Circular Inhomogeneity with Viscoelastic Interface
Under Antiplane Shear

X. Wang1 and E. Pan2
University of Akron,
Akron, Ohio 44325-3905

and

A. K. Roy3
U.S. Air Force Research Laboratory,
Wright-Patterson Air Force Base, Ohio 45433-7750

DOI: 10.2514/1.33983

This investigation addresses in detail a circular inhomogeneity with a viscoelastic interface subjected to remote uniform antiplane shear stresses. Both the inhomogeneity and the surrounding matrix are assumed to be elastic and quasi-static, and the interface is viscoelastic, modeled by a linear spring and dashpot. Exact closed-form solutions for both the Kelvin- and Maxwell-type viscoelastic interfaces are obtained by means of the complex variable method. It is observed that when the matrix is subjected to remote uniform shear stresses, the stress field inside the inhomogeneity, although time-dependent, is still uniform. The derived solutions are then used to predict the time-dependent effective shear modulus of the composite based on the Mori-Tanaka mean-field approximation.

I. Introduction

Composites under harsh environments could be damaged during their service, and the need to repair these structures is critical. Although composites can be repaired with adhesively bonded joints, material behaviors of the joint and the bonded composite (in particular, their time-dependent behavior) are challenging [1]. Recently, He [2] and He and Lim [3] studied the time-dependent mechanical responses of a particle- and fiber-reinforced composite with a viscous interface in which the interface model is based on the assumption that the two materials slide at a relative velocity that is proportional to the interface shear stress [4]. It is found that significant stress relaxation occurs, and the effective elastic moduli of the composites change remarkably with time. When time approaches infinity, the viscous interface will become a complete sliding one and would lose the ability of transferring the shear stress totally. As a result, the final overall modulus after complete sliding is independent of the modulus of the fibers [2-3]. In fact, viscoelastic interface, which is modeled by a linear spring and dashpot, is more suitable to characterize the creep and relaxation behavior of interlaminar bonding behavior under high-temperature circumstances [5]. As pointed out by Fan and Wang [6], there exist plenty of cases in which the interface should be considered as viscoelastic. For example, epoxy has a melting temperature in the range of about 340–380 K and when used as an adhesive to join a pair of metals with a high melting temperature (e.g., aluminum with a melting temperature of about 1000 K), it may form an imperfect and viscoelastic interface at room temperature of about 300 K. Most recently, the topic of a composite with a viscoelastic interface has attracted a considerable amount of attention [7-10].

In this work, we study the more practical and more complicated case in which a circular inhomogeneity is connected to the matrix by a viscoelastic interface modeled by a linear spring and dashpot [6]. Although both the Kelvin- and Maxwell-type interfaces are considered here, the gradient interface effect will be addressed in a separate paper. We first study an isolated circular inhomogeneity with viscoelastic interface by using the complex variable method and analytical continuation. The uniform far-field-induced stresses and displacements are obtained for the two different viscoelastic interfaces. Then the time-dependent shear modulus of the composite with finite fiber concentration is derived by using the Mori–Tanaka mean-field method [3,11,12]. It is verified that our results can be reduced to those for viscous interface obtained by He and Lim [3] and to those for a linear elastic spring-type interface [13]. Numerical results are presented to illustrate the physics of the obtained solutions.

II. Formulation

As shown in Fig. 1, an isolated circular inhomogeneity of radius \(R \) is embedded in an infinite matrix. The center of the circular inhomogeneity is at the origin of the Cartesian coordinate system. Both the inhomogeneity and matrix are assumed to be homogeneous, linearly elastic, and isotropic, with shear moduli \(\mu_1 \) and \(\mu_2 \), respectively. The matrix is subjected to remote uniform antiplane shear stresses \(\sigma_{yz}^\infty \) and \(\sigma_{xy}^\infty \), and the inertia force in both the inhomogeneity and matrix is neglected so that the analysis is restricted to a quasi-static process, with the antiplane displacement governed by the two-dimensional Laplace equation. As such, the out-of-plane displacement \(w \) (i.e., \(u_z \)), the stress components \(\sigma_{yz} \) and \(\sigma_{xy} \) in the Cartesian coordinate system, and the stress components \(\sigma_{r} \) and \(\sigma_{\theta} \) in the polar coordinate system can be expressed in terms of a single analytic function \(f(z, t) \) as [14]

