Philosophical Magazine

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713695589

Stoneley (interfacial) waves between two magneto-electro-elastic half planes
Wen-Jie Feng *, Jing Jin *, Ernie Pan **
* Department of Engineering Mechanics, Shijiazhuang Railway Institute, Shijiazhuang 050043, China
** Department of Civil Engineering, University of Akron, Akron, OH 44329, USA

Online Publication Date: 01 April 2008

To cite this Article Feng, Wen-Jie, Jin, Jing and Pan, Ernie(2008)'Stoneley (interfacial) waves between two magneto-electro-elastic half planes', Philosophical Magazine, 88:12, 1801 — 1810

To link to this Article: DOI: 10.1080/14786430802304600
URL: http://dx.doi.org/10.1080/14786430802304600

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
We investigated the propagation properties of Stoneley waves between two magneto-electro-elastic half planes. Magneto-electro-elastic materials are assumed to possess hexagonal (6 mm) symmetry. Twenty-five sets of magneto-electrical interface conditions were adopted and generalized frequency equations were derived and solved numerically. It was found that, for each set of interface conditions, existing Stoneley waves are always non-dispersive. Numerical results further show that material properties have a significant effect on both the number and velocity of Stoneley waves, and that, although different magneto-electrical interface conditions could influence the existence of Stoneley waves, they have no effect on wave velocities.

Keywords: Stoneley wave; phase velocity; magneto-electro-elastic materials; dispersion

1. Introduction

In recent years, piezoelectric and piezomagnetic materials have increasingly found applications in various engineering structures, especially in smart/intelligent systems as intelligent sensors, damage detectors, etc. Composite materials consisting of piezoelectric and piezomagnetic phases exhibit a magnetoelectric effect that is absent in either constituent. The magnetoelectric effects of piezoelectric–piezomagnetic composites were first reported in 1972 [1]. Since then, numerous investigations have been devoted to the static deformation, free vibration and fracture behaviour of magneto-electro-elastic materials. Although advances have been made in piezoelectric ceramics [2–12], research on wave propagation problems in magneto-electro-elastic materials are, to date, still limited. Liu et al. [13] studied piezoelectric–piezomagnetic multilayers with simultaneously negative permeability and permittivity. The scattering properties of an arc-shaped interface crack between piezoelectric and piezomagnetic materials have also been evaluated [14,15]. Soh and Liu [16] analyzed interfacial shear horizontal (SH) waves in a piezoelectric–piezomagnetic bi-material and SH surface waves in transversely isotropic magneto-electro-elastic materials have also been investigated [17]. Wave propagation in magneto-electro-elastic multilayered plates was studied using the propagator matrix and state-vector approaches [18]. Chen and Shen [19] studied the propagation of axial shear...
magneto-electro-elastic waves in piezoelectric–piezomagnetic composites with randomly distributed cylindrical inhomogeneities. Melkumyan [20] discussed 12 shear surface waves guided by clamped/free boundaries in magneto-electro-elastic materials. All these studies concentrated on anti-plane problems. Abbudi and Barnett [21] carried out a detailed study on the interfacial wave in the corresponding piezoelectric bimaterial. Nevertheless, to the best of our knowledge, there are no reports on two-dimensional (2D) wave propagation in magneto-electro-elastic bimaterials.

This study investigates the propagation properties of Stoneley waves between two transversely isotropic and magneto-electro-elastic half planes. Twenty five sets of magneto-electrical interface conditions are considered. By assuming the possible form of the solution, generalized frequency equations are derived. Numerical examples are presented to show the effects of magneto-electrical interface conditions on the velocity of Stoneley waves. It is expected that our results will have applications in surface acoustic wave devices.

