger animals facing potentially disastrous falls.148

Although small animals may not face certain doom from ground

impact,149 falling still causes them to risk predation and expend energy

while returning to the trees.

Branch diameter and secondary branching have starkly differ-

ent consequences for snakes compared to limbed taxa as they

move through the canopy. Limbed taxa move more rapidly on larger

branches, as these branches more closely resemble the ground and

ameliorate various problems of balance on narrow supports, regard-

less of whether the large branches have secondary branches emerging

from them150 or not.151–157 In contrast, snakes excel on secondary

branches that impede the locomotion of limbed species,150 reliably

and rapidly performing slithering locomotion.105,158,159 The ability to

generate propulsive force from vertical bends in addition to horizon-

tal ones may provide a further advantage in cluttered habitats.38 On

larger diameters, snakes move more slowly, in part because they must

engage a greater proportion of their bodies on lateral motion and

gripping.104,159

Ascending and descending pose challenges beyond those of trans-

lation through the canopy. Arboreal animals may, therefore, require

special behavior and/or anatomy to either fight gravity (during the

ascent) or work with it without tumbling downward (during the

descent). For example, they might take advantage of surface rough-

ness (as distinct from friction), although limbed versus limbless animals

may use different strategies: just as many mammals or limbed lizards

can use claws to interlock with the substrate, some snakes can form

ridges in their ventral scales to allow slithering in many challenging sit-

uations (including on the underside of branches!).105 Lab experiments

with pegs (to simulate secondary branches) have demonstrated that

while snake locomotion is impeded during an ascent compared to hor-

izontal translation, the addition of pegs substantially increases speed

and capability.104,105,158,159 Similarly, although downhill locomotion

on surfaces lacking pegs can prompt unusual behaviors which resem-

ble controlled sliding,104 adding pegs allowed slithering and improved

speed when descending perches.158 Thus, taken as whole, the same

arboreal environments which impede limbed taxa (narrow branches

with many secondary branches) are beneficial to snakes, consistent

with their general superiority in cluttered, confined, and complex

habitats.

Bridging potentially large gaps presents a further challenge for

arboreal animals. One common mechanism for both limbed and

limbless species is simply reaching across, which typically allows

either static stability or at least retaining an anchor in case of a

mistake.148,160 In snakes, this behavior is known as “cantilevering,”

and, when done slowly, it can be approximated as a cantilevered

beam problem,160,161 making it more amenable to analysis than

more dynamic motions are.160,162 The ability to cantilever across

gaps differs across species163 depending upon the geometry of the

musculoskeletal system164–166; this fact in turn has led to signifi-

cant insights into the musculoskeletal system (see the subsection on

muscles below). A few species use more dynamic “lunging” behav-

iors, which allow them to cross slightly longer gaps than possi-

ble compared to cantilevering.160,162,167 Dynamic lunging behaviors

might serve as the precursor for the most impressive gap-bridging

mechanism among snakes: the gliding flight of snakes in the genus

Chrysopelea.160,162,168,169 These remarkable snakes launch themselves

from tall trees,169 after which they use their highly mobile ribs to form

an airfoil-like surface capable of generating lift.170 During flight, they

undulate their body to maintain control over their otherwise unstable

posture.171 They have sufficiently mastered gliding control that they

can turn duringmid-glide to avoid obstacles.168

Althoughmany distantly related snakes have specialized in the tree-

dwelling life (Figure 1), no limbless tetrapods outside of snakes have

achieved arboreality to a comparable degree. Most limbless lizards

are regarded as fossorial or terrestrial,172 though several species of

pygopod geckoes are known to climb.173,174 The cause of the dispar-

ity in habitat diversity between snakes versus other limbless squamate

reptiles remains unknown.