\[
w = \text{Im}\{f(z, t)\} \tag{1}
\]

\[
\sigma_{yz} + i\sigma_{xy} = \mu f'(z, t) \tag{2}
\]

\[
\sigma_{r} + i\sigma_{\theta} = \mu e^{i\theta} f'(z, t) \tag{3}
\]

where \(z = x + iy = \text{Re} e^{i\theta} \) is the complex variable, and \(f'(z, t) = (\partial f(z, t))/\partial z \). Because of the effect of the viscoelastic
interface, $f(z, t)$ is not only a function of the complex variable z, but also a function of the real-time variable t. In the following the superscripts (1) and (2) will be used to denote stresses and displacement associated with the circular inhomogeneity and the matrix, respectively. In addition, the analytic functions defined in the inhomogeneity and the matrix are denoted by $f_1(z, t)$ ($|z| \leq R$) and $f_2(z, t)$ ($|z| \geq R$), respectively.

In this paper, we address both the Kelvin- and Maxwell-type viscoelastic interfaces. The boundary conditions for the Kelvin model, in which a linear spring and a linear dashpot are parallel-connected, are given by [6]

$$\sigma_{i1}^{(1)} = \sigma_{i1}^{(2)}, \quad \sigma_{ij}^{(1)} = k[w^{(2)} - w^{(1)}] + \frac{\partial}{\partial t}[w^{(2)} - w^{(1)}], \quad \text{on} \ r = R$$

(4)

where k is the spring constant of the interface and η is the viscosity coefficient.

The boundary conditions for the Maxwell model, in which a linear spring and a linear dashpot are connected in series, are given by [6]

$$\sigma_{i1}^{(1)} = \sigma_{i1}^{(2)}, \quad \frac{\partial}{\partial t}[w^{(2)} - w^{(1)}] = \sigma_{i1}^{(1)} + \frac{1}{k} \frac{\partial}{\partial t}, \quad \text{on} \ r = R$$

(5)

In the next two sections, we will derive the analytic solutions for the two kinds of viscoelastic interfaces.

III. Solution for a Kelvin-Type Viscoelastic Interface

Equation (4) for the boundary conditions of a Maxwell-type viscoelastic interface can be expressed in terms of two analytic functions $f_1(z, t)$ and $f_2(z, t)$ as

$$\mu_1 f_1^+(z, t) + \mu_1 \tilde{f}_1^+ \left(\frac{R^2}{z}, t\right) = \mu_2 f_2^+(z, t) + \mu_2 \tilde{f}_2^+ \left(\frac{R^2}{z}, t\right)$$

(6a)

$$k \left[f_2^+(z, t) - \tilde{f}_2^+ \left(\frac{R^2}{z}, t\right) - f_1^+(z, t) + \tilde{f}_1^+ \left(\frac{R^2}{z}, t\right) \right] + \eta \frac{\partial}{\partial t} \left[f_2^+(z, t) - \tilde{f}_2^+ \left(\frac{R^2}{z}, t\right) - f_1^+(z, t) + \tilde{f}_1^+ \left(\frac{R^2}{z}, t\right) \right] = \frac{\mu_1}{R} f_1^+(z, t) - \frac{R^2}{z} \tilde{f}_1^+ \left(\frac{R^2}{z}, t\right)$$

(6b)

where $\chi = kR \mu_1 + \mu_2$ and $\gamma = \eta R \mu_1 + \mu_2$.