2. General equations and interface conditions

Consider two transversely isotropic magneto-electro-elastic half planes with their poling directions all parallel to the y-axis, as schematically shown in Figure 1. The two half planes are perfectly bounded mechanically. The constitutive equations within the framework of the theory of linear magneto-electro-elastic medium take the form:

\[
\begin{align*}
\begin{bmatrix}
\sigma_{xx}^{(l)} \\
\sigma_{yy}^{(l)} \\
\sigma_{xy}^{(l)}
\end{bmatrix} &= \begin{bmatrix}
\epsilon_{11}^{(l)} & \epsilon_{13}^{(l)} & 0 \\
\epsilon_{13}^{(l)} & \epsilon_{33}^{(l)} & 0 \\
0 & 0 & \epsilon_{44}^{(l)}
\end{bmatrix} \begin{bmatrix}
u_{x}^{(l)} \\
\nu_{y}^{(l)} \\
\psi_{xy}^{(l)} + \psi_{yx}^{(l)}
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
0 & 0 \\
e_{15}^{(l)} & 0
\end{bmatrix} \begin{bmatrix}
\phi_{x}^{(l)} \\
\phi_{y}^{(l)}
\end{bmatrix} \\
+ \begin{bmatrix}
0 & f_{31}^{(l)} \\
0 & f_{33}^{(l)} \\
f_{15}^{(l)} & 0
\end{bmatrix} \begin{bmatrix}
\psi_{x}^{(l)} \\
\psi_{y}^{(l)}
\end{bmatrix}, & l = 1, 2 \\
D_{x}^{(l)} &= \begin{bmatrix}
0 & 0 & e_{15}^{(l)} \\
e_{31}^{(l)} & e_{33}^{(l)} & 0
\end{bmatrix} \begin{bmatrix}
u_{x}^{(l)} \\
\nu_{y}^{(l)} \\
\psi_{xy}^{(l)} + \psi_{yx}^{(l)}
\end{bmatrix} - \begin{bmatrix}
\epsilon_{11}^{(l)} & 0 \\
0 & \epsilon_{33}^{(l)}
\end{bmatrix} \begin{bmatrix}
\phi_{x}^{(l)} \\
\phi_{y}^{(l)}
\end{bmatrix} \\
- \begin{bmatrix}
g_{11}^{(l)} & 0 \\
0 & g_{33}^{(l)}
\end{bmatrix} \begin{bmatrix}
\psi_{x}^{(l)} \\
\psi_{y}^{(l)}
\end{bmatrix}, & l = 1, 2 \\
B_{x}^{(l)} &= \begin{bmatrix}
0 & 0 & f_{15}^{(l)} \\
f_{31}^{(l)} & f_{33}^{(l)} & 0
\end{bmatrix} \begin{bmatrix}
u_{x}^{(l)} \\
\nu_{y}^{(l)} \\
\psi_{xy}^{(l)} + \psi_{yx}^{(l)}
\end{bmatrix} - \begin{bmatrix}
g_{11}^{(l)} & 0 \\
0 & g_{33}^{(l)}
\end{bmatrix} \begin{bmatrix}
\phi_{x}^{(l)} \\
\phi_{y}^{(l)}
\end{bmatrix} \\
- \begin{bmatrix}
\mu_{11}^{(l)} & 0 \\
0 & \mu_{33}^{(l)}
\end{bmatrix} \begin{bmatrix}
\psi_{x}^{(l)} \\
\psi_{y}^{(l)}
\end{bmatrix}, & l = 1, 2
\end{align*}
\]

where the superscript \((l)\) \((l = 1, 2)\) represents the upper and lower half planes, respectively; \(u^{(l)}(x, y, t)\) and \(\psi^{(l)}(x, y, t)\) are the displacement components in the \(x\)- and \(y\)-directions,
respectively, \(\Phi^{(l)}(x, y, t) \) and \(\Psi^{(l)}(x, y, t) \) are the electric and magnetic potentials, respectively; \(\sigma_{ij}^{(l)}(x, y, t) \), \(D_i^{(l)}(x, y, t) \) and \(B_i^{(l)}(x, y, t) \) \((T, \Gamma = x, y)\) are the stress, electric displacement and magnetic induction, respectively; \(c_{ij}^{(l)} \), \(e_{ij}^{(l)} \), \(f_{ij}^{(l)} \) and \(g_{ij}^{(l)} \) are the elastic, piezoelectric, piezomagnetic and magnetoelectric constants, respectively; \(e_{ij}^{(l)} \) and \(\mu_{ij}^{(l)} \) are the dielectric permittivities and magnetic permeabilities, respectively.