The role of substrate in snake locomotion

Whereas limbed locomotors primarily change gaits to modulate

speed,175,176 snakes change the locomotor mode in response to fea-

tures of their environment. Slithering snakes, for example, generate

reaction forces by propagating body bends which press against suit-

ably oriented features of the substrate, which in turn requires surface

features of the appropriate geometry, friction, and orientation. The

availability of more contact points allows snakes to increase over-

all speed during slithering, at least until the density becomes too

confining.177 In the absence of either pre-existing structures (e.g.,

grass, rocks, branches) or self-generated ones (piles of sand displaced

by the body), the snake must resort to other locomotor modes, like

a concertina or rectilinear.38,44,45,158 The environmental context of

sidewinding contrasts strongly with that of lateral undulation, in that

sidewinding requires sufficiently open spaces to accommodate the rel-

atively wide path of their body.29 Sidewinders whose path is blocked

by obstacles can sometimes change their waveform to negotiate the

obstacles, but theymay also employ concertina locomotion to traverse

these before resuming sidewinding.19 Concertina, in turn, is often

associated with tunnels, although a tunnel’s characteristics deter-

mine whether a snake uses concertina or some other gait. When

presented with a rectangular tunnel with parallel walls and devoid

of push points, snakes will perform concertina locomotion, but will

immediately switch to slithering when encountering suitable contact

surfaces in the form of a bend in the tunnel,44 pegs,158 or a vertical

wedge.38
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8 ANNALSOF THENEWYORKACADEMYOF SCIENCES

Historically, many laboratory studies of animal and machine loco-

motion have necessarily used artificial surfaces (e.g., laboratory floors)

as their testing environments. Flat, rigid, and smooth, such surfaces

are not typically encountered in nature. Some snakes, particularly

sidewinding specialists, may successfully negotiate these surfaces

because their locomotor strategy for overcoming slipping on sand also

mitigates slipping on vinyl or other such artificial surfaces.83 Lack-

ing the ability to sidewind, many species resort to either flat-surface

concertina33 or lateral undulation41 when placed on smooth, rigid

surfaces. In this latter case, frictional anisotropy and lifting of cer-

tain body segments (sinus lifting) may allow some measure of forward

progression,41 though with far more slipping and far less economy of

motion than slithering in natural terrain; below a certain level of fric-

tion, snakes may simply become stuck. Observations of snakes moving

despite slippage on roads and polished floors prompted a description

of a gait called slide-pushing,31,32,178 which is no more a natural mode

of snake locomotion than ice-skating is a natural mode of human loco-

motion. While such artificial conditions can be useful experimental

perturbations to exploremechanics and control,41,83,88 the irrelevance

to natural behavior means the results of such experiments should be

used only with caution during the process of bioinspired design.

ADDITIONAL SNAKE BEHAVIORS

Lacking limbs, snakes rely on their elongate trunks for nearly all their

behaviors, not just locomotion. As a result, they execute many tasks

in a fundamentally different way from their limbed relatives, poten-

tially providing a wealth of inspiration and data that applied scientists

can translate into engineering design. We will not exhaustively review

them here, given our main focus on locomotion, but we will provide

some examples with a few references for anyone who wants to dig

deeper.

Striking

Snakes can defend themselves against predators by striking as a deter-

rent, andmany species strike to envenomate and/or capture their prey

in terrestrial, arboreal, and aquatic environments. During a predatory

strike, a venomous snake may either bite and release or bite and hold

on until the venom takes effect, whereas a nonvenomous snake must

progress to a prey subdual behavior after the initial strike. Several

researchers have quantified biomechanics and performance metrics

of snake strikes in a variety of contexts (e.g., Refs. 179–186). Strik-

ing behaviors can diverge widely across taxa. To give one somewhat

bizarre example, snakes of the genus Atractaspis, which count “stiletto

snakes” and “side-stabbing snakes” among their common names, can

envenomate prey via a backward or sideways stab without even need-

ing to open their mouths, allowing them to strike prey in tight spaces

like burrows.187 Recent research trends suggest that we will continue

to learn substantially more about striking in the next few years. A bet-

ter understandingof snake strikes could informavarietyof engineering

applications, including anything that requires accurate movement

during rapid acceleration of complex, high degree-of-freedom systems.