At time $t = 0$, the displacement across the interface has no time to experience any jump, due to the dashpot [3, 6]. Therefore, at the initial time $t = 0$, the interface is a perfect one. As a result, we have

$$f_1(z, 0) = \frac{2(\sigma_0^+ + i \sigma_0^-)}{\mu_1 + \mu_2}$$

(11)

When $t \to \infty$, the interface should be at a steady state and there is no time effect. Then it follows from Eq. (9) that

$$\chi f_1(z, \infty) + \frac{\partial f_1(z, \infty)}{\partial z} = \frac{2\chi (\sigma_0^+ + i \sigma_0^-)}{\mu_1 + \mu_2}$$

(12)

for which the solution is expeditiously given by

$$f_1(z, \infty) = \frac{2\chi (\sigma_0^+ + i \sigma_0^-)}{(\chi + 1)(\mu_1 + \mu_2)}$$

(13)

In view of Eqs. (11) and (13), the solution to Eq. (9) can be given by
f_1(z,t) = 2(\sigma_0^\infty + i\sigma_n^\infty) \left[\chi + \exp\left(-\frac{\chi + 1}{y}t\right) \right]z, \quad |z| \leq R

(14)

Consequently, the expression of f_2(z,t) is

\begin{align*}
f_2(z,t) &= \frac{(\sigma_0^\infty - i\sigma_n^\infty)}{\mu_2} \left[\chi(\mu_1 - \mu_2) - (\mu_1 + \mu_2) \right] \\
&\quad + \frac{2\mu_1}{(\chi + 1)(\mu_1 + \mu_2)} \exp\left(-\frac{\chi + 1}{y}t\right) \frac{R^2}{z} \\
&\quad + \frac{\sigma_0^\infty + i\sigma_n^\infty}{\mu_2} z, \quad |z| \geq R \quad (15)
\end{align*}

Inserting the preceding two expressions for f_1(z,t) and f_2(z,t) into Eq. (1), we can obtain the time-dependent displacement and stress fields in the inhomogeneity and the matrix as

\begin{align*}
w^{(1)} &= \frac{2}{(\chi + 1)(\mu_1 + \mu_2)} \\
&\times \left[\chi + \exp\left(-\frac{\chi + 1}{y}t\right) \right] r \left(\frac{\sigma_0^\infty \sin \theta + \sigma_n^\infty \cos \theta}{\mu_2} \right) \\
w^{(2)} &= \left[1 + \frac{\mu_1 + \mu_2 + \chi(\mu_2 - \mu_1)}{(\chi + 1)(\mu_1 + \mu_2)} \right] \left(\frac{R}{r}\right)^2 \\
&\quad - \frac{2\mu_1}{(\chi + 1)(\mu_1 + \mu_2)} \exp\left(-\frac{\chi + 1}{y}t\right) \\
&\times \left(\frac{\sigma_0^\infty \sin \theta + \sigma_n^\infty \cos \theta}{\mu_2} \right) \\
\sigma^{(1)} + i\sigma^{(1)} &= \frac{2\mu_1(\sigma_0^\infty + i\sigma_n^\infty)}{(\chi + 1)(\mu_1 + \mu_2)} \left[\chi + \exp\left(-\frac{\chi + 1}{y}t\right) \right] \quad (17a)
\end{align*}

and

\begin{align*}
\sigma^{(2)} + i\sigma^{(2)} &= \sigma_0^\infty + i\sigma_n^\infty \\
&\quad + \left(\sigma_0^\infty - i\sigma_n^\infty\right) \left[\frac{\mu_1 + \mu_2 + \chi(\mu_2 - \mu_1)}{(\chi + 1)(\mu_1 + \mu_2)} \right] \\
&\quad - \frac{2\mu_1}{(\chi + 1)(\mu_1 + \mu_2)} \exp\left(-\frac{\chi + 1}{y}t\right) \frac{R^2}{z^2} \\
&\quad \frac{\sigma_0^\infty \sin \theta + \sigma_n^\infty \cos \theta}{\mu_2} \quad (17b)
\end{align*}

which are in agreement with those derived by He and Lim [3] if we let \sigma_n^\infty = 0.