In the absence of body forces, electric charges and magnetic charges, the governing equations for the elastic displacements \(u^{(l)} \) and \(v^{(l)} \), electric potential \(\Phi^{(l)} \), and magnetic potential \(\Psi^{(l)} \) can be written as follows:

\[
\begin{align*}
&c_{11}^{(l)} u_{,xx}^{(l)} + c_{44}^{(l)} v_{,yy}^{(l)} + (c_{13}^{(l)} + c_{44}^{(l)}) v_{,xy}^{(l)} + (e_{11}^{(l)} + e_{15}^{(l)}) \Phi_{,xx}^{(l)} + (f_{31}^{(l)} + f_{15}^{(l)}) \Psi_{,xy}^{(l)} = \rho^{(l)} u_{,tt}^{(l)} \quad \text{(2a)} \\
&(e_{13}^{(l)} + c_{44}^{(l)}) u_{,xy}^{(l)} + (c_{33}^{(l)} + c_{44}^{(l)}) v_{,xx}^{(l)} + e_{15}^{(l)} \Phi_{,xx}^{(l)} + e_{33}^{(l)} \Psi_{,xx}^{(l)} + f_{15}^{(l)} \Psi_{,xy}^{(l)} + f_{33}^{(l)} \Psi_{,yy}^{(l)} = \rho^{(l)} v_{,tt}^{(l)} \quad \text{(2b)} \\
&(e_{11}^{(l)} + e_{15}^{(l)}) u_{,xy}^{(l)} + e_{15}^{(l)} v_{,xx}^{(l)} + e_{33}^{(l)} v_{,yy}^{(l)} - e_{11}^{(l)} \Phi_{,xx}^{(l)} - e_{33}^{(l)} \Psi_{,xx}^{(l)} - g_{11}^{(l)} \Psi_{,xy}^{(l)} - g_{33}^{(l)} \Psi_{,yy}^{(l)} = 0 \quad \text{(2c)} \\
&(f_{31}^{(l)} + f_{15}^{(l)}) u_{,xy}^{(l)} + f_{15}^{(l)} v_{,xx}^{(l)} + f_{33}^{(l)} v_{,yy}^{(l)} - g_{11}^{(l)} \Phi_{,xx}^{(l)} - g_{33}^{(l)} \Phi_{,yy}^{(l)} - \mu_{11}^{(l)} \Psi_{,xx}^{(l)} - \mu_{33}^{(l)} \Psi_{,yy}^{(l)} = 0 \quad \text{(2d)}
\end{align*}
\]

where \(\rho^{(l)} \) is the material density.

Mechanical bonding conditions along the interface require that:

\[
\begin{align*}
&u^{(1)}(x, 0, t) = u^{(2)}(x, 0, t) \quad \text{(3a)} \\
&v^{(1)}(x, 0, t) = v^{(2)}(x, 0, t) \quad \text{(3b)} \\
&\sigma_{xy}^{(1)}(x, 0, t) = \sigma_{xy}^{(2)}(x, 0, t) \quad \text{(3c)} \\
&\sigma_{yy}^{(1)}(x, 0, t) = \sigma_{yy}^{(2)}(x, 0, t) \quad \text{(3d)}
\end{align*}
\]

The mechanical contact (or interface) conditions (3) together with the following ideal 25 sets of magneto-electrical contact (interface) conditions on the interface \(y = 0 \) are of interest to us:

- **Case 1:** \(\Phi^{(1)} = \Phi^{(2)}, \ D_y^{(1)} = D_y^{(2)}, \ \Psi^{(1)} = \Psi^{(2)}, \ B_y^{(1)} = B_y^{(2)} \) \(\quad (4a-1) \)
- **Case 2:** \(\Phi^{(1)} = \Phi^{(2)}, \ D_y^{(1)} = D_y^{(2)}, \ \Psi^{(1)} = \Psi^{(2)} = 0 \) \(\quad (4a-2) \)
- **Case 3:** \(\Phi^{(1)} = \Phi^{(2)}, \ D_y^{(1)} = D_y^{(2)}, \ B_y^{(1)} = B_y^{(2)} = 0 \) \(\quad (4a-3) \)
- **Case 4:** \(\Phi^{(1)} = \Phi^{(2)}, \ D_y^{(1)} = D_y^{(2)}, \ \Psi^{(1)} = 0, \ B_y^{(1)} = B_y^{(2)} = 0 \) \(\quad (4a-4) \)
- **Case 5:** \(\Phi^{(1)} = \Phi^{(2)}, \ D_y^{(1)} = D_y^{(2)}, \ B_y^{(1)} = 0, \ \Psi^{(1)} = 0 \) \(\quad (4a-5) \)
Equations (4) imply that the magneto-electrical interface conditions are classified into five groups, each of which simultaneously includes five different subsets of interface conditions.