Prey handling

Limbless predators like snakes face particular challenges with respect

to prey handling. One of the more famous, well-studied snake prey

subdual methods is constriction, whereby a snake coils itself around

a struggling prey with either the lateral or ventral surface contact-

ing the prey, then applies pressure until the prey is incapacitated (e.g.,

Refs. 188–191). Most commonly observed in terrestrial contexts, con-

striction also serves in arboreal contexts where a snake may use the

anterior half of its body for constriction, while the posterior body

grips a branch to keep the snake suspended.192–194 Some species use

derived behaviors and/or morphologies to overcome very particular

challenges related to subduing certain prey, like members of the genus

Tantilla (commonly called “centipede snakes” or “flat-head snakes”) that

feed on elongate, venomous centipedes,195 species in the Homalopsi-

dae that rip apart crustaceans that would otherwise be impossible to

swallow,196 and egg-eating species that puncture eggs after swallow-

ing to release their nutritious contents.97,197 Insights from the close

study of snake prey handling could translate into a variety of object

apprehension andmanipulation tasks.

Prey ingestion

Among their most famous attributes, the kinetic heads characteriz-

ing most snakes allow them to swallow surprisingly sizeable prey.6,198

Once swallowed, largemeals require the body cavity to expand and the

skin to stretch to accommodate the bolus. During digestion, a snake

might need to change its location, requiring it to overcome the loco-

motor challenges of added mass and a bulging body.199,200 We still

have much to learn about how snakes overcome these challenges, but

it does not seem like too much of a stretch to suggest that the answers

mightproveuseful toelongatedevices that “swallow” items for storage,

transport, or other purposes.

Defensive displays

Despite all this discussion of snakes as predators, they also risk them-

selves becoming prey. To mitigate this risk, many species have evolved

various defensive displays.201 Some of the most spectacular exam-

ples come from the family Elapidae, including the hood display of

cobras202 and themind-bending acrobatics of coral snakes,203,204 both

of which aremimicked by harmless species that coexist with them. Dis-

play behaviors might pose idiosyncratic requirements on the muscles

that actuate them (see discussion in Ref. 205). The biomechanics and

control of these diverse behaviors certainly merit more attention.
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 9

Additional behaviors

Above,we reviewed someof themost iconic snakebehaviors. This list is

far from exhaustive: some species engage in wrestling/combat,206–208

at least one sea snake species can tie itself in knots, perhaps to clear the

skin of ectoparasites,209 and some species generate sound by vibrat-

ing their tails, rubbing sections of their bodies together, or forcefully

expelling air from their cloaca.210,211 A deeper dive into the snake lit-

erature reveals still more. This vast diversity of snake behaviors could

have a similarly vast diversity of applications in bioinspired design.

INTERNAL MECHANISMS OF MOVEMENT

The diversity of behaviors described abovemust be produced via inter-

nal mechanisms. To truly understand organismal function, we must,

therefore, complement our studyof behaviorwith close examinationof

actuators, support systems, and surface interfaces. Knowledge of the

anatomical and physiological underpinnings of animal behaviors may,

in turn, promote the design of more efficient, more multifunctional,

and/or generally better-performing engineered systems.

Muscles

Snakes’ ability to perform the behaviors described above is ultimately

contingent upon their actuator: muscles. As for any actuator, muscu-

lar functiondependsonbothgross architecture (anatomy/morphology)

and on its specific properties (physiology). Snake muscular anatomy

shows a tantalizing mix of simplicity and complexity, potential adap-

tations and constraints, clever innovations, and puzzling mechanisms.

Regarding simplicity, much of snake musculoskeletal anatomy is fun-

damentally metameric: the trunk consists of repeating segments, with

each segment comprising a vertebra, its ribs, and one distinct muscle

belly of every muscle type on each side of the body212–215 (Figure 3).