2) When \eta = 0 for a linear-spring model, we have \gamma = 0. In this case, Eqs. (16) and (17) reduce to

\begin{align*}
w^{(1)} &= \frac{2\chi r \left(\frac{\sigma_0^\infty \sin \theta + \sigma_n^\infty \cos \theta}{\mu_2} \right)}{(\chi + 1)(\mu_1 + \mu_2)} \\
w^{(2)} &= \left[1 + \frac{\mu_1 + \mu_2 + \chi(\mu_2 - \mu_1)}{(\chi + 1)(\mu_1 + \mu_2)} \right] \left(\frac{R}{r}\right)^2 \\
&\quad \times \left(\frac{\sigma_0^\infty \sin \theta + \sigma_n^\infty \cos \theta}{\mu_2} \right) \\
\sigma^{(1)} + i\sigma^{(1)} &= \frac{2\mu_1(\sigma_0^\infty + i\sigma_n^\infty)}{(\chi + 1)(\mu_1 + \mu_2)} \\
\sigma^{(2)} + i\sigma^{(2)} &= \sigma_0^\infty + i\sigma_n^\infty \\
&\quad + \left(\sigma_0^\infty - i\sigma_n^\infty\right) \left[\frac{\mu_1 + \mu_2 + \chi(\mu_2 - \mu_1)}{(\chi + 1)(\mu_1 + \mu_2)} \right] \left(\frac{R}{r}\right)^2 \\
&\quad \frac{\sigma_0^\infty \sin \theta + \sigma_n^\infty \cos \theta}{\mu_2} \quad (21)
\end{align*}

which coincide with those derived by Ru and Schiavone [13].

In Fig. 2, to show the basic feature of the obtained solution, we demonstrate the continuous variation of \sigma_{ax} along the positive real axis at four different moments \(t = 0, \gamma/(\chi + 1), 1.6094\gamma/(\chi + 1), \) and \(\infty\) for the Kelvin-type interface. The matrix is subjected to \sigma^\infty and the other fixed parameters are \(\chi = 1\) and \(\mu_1 = 5\mu_2\). It is observed that at the initial time \(t = 0\), the stress level within the fiber is rather high \(\sigma^{(1)} > \sigma^{(2)}\). With increasing time, the stress level within the inhomogeneity decreases. When \(t = 1.6094\gamma/(\chi + 1), \) the stress is just equal to \(\sigma^\infty\) everywhere along the real axis. At this moment, the existence of the stiff inhomogeneity does not disturb the uniform stress field in the matrix, due to the viscoelastic interface. When \(t < \infty\), the stress approaches the steady state \(\sigma^{(1)} = \frac{5}{8}\sigma^\infty < \sigma^{(2)}\), namely, the result for a linear-spring-type interface.

By using the Mori–Tanaka mean-field method [3,11,12] with the intermediate procedures ignored, the time-dependent effective shear modulus of a composite containing randomly aligned fibers of the same radius with a Kelvin-type interface on the x–y plane can be derived to be

\begin{align*}
\text{Fig. 2} \quad \text{Variation of } \sigma_{ax} \text{ along the positive real axis at four different moments } \{t = 0, \gamma/(\chi + 1), 1.6094\gamma/(\chi + 1), \text{ and } \infty\} \text{ for the Kelvin-type interface, in which the matrix is subjected to } \sigma^\infty \text{ with the fixed parameters } \chi = 1 \text{ and } \mu_1 = 5\mu_2.
\end{align*}
where μ^* is the time-dependent effective shear modulus, and c is the volume fraction of the fiber. It is seen that the effective shear modulus is determined by the shear moduli of the fiber and the matrix, the volume fraction c of the fiber, the interface rigidity χ, and the characteristic time γ. The composite behaves macroscopically like an anelastic body. When $\chi = 0$ for a viscous interface, Eq. (22) reduces to

$$\mu^* = \mu_2 \frac{1 - c - \frac{2\mu_1}{\mu_1 + \mu_2} \exp\left(-\frac{t}{\gamma}\right)}{1 + c \left(\frac{2\mu_1}{\mu_1 + \mu_2} \exp\left(-\frac{t}{\gamma}\right)\right)} \frac{1}{\chi + 1 + \frac{\mu_1}{\mu_1 + \mu_2} \left(\frac{2\mu_1}{\mu_1 + \mu_2} \exp\left(-\frac{t}{\gamma}\right)\right)}$$

(23)

which is just the result derived by He and Lim [3]. In Fig. 3, we plot the variation of μ^* as a function of time t for the Kelvin-type viscoelastic interface with $\chi = 1$ and $\mu_1 = 10\mu_2$. Comparing Fig. 3 for the Kelvin-type viscoelastic interface with Fig. 5 in He and Lim [3] for a viscous interface ($\chi = 0$), it is found that the loss of the overall shear modulus for a Kelvin-type viscoelastic interface is not as large as that for a viscous interface, due to the fact that the Kelvin-type viscoelastic interface will finally evolve into a liner spring-type interface, whereas a viscous interface will finally evolve into a traction-free surface (or complete sliding interface).