3. Derivation of frequency equation

We consider the possible solution to Equation (2) in the form of the Stoneley waves:

\[u^{(l)} = \Xi^{(l)}(y, k, \omega) \exp[ikx - i\omega t], \quad l = 1, 2 \]

(5)

where \(u^{(l)} = \{ u^{(l)} \quad \psi^{(l)} \quad \phi^{(l)} \} \) is called the extended displacement; \(k \) and \(\omega \) are wave number and frequency, respectively. For a 2D in-plane problem, the extended displacements are generally exponential functions of \(y \). Therefore, we can express Equation (2) as:

\[u^{(l)}(x, y, t) = F^{(l)}(k) \begin{bmatrix} A_u^{(l)} \\ A_v^{(l)} \\ A_{\phi}^{(l)} \\ A_{\psi}^{(l)} \end{bmatrix} \exp(\lambda^{(l)} ky) \exp(ikx) \exp(-ikct), \quad l = 1, 2 \]

(6)
in which, \(k_c = \omega \) and \(c \) is the phase velocity of Stoneley waves; \(F^{(l)} \) is an unknown function; \(A^{(l)}_u, A^{(l)}_\phi, A^{(l)}_\psi \) are related to the material constants. By inserting extended displacement \(u^{(l)} \) of Equation (6) into Equations (2), one obtains the following secular equation (or eigenvalue equation):

\[
|M^{(l)}| = 0, \quad l = 1, 2
\]

with

\[
M^{(l)} = \begin{bmatrix}
\rho^{(l)}c^2 + c_{44}^{(l)}\lambda^{(l)} - c_{11}^{(l)} & i\left(c_{13}^{(l)} + c_{44}^{(l)}\right)\lambda^{(l)} & i\left(c_{31}^{(l)} + c_{44}^{(l)}\right)\lambda^{(l)} & i\left(f_{31}^{(l)} + f_{15}^{(l)}\right)\lambda^{(l)} \\
\rho^{(l)}c^2 + c_{33}^{(l)}\lambda^{(l)} - c_{11}^{(l)} & e_{33}^{(l)}\lambda^{(l)} & e_{11}^{(l)} - e_{33}^{(l)}\lambda^{(l)} & f_{13}^{(l)}\lambda^{(l)} - f_{15}^{(l)} \\
\rho^{(l)}c^2 + c_{15}^{(l)}\lambda^{(l)} & f_{33}^{(l)}\lambda^{(l)} - f_{15}^{(l)} & g_{31}^{(l)} - g_{33}^{(l)}\lambda^{(l)} & \mu_{11}^{(l)} - \mu_{33}^{(l)}\lambda^{(l)} \end{bmatrix} \]

(8)

It can be shown from Equation (8) that there are, in total, eight roots from Equation (7) and, if \(\lambda^{(l)}(c) \) is a root of Equation (7), so is \(-\lambda^{(l)}(c) \). Thus, only four are independent. Without loss of generality, we can denote \(\lambda^{(l)}_m \) \((l = 1, 2, m = 1, 2, 3, 4)\) to be the roots of Equation (7), which satisfy Re\(\lambda^{(l)}_m\) < 0 and Re\(\lambda^{(l)}_m\) > 0. In addition, since all the field quantities must vanish as \(|y| \) approaches infinity, we can further express the extended displacements as:

\[
u^{(l)}(x, y, t) = \sum_{m=1}^{4} F^{(l)}_m(k) \begin{bmatrix} d^{(l)}_{um} & d^{(l)}_{vm} & d^{(l)}_{\phi m} & d^{(l)}_{\psi m} \end{bmatrix}^T \exp(\lambda^{(l)}_mky) \exp(ikx) \exp(-ikct), \quad l = 1, 2
\]