Some snake species have slightly more than 100 segments, whereas

others far exceed 300.216–218 Anatomy differs at either end of the

snake, with vertebral shape accommodating different functions for

the head and tail, and muscle spans changing as they approach the

end of the vertebral column.216,217,219–221 The system’s complexity

comes from its predominantly multiarticular nature—while a fewmus-

cles connect one vertebra or rib to the adjacent one, most span

several vertebral segments, overlapping with muscles of the same

type in closely associated “bundles” running much of the length of

the snake222–225 (Figure 3). The multiarticular span may be a mod-

est three to five vertebrae for some muscles, but others may span

dozens of vertebrae.87,205,218,222–225 Multiarticular spans range from

entirely muscular to highly tendinous, and these proportions are

known to vary across species based on descriptions.205,223–226 While

somemuscle–tendon units connect only to the relevant bones (or skin,

in the caseof the superior and inferior costocutaneousmuscles), others

show potential tendinous connections to adjacent muscles.225 These

connections appear to vary among species,225 are difficult to trace

even for a skilled anatomist, and typically pass through fascial sheets

which separate adjacent muscle groups (pers obs.), leaving it unclear

whether substantial force or motion is transmitted between the

muscles.

Axial muscle architecture shows clear signs of having evolved to

accommodate the highly elongate body plans of some squamate rep-

tiles, and within snakes, the limited available evidence points toward

anatomical specialization for particular habits or behaviors. Across

squamates, muscle groups are largely consistent in their presence

but vary in the details of their anatomy.223–225 For example, the

transversospinalis muscle group is always present, but within the

transversospinalis group, various combinations of the individual mus-

cles (spinalis, semispinalis, multifidus, interarticularis superior, and

interneuralis) may be separated or fused depending on the species.

Snakes differ from limbed squamates in several respects, including

apparently greater differentiation between adjacent muscles, longer

multiarticular spans, and longer tendinous portions of the muscle–

tendon units.225 Other limbless squamates are diverse in their muscu-

lar anatomy, but overall they show greater similarity to snakes than to

limbed squamates, particularly in terms of longer multiarticular spans,

hinting at a functional benefit of longer spans for elongate body plans.

Within snakes, one of the muscles known to play a role in locomo-

tion, the semispinalis-spinalis, hasbeen subject todetailed comparative

analysis across a large number of species. Two studies showed that the

span of this muscle–tendon unit evolves with respect to habitat, one of

them conducted before the advent of modern phylogenetic compara-

tive statistical methods218 and the other conducted with phylogenetic

comparative methods and a larger sample.87 Arboreal species have

extremely long spans hypothesized to improve cantilevering perfor-

mance (a hypothesis later supported by mathematical modeling161),

whereas sidewinding specialists have particularly short spans, hypoth-

esized to provide the flexibility required to form the tight bends

seen during sidewinding.87,218 Another study presented data on mass,

cross-sectional area, and muscle–tendon unit length for three muscles

(semispinalis-spinalis, longissimus dorsi, and iliocostalis) in a sample

that included terrestrial, aquatic/semi-aquatic, and arboreal species; a

phylogenetic test provided evidence that aquatic species have more

massive semispinalis-spinalis muscles.227 Only in the last few years

have functional studies begun to provide data supporting hypothe-

sized mechanisms for some of the patterns revealed by comparative

anatomical studies.

The functional consequences of snake muscular anatomy are

straightforward in some aspects, such as lever arms. As in other

vertebrates, a muscle’s lever arm determines its relative contribu-

tions to torque about various axes of skeletal joints, while mediating

the trade-off between force and motion. Although the lever arm

approach assumes a single fulcrum, and hence most properly applies

to monoarticular muscles, the intuition afforded by lever arms aligns

with a more complex mathematical approach that explicitly accounts

for distributed bending across the vertebral column in multiarticular

systems205: muscles positioned dorsally or ventrally to the vertebral

centra contribute to dorsiflexion and ventroflexion, respectively, with

their contribution increasing with distance from the centra; muscles
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10 ANNALSOF THENEWYORKACADEMYOF SCIENCES

F IGURE 3 Diagrams showing fivemuscles in the corn snake Pantherophis guttatus. (A) A lateral view showing one of each type of muscle
(modified slightly from Ref. 205). (B) A lateral view providing a better idea of snake anatomy. The trunk consists of repeating segments, with each
segment comprising a vertebra, its ribs, and one distinct muscle belly of everymuscle type on each side of the body. Themultifidus is not visible
because it is covered bymore superficial muscles. (C) A detailed anatomical drawing of the axial musculature of the Saharan horned viper, Cerastes
cerastes (reproduced from fig. 50 in Gasc,225 with permission from J.-P. Gasc). As in the upper panels, anterior is to the right. More superficial
muscles are shown to the left, and deepermuscles are shown to the right. For anatomical drawings depicting themusculature for additional snake
species, see Refs. 223–225. (D) A transverse section of a CT scanwith themuscles outlined (reproduced fromRef. 205).

positioned more laterally have high lever arms for lateral flexion than

domedially positionedmuscles.