IV. Solution for a Maxwell-Type Viscoelastic Interface

Equation (5) for the boundary conditions on a Maxwell-type viscoelastic interface can be expressed in terms of the two analytic functions $f_1(z, t)$ and $f_2(z, t)$ as

$$\mu_1 f_1'(z, t) + \mu_2 f_1(z, t) = \mu_2 f_2(z, t) + \mu_2 f_2'(z, t)$$

(24a)

$$\frac{\partial}{\partial t} \left[f_2(z, t) - \frac{R^2}{z} f_2'(z, t) - f_1(z, t) + \frac{R^2}{z} f_1'(z, t) \right] = \mu_1 \frac{\partial}{\partial t} \left[\frac{R^2}{z} f_1'(z, t) - f_1(z, t) + \frac{R^2}{z} f_1'(z, t) \right] + \mu_2 \frac{\partial}{\partial t} \left[f_2(z, t) - \frac{R^2}{z} f_2'(z, t) \right]$$

(24b)

Similar to the analysis in the previous section, it follows from Eq. (24a) that

$$f_2(z, t) = \frac{\mu_1}{\mu_2} f_1\left(\frac{R^2}{z}, t\right) + \frac{\sigma_0^{\infty} + \sigma_1^{\infty}}{\mu_2} z - \frac{R^2 (\sigma_0^{\infty} - \sigma_1^{\infty})}{\mu_2} \frac{1}{z}$$

$$f_2\left(\frac{R^2}{z}, t\right) = \frac{\mu_1}{\mu_2} f_1(z, t) + \frac{\sigma_0^{\infty} + \sigma_1^{\infty}}{\mu_2} z + \frac{R^2 (\sigma_0^{\infty} - \sigma_1^{\infty})}{\mu_2} \frac{1}{z}$$

(25)

Substituting Eq. (25) into Eq. (24b) and eliminating $f_2(z, t)$ and $f_2'(z, t)$ will result in

$$\frac{\mu_1 + \mu_2}{\mu_2} \frac{\partial}{\partial t} f_1(z, t) + \frac{\mu_1}{R \eta} z f_1'(z, t) + \mu_2 \frac{\partial}{\partial t} f_1(z, t) = \frac{\mu_1 + \mu_2}{R \eta} \frac{\partial}{\partial t} f_1(z, t) + \frac{\mu_1}{R \eta} f_1'(z, t)$$

$$+ \frac{R^2}{z} \frac{\partial}{\partial t} f_1'(z, t)$$

(26)

It is apparent that the left-hand side of Eq. (26) is analytic within the circle $r = R$, while the right-hand side is analytic outside the circle, including the point at infinity. Consequently the continuity condition in Eq. (26) implies that the left- and right-hand sides of Eq. (26) are identically zero within and outside the circle $r = R$. It then follows that

$$\frac{\partial}{\partial t} f_1(z, t) + \frac{1}{\chi} \frac{\partial}{\partial z} f_1(z, t) = 0, \quad |z| \leq R$$

(27)

where

$$\chi = k R \frac{\mu_1 + \mu_2}{\mu_1 \mu_2}, \quad \gamma = \eta R \frac{\mu_1 + \mu_2}{\mu_1 \mu_2}$$

(28)

At the initial time $t = 0$, the dashpot does not deform immediately, and the spring responds to the loading with no time delay. Thus, the displacement across the interface exhibits an immediate jump as the response of a spring [6]. On the other hand, when $t \to \infty$, the interface becomes a traction-free surface. As a result,

$$f_1(z, 0) = \frac{2\chi (\sigma_0^{\infty} + \sigma_1^{\infty})}{(\chi + 1)(\mu_1 + \mu_2)} z, \quad f_1(z, \infty) = 0$$

(29)

In view of the preceding, the solution to Eq. (27) can be given by

$$f_1(z, t) = \frac{2\chi (\sigma_0^{\infty} + \sigma_1^{\infty})}{(\chi + 1)(\mu_1 + \mu_2)} \exp\left(-\frac{\chi t}{\gamma(\chi + 1)}\right) z$$

(30)

and the expression of $f_2(z, t)$ is
\[f_z(z, t) = \left(\frac{\sigma^\infty}{\mu_2} - i \frac{\sigma^\infty}{\mu_2} \right) \]
\[\times \left[\frac{2x_1 \mu_1}{(\chi + 1)(\mu_1 + \mu_2)} \exp\left(-\frac{x t}{\gamma(\chi + 1)} \right) - 1 \right] R^2 \]
\[+ \frac{\sigma^\infty + i \sigma^\infty}{\mu_2} \frac{\gamma(\chi + 1)}{z} \]

(31)

Now that we have obtained \(f_z(z, t) \) and \(f_x(z, t) \), then it is easy to write down the time-dependent displacement and stress fields as

\[w^{(1)} = \frac{2x_1 \mu_1}{(\chi + 1)(\mu_1 + \mu_2)} \exp\left(-\frac{x t}{\gamma(\chi + 1)} \right) \]
\[\times \left(\frac{\gamma(\chi + 1)}{\gamma(\chi + 1)} \right) \]
\[+ \frac{R^2}{r} \frac{\gamma(\chi + 1)}{\gamma(\chi + 1)} \]

(32)

\[w^{(2)} = \left[1 + \frac{R^2}{r} \right] \left[\frac{2x_1 \mu_1}{(\chi + 1)(\mu_1 + \mu_2)} \exp\left(-\frac{x t}{\gamma(\chi + 1)} \right) \right] \]
\[\times \left(\frac{\gamma(\chi + 1)}{\gamma(\chi + 1)} \right) \]
\[+ \frac{R^2}{r} \frac{\gamma(\chi + 1)}{\gamma(\chi + 1)} \]

(33a)

Similarly, it is observed from Eq. (33a) that the stress field inside the circular inhomogeneity with the Maxwell-type interface is still uniform, although the uniform stress field is time-dependent. In Fig. 4, we demonstrate the continuous variation of \(\sigma_z \) along the positive real axis at three different moments \(t = 0, 1/(\chi + 1), \) and \(\infty \) for the Maxwell-type interface. The matrix is subjected to \(\sigma^\infty_z \) with the other fixed parameters \(\chi = 1 \) and \(\mu_1 = 5 \mu_2 \). At the initial time \(t = 0 \), the result is the same as that for a linear-spring-type interface (see Fig. 2 for \(t = \infty \)). With increasing time, the stress level within the inhomogeneity decreases. When \(t \rightarrow \infty \), the stress within the inhomogeneity approaches zero, due to the fact that as \(t \rightarrow \infty \), the interface will become traction-free and cannot transfer load from the matrix to the inhomogeneity.

Also, by using the Mori–Tanaka mean-field method, the time-dependent effective shear modulus of a composite containing randomly aligned fibers of the same radius with the Maxwell-type interface on the x–y plane can be derived as

\[\mu^* = \mu_2 \frac{1 - c}{1 + c} \exp\left(-\frac{x t}{\gamma(\chi + 1)} \right) \]
\[+ \frac{2x_1 \mu_1}{(\chi + 1)(\mu_1 + \mu_2)} \exp\left(-\frac{x t}{\gamma(\chi + 1)} \right) \]

(34)

Apparently, when \(\chi \rightarrow \infty \), Eq. (34) is reduced to that derived by He and Kim [3]. Figure 5 illustrates the variation of \(\mu^* \) as a function of time \(t \) for the Maxwell-type interface with \(\chi = 1 \) and \(\mu_1 = 10 \mu_2 \). As expected \(\mu^* \) changes from the result for a linear spring at \(t = 0 \) to that for a completely debonded interface at \(t = \infty \).