Despite recent advances, many aspects of functional morphology

in multiarticular muscles remain poorly understood. For example, the

impact of variation in the tendinous versus muscular proportion of

the multiarticular span has been the focus of only a single theoreti-

cal study, which examined the consequences ofmultiarticularity during

cantilevered gap bridging.161 Althoughmultiarticularity allows a single

muscle to apply torque across multiple joints, a multiarticular system

can outperform a monoarticular one of the same muscle mass only

through the presence of a substantial tendinous portion.161 As usual,

a trade-off arises: when the proportion of the span occupied by the

tendon increases, greater muscle strain (i.e., muscle length change as

a fraction of resting muscle length) and higher strain rate are required

for a given movement.161,228 Our understanding of the functional con-

sequences of multiarticular muscle architecture will improve through

increased scientific efforts toward both phylogenetic comparative and

functional studies, which strongly complement each other. Increased

effort toward comparative studies (in the vein of87,218 for muscles

beyond the semispinalis-spinalis)will providedata onanatomical diver-

sity to fuel functional studies. The results of functional studies (in the

vein of161,205) will help explain evolutionary patterns revealed by com-

parative studieswhile also providing an avenue for applied scientists to

translate biological diversity into societal benefit.

As with any actuated system, biological or mechanical, below the

level of gross structure lie the properties of the actuators themselves.

These are crucial for understanding the mechanical capabilities of the

system. Yet, here we face an acute lack of data. Contractile physiol-

ogy is unknown for the vast majority of snake muscles, with the sole

exception of the costocutaneous superior and inferior.229–234 These

muscles, most directly involved in rectilinear locomotion, display a

mix of twitch fibers with properties fairly typical to most vertebrate
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 11

(A) (B)

prezygapophysis postzygapophysis

zygosphene

cotyle
condyle

neural
canal

zygantrum

F IGURE 4 Vertebral morphology. Example snake vertebra from
Pantherophis guttatus, based on μCT scans. (A) Anterior view. (B)
Posterior view. Note the ball-and-socket configuration of the
cotyle/condyle, the overlapping and nearly horizontal pre- and
post-zygaphophyses, and the prominent zygosphene/zygantrum joint
above the neural canal. Figure fromRef. 246.

muscles231,232,234 and much slower tonic fibers.229,230,233,234 To what

extent these twitch properties are representative of other snake

muscles remains unknown. Since vertebrate muscles vary widely, par-

ticularly with respect to time-dependent properties such as activation

and deactivation rates and peak speed and power,235,236 it is diffi-

cult to infer how muscle properties affect movement. Moreover, the

effects of temperature on performance suggest the effects of these

time-dependent properties are substantial.56,237–240

Skeletal system

The muscular system acts via the skeleton to produce overall body

deformations. For locomotion, these can broadly be broken down

into (1) motions of the vertebral column, generating torques and

the overall path of the snake’s body, and (2) motions of the ribs,

which, together with the skin, modify contact mechanics between

the snake’s body and the environment. However, the mechanics of

this system are very poorly understood. While lever arms are known

for one species,205 these were calculated relative to the centroid of

the vertebral condyle, whose morphology would be expected to have

consequences on motion between pairs of vertebrae. We know that

adjacent cotyle/condyle pairs form ball-and-socket joints (Figure 4)