V. Conclusions

We study an isolated circular inhomogeneity with a viscoelastic interface under remote uniform antiplane shear stresses. Exact closed-form solutions for both the Kelvin-and Maxwell-type viscoelastic interfaces are derived by means of the complex variable method. It is found that the complex variable method is very efficient in treating this quasi-static problem. The time-dependent stress and displacement fields in the inhomogeneity and the matrix are given. The derived solutions are also used to predict the effective shear modulus of the fiber-reinforced composite, which is important in the study of the time-dependent response of composites. The method presented here could be extended to address the interface described by a standard linear solid model, which combines the Maxwell model and a linear spring in parallel. In this study, we restrict our attention to the simple case in which both the inhomogeneity and matrix are assumed to be linearly elastic. A viscoelastic inhomogeneity and/or matrix [15,16] still remains a challenge.

It is well known that the mismatch of material properties at the fiber-matrix interface causes performance deterioration in composites. For example, it causes stress rise at the interface, phonon scattering in thermal transport, etc. The gradient morphology concept potentially provides a materials solution to address this particular issue (e.g., [12]). The gradient materials property distribution at the composite interface could be achieved through nanotechnology (carbon nanotubes, nanofibers, nanolayers, and buckypapers). This would require a functionally gradient interface to also incorporate the time-dependent behavior, which forms yet another challenge problem for the further endeavor.

Acknowledgments

This work was supported in part by U.S. Air Force Research Laboratory grant 06-SS31-060-C1.

References

K. Shivakumar
Associate Editor
When production of AIAA journal papers begins, the official approved PDF is considered the authoritative manuscript. Authors are asked to submit source files that match the PDF exactly, to ensure that the final published article is the version that was reviewed and accepted by the associate editor. Once a paper has been accepted, any substantial corrections or changes must be approved by the associate editor before they can be incorporated.

If you and the EIC settled on some final changes to your manuscript after it was accepted, it is possible that your page proofs do not reflect these final changes. If that is the case, please submit these changes as itemized corrections to the proofs.

If final changes were made to the figures, please check the figures appearing in the proofs carefully. While it is usual procedure to use the figures that exist in the source file, if discrepancies are found between figures (manuscript source file vs the approved PDF), the figures from the PDF are inserted in the page proofs, again deferring to the PDF as the authoritative manuscript. If you find that agreed-upon final changes to your figures are not appearing in your page proofs, please let us know immediately.

Q1. Please provide the job titles for all authors as well as any AIAA membership status, and please spell out MLBCM for author Roy.
Q2. Please confirm that the copyright statement shown is correct and matches the information noted in WriteTrack. If changes are required, please note them with your corrections and also make the changes in WriteTrack.
Q3. There were no equations numbered (2) or (3) and so Eq. (1) was changed to (1)–(3); is that correct?
Q4. The variable “re” was assumed to mean the real part, corresponding to the Im (imaginary part) noted in Eq. (1); is that correct?
Q5. Built-up fractions are prohibited in text and were collapsed; please check that any added fences are correct.
Q6. Numbering equations with subscripts is not journal style and those were changed to 6a, 6b, 17a, 17b, etc.
Q7. The wording “the effect shear modulus” was changed to “the effective shear modulus”; is that change correct?
Q8. Please make adjustments so that Fig. 4 is cited in numerical order (before Fig. 5).
Q9. The wording “would require a...incorporating also” was changed to “would require a...to also incorporate”; please check that your meaning was retained.
Q10. This query was generated by an automatic reference checking system. References [3, 4, 13, 17] could not be located in the databases used by the system. While the references may be correct (they may simply not have doi numbers), we ask that you check them so we can provide as many links to the referenced articles as possible.
Q11. Please provide the issue or month of publication for [2–10, 12, 15–17]
Q12. A check of online databases revealed a possible error in Ref. [6]. The volume has been changed from ’35’ to ’40’. Please confirm this is correct.
Q13. A check of online databases revealed a possible error in Ref. [9]. The date has been changed from ’2006’ to ’2007’. Please confirm this is correct.