with synovial (fluid-lubricated) articulations that reduce resistance to

movement.241,242 Vertebral shape, including condyle dimensions, has

been the subject of only one large-scale comparative investigation in

snakes.216 It found that vertebral shape largely reflected family rela-

tionships, with very slight evidence of shape adaptation to particular

habitat associations; however, it used only two-dimensional data and

preceded the advent of phylogenetic comparative statistical methods

by several decades,243 so studies using more modern methods may

reveal previously hidden relationships. Although the cotyle/condyle

pairs form the joint about which rotation happens, other vertebral

features have functional importance (see Figure 4 for images of

vertebral morphology based on μCT scans). Snake vertebrae have dis-

tinctive features called the zygosphene and zygantrum that articulate

with each other above the neural canal; the zygosphene–zygantrum

articulation is absent or minimal in all other extant vertebrates,

including other limbless squamates, although it has been described in

mosasaurs.244,245 The zygosphene–zygantrum articulation was origi-

nally postulated to prevent intervertebral twisting or torsion around

the body axis,244 but subsequently was found to function more as

a bony limit on range of motion that prevents disarticulation of the

pre- and post-zygapophyses (a vertebral feature found across extant

tetrapods), and thus only indirectly preventing torsion (because the

pre- and post-zygapophyses serve to prevent torsion).246

Snake ribs execute significant motion in threat displays like cobra

hooding,202 and in specialized locomotion like gliding168 and displace-

ment of sand during vertical burrowing.141 They also perform more

subtle (but more crucial) motion during breathing.247,248 Despite the

potential role of rib motions in modulating contact during locomo-

tion, very little is known about how they move during locomotion.249

Based on external observation, snakes moving through complex ter-

rain seem to display significant deformation of the overall body shape,

and preliminary X-ray cineradiography shows substantial rib move-

ment accompanying this deformation (unpublished data). Conversely,

the biarticular joints of snake ribs seem to allow a passive “bracing”

mechanism, which could be advantageous for preventing movement

during exertion of high forces.249 Given the potentially substantial and

varied roles of ribs during snake locomotion, they clearly represent a

structure worthy of far greater functional study.

The skull can also play a role during certain types of snake locomo-

tion (see Wake’s 1993 book chapter for a nice discussion on “the skull

as a locomotor organ” across vertebrates, which includes mechanical

roles and sensory roles124). Its role manifests most obviously during

burrowing, when it might act as a wedge or a shovel, experiencing

high forces as it contacts the substrate. Given the clear importance

of the skull for burrowing, a comparative dataset combining anatomy

and locomotor behavior in a biomechanics framework could shed light

on the mechanisms behind effective and efficient burrowing, which

might vary with organism size and substrate characteristics. The skull

also matters for aquatic species. Head shape affects hydrodynamic

forces involved in underwater striking,181,250,251 and it is reasonable

to expect that head shape could also matter for swimming. The rela-

tionship between skull anatomy and swimming biomechanics remains

another area open for future study. For both burrowing and swimming,

the individual elements of the skull and connections between them

would beworth examining in addition to the overall shape.

Integument

As snakesmove through the environment, the outer layer of skinmain-

tains contactwith the substrate, necessitating adaptations for efficient

movement. Unlike most other animals, which make only static con-

tact with the substrate during terrestrial locomotion, snakes can use

both static and sliding contact. That their integumentmanages the very

different functional challenges of static versus sliding contact, and in

addition to all of its other roles, makes it a potentially instructivemodel

for bioinspired design.
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Echis coloratus Echis leucogaster Bitis gabonica

Subfamily Viperinae
locomotor generalists

Crotalus enyo Crotalus viridis Agkistrodon bilineatus

Subfamily Crotalinae
locomotor generalists

Cerastes cerastes Cerastes vipera

Subfamily Viperinae
sidewinding specialists

Crotalus cerastes

Subfamily Crotalinae
sidewinding specialists

F IGURE 5 Skinmicrostructure in a few representative viper species. Ventral scale microstructure in some representative species of two
subfamilies within the viper family (top row: Viperinae; bottom row: Crotalinae). Images produced using atomic forcemicroscopy (AFM); courtesy
of Tai-De Li. Species in the left column are terrestrial locomotor generalists, likely employing lateral undulation and rectilinear locomotion as their
major locomotor modes during regular activities (but note the dearth of detailed information on locomotor preferences in natural habitats for
most snake species). Species in the right column are three of the 12 species known to regularly use sidewinding locomotion.84,86 For an analysis of
the functional consequences of thesemicrostructures for sidewinding versus lateral undulation, see Rieser et al.88

The snake integument is characterized by rigid overlapping scales

with soft interconnections.252 Zooming in on the outermost surface,

many studies have documented micro- and nanostructures (e.g., Refs.

253–257), which have garnered attention for their influence on the

skin’s frictional properties (see Figure 5 for atomic force microscopy

scans of ventral scales for several viper species). Several studies have

focused on their role in producing frictional anisotropy, or directional

dependence of friction coefficient, which facilitates sliding contact

in the forward direction during slithering.88,258–264 However, snakes

move in many ways and frictional anisotropy may only be bene-

ficial for certain modes of locomotion that involve sliding contact

in a single direction, especially slithering. In contrast, sidewinding

requires static (or nearly static) contact with the ground, such that

nanostructures promoting isotropy (the same friction coefficient in all

directions) enhance sidewinding performance at the expense of lateral

undulation88 (Figure 5). Beyond friction, a few studies have examined

additional mechanical properties of snake skin, such as strength and

stiffness, that have functional importance for at least some locomotor

behaviors.264–268 As with many topics in snake biology, the existing lit-

erature provides interesting glimpses into structure and function, yet

the mechanical properties of snake skin remain a wide-open area for

future study.

Some trade-offs resulting from skin properties (like structural

isotropy/anisotropy) might be inevitable, but snakes may have mor-

phological or behavioral strategies to potentially mitigate trade-offs.

For example, snakes can increase friction by actuating their scales, an

impressive ability that lets them accomplish such difficult locomotor

feats as vertical climbs and concertina on steep inclines.107,269 This

ability has clear applications for improving the performance of snake-

inspired robots, and it could also apply to any other device that might

need tomodulate its friction for gripping in different contexts.

The abrasive nature of terrestrial locomotion, especially of modes

involving sliding contact with environmental surfaces, imposes the

requirement that skin be either resistant or resilient to wear.

Researchers have taken an interest in snake skin as a potential source

of inspiration for abrasion-resistant surfaces.259,270,271 In the face of

wear, injury, birth, and growth, periodic shedding of the skin (ecdy-

sis) provides an avenue for renewal.272–275 Although implementation

might be tricky, engineers could take inspiration from snakes to incor-

porate a shedding process for machines that operate in areas where

humans cannot frequently service them.

Like many (perhaps most) biological structures, snake skin must

performamultitude of functions. Although this review focuses on loco-

motion, some of those additional functions merit attention, especially

in the context of potential applications. Features of snake skin have

already been translated to the design of textured surfaces for reducing

friction276 and preventing microbial growth.277 In the area of yet-

to-be-tapped potential, burrowing snakes of the family Uropeltidae

(commonly called “shield-tail snakes”) have magnificently smooth skin

with remarkable dirt-shedding abilities.278,279 Humans might do well

to learn from them, given the trouble that dirt encrustation can cause

for solar panels and other engineered devices.280 As another example,

snake skin micro-ornamentation can provide waterproofing while still

allowing flexibility formovement.281 Microstructures can also be influ-

ential in enhancing color (i.e., structural colors), which can play a role

in camouflage and thermoregulation.257,282,283 Moving on to the sen-

sory realm, the skin can harbor structures that help snakes perceive

the world around them, like the mechanorecepters found in some sea
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snakes.284–286 The list of skin functions continues on, well beyond our

ability to provide a comprehensive review here. The properties that

enable these diverse functions in nature could serve to inspire many

future innovations.

CONTROL

To produce any functional outcome, the musculoskeletal system

requires control. At the lowest level, control consists simply of

the activation/deactivation patterns of muscles, which have been

described for several muscles during several modes of snake loco-

motion, including terrestrial lateral undulation, undulatory swimming,

sidewinding, tunnel concertina, rectilinear locomotion, and arboreal

cantilevering.46,78,111,166 Those muscles show activity patterns con-

sistent with the anatomical positions and lever arms.205 The role

of multiarticularity in control remains unclear, particularly since the

motor patterns of snakes engaging in terrestrial lateral undulation and

swimming are surprisingly similar (thoughnot identical) to those of eels

moving terrestrially and swimming, despite eels having dramatically

differentmuscular anatomy.46,287–289 Withoutmuscle physiologydata,

we cannot extrapolate from activity patterns to force generation.

The higher-level control, which determines the signals sent

to muscles, remains a mystery for locomotion in living snakes.

Although numerous control schemes have been used in robotic

snakes,14,19,24,42,290,291 no comparable experiments have ever tested

thesemechanisms in biological snakes. Because coordination of a huge

number of degrees of freedom is the principal challenge of snakes

(and snake robots), higher-level control in living snakes represents an

avenue of inquiry with tremendous potential.

FINAL THOUGHTS

Snakes clearly have much to offer to the fields of robotics and mate-

rials science. They perform an impressive range of locomotor modes

that snakelike robots have begun to imitate and that should continue

to provide inspiration and control mechanisms for a long time to come.

Most recognized as amodel for navigating cluttered environments like

rubble, tunnels, and large machines, they also show us how an elon-

gate formcan cover longdistances throughwideopenexpanses of sand

ormud, navigate arboreal environments, maneuver in aquatic environ-

ments, and more. Such behaviors such as climbing, constriction, and

prey handling have clear applications for gripping in robotic arms or

other machines. Their complex multiarticular musculoskeletal system

offers lessons for actuation, while the skin of various species offers a

multitude of useful properties, from water resistance to dirt shedding

to stretchiness to antimicrobial action.

In drawing inspiration from snakes or any other organism, certain

considerations can allow scientists tomaximize the value-added factor

of the “bioinspiration” part of the process. One set of considerations

results from the reality that organisms and machines face some of the

same constraints while differing deeply with respect to others. For

example, scaling presents a universal or near-universal consideration:

two organisms or objects that are scale models of each other might

maintain geometric similarity at different sizes, but they will differ in

other important properties like surface-area-to-volume ratio, forces

experienced during locomotion, and cost of transport. Limbless ter-

restrial locomotion may have advantages over limbed locomotion in

this respect.Whereas inertial forces dominate limbed locomotion, such

that geometric and temporal variables must be adjusted with size to

maintain a constant ratio between dominant forces,292,293 frictional

forces dominate most limbless terrestrial locomotor modes, such that

kinematics may be maintained or change only minimally in differently

sized locomotors.82 Trade-offs arising from laws of physics, like the

force-velocity trade-off in lever systems, represent another universal

consideration for organisms andmachines.

Perhaps the sharpest divide between organisms and machines

results from the fact that machines are designed, whereas organ-

isms arise through the processes of development (on the individual

level) and evolution (of populations, species, and higher-level taxa). As

a result, organisms face developmental and phylogenetic constraints

that need not factor into design decisions formachines.294–297 Inmany

cases, organisms evolve adaptations (or exaptations298) that brilliantly

fill the need at hand. In other cases, engineers can produce something

better because they have the luxury of designing from scratch.

We would not be surprised if researchers continue discovering

exciting behaviors that expand our understanding of snake loco-

motor capabilities. Research on snake locomotion has historically

lagged behind research on walking, swimming, and flying despite

the magnificent functional diversity of snakes and their potential for

bioinspiration.2 As more researchers from a variety of fields direct

their attention to snake locomotion, we expect major advances in our

collective understanding of themechanisms of snakemovement. Some

areas for future efforts include deepening our biomechanical knowl-

edge of most locomotor modes (some of which have never been the

subject of biomechanical study); shedding light on the motor con-

trol/neuromechanics of snake locomotion, including sensory feedback;

and strengthening our (currently almost nonexistent) understanding

of locomotor biomechanics and the factors that influence locomotor

choices in free-living snakes. Between technological advances and the

increasingly multidisciplinary nature of research collaborations, we

envision a bright future for increasingly effective bioinspired design

based on strong engagement with organismal biology.
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