(9)

where \(d^{(l)}_{um}, d^{(l)}_{vm}, d^{(l)}_{\phi m}, d^{(l)}_{\psi m} \) are known material constants satisfying the following relations:

\[
M^{(l)} \begin{bmatrix} d^{(l)}_{um} & d^{(l)}_{vm} & d^{(l)}_{\phi m} & d^{(l)}_{\psi m} \end{bmatrix}^T = 0, \quad l = 1, 2
\]

(10)

It should be noted that for given material parameters, \(d^{(l)}_{um}, d^{(l)}_{vm}, d^{(l)}_{\phi m}, d^{(l)}_{\psi m} \) in Equation (10) depend only on the wave velocity \(c \), since \(\lambda^{(l)}_m \) is actually the function of \(c \).

Substituting Equation (9) into the constitutive equations, i.e. Equations (1), the expressions for stresses \(\sigma^{(l)}_{xy} \) and \(\sigma^{(l)}_{yy} \), electric displacement \(D^{(l)}_y \) and magnetic induction \(B^{(l)}_y \) (i.e. extended traction \(\tau^{(l)}(x, y, t) \)) are obtained as follows:

\[
\tau^{(l)}(x, y, t) = \sum_{m=1}^{4} F^{(l)}_m(k) \begin{bmatrix} G^{(l)}_{1m} & G^{(l)}_{2m} & G^{(l)}_{3m} & G^{(l)}_{4m} \end{bmatrix} \begin{bmatrix} \sigma^{(l)}_{xy} & \sigma^{(l)}_{yy} & D^{(l)}_y & B^{(l)}_y \end{bmatrix} \exp(\lambda^{(l)}_mky) \exp(ikx) \exp(-ikct), \quad l = 1, 2
\]

(11)

in which

\[
\tau^{(l)}(x, y, t) = \begin{bmatrix} \sigma^{(l)}_{xy} & \sigma^{(l)}_{yy} & D^{(l)}_y & B^{(l)}_y \end{bmatrix}, \quad l = 1, 2
\]

(12)
\[G_{1m}^{(l)}(k, c, \lambda^m) = e_{44}^{(l)} \lambda_m k a_{um}^{(l)} + ik \left(e_{44}^{(l)} a_{um}^{(l)} + e_{15}^{(l)} a_{qm}^{(l)} + f_{15}^{(l)} a_{qm}^{(l)} \right), \quad l = 1, 2 \]

\[G_{2m}^{(l)}(k, c, \lambda^m) = e_{13}^{(l)} k a_{um}^{(l)} + \lambda_m k \left(e_{33}^{(l)} a_{um}^{(l)} + e_{33}^{(l)} a_{qm}^{(l)} + f_{33}^{(l)} a_{qm}^{(l)} \right), \quad l = 1, 2 \]

\[G_{3m}^{(l)}(k, c, \lambda^m) = e_{31}^{(l)} k a_{um}^{(l)} + \lambda_m k \left(e_{33}^{(l)} a_{um}^{(l)} - e_{33}^{(l)} a_{qm}^{(l)} - g_{33}^{(l)} a_{qm}^{(l)} \right), \quad l = 1, 2 \]

\[G_{4m}^{(l)}(k, c, \lambda^m) = f_{31}^{(l)} k a_{um}^{(l)} + \lambda_m k \left(j_{33}^{(l)} a_{um}^{(l)} - g_{33}^{(l)} a_{qm}^{(l)} - \mu_{33}^{(l)} a_{qm}^{(l)} \right), \quad l = 1, 2 \]

It is important to point out that \(G_{1m}^{(l)}, G_{2m}^{(l)}, G_{3m}^{(l)} \) and \(G_{4m}^{(l)} \) in Equation (13) are all linear functions of the wave number \(k \).

Substituting Equations (11) and (9) into Equations (3) and (4) yields:

\[\Omega F = 0 \]

where

\[F = \begin{bmatrix} F_1^{(1)} & F_2^{(1)} & F_3^{(1)} & F_4^{(1)} & F_1^{(2)} & F_2^{(2)} & F_3^{(2)} & F_4^{(2)} \end{bmatrix} \]

and \(\Omega \) is a \(8 \times 8 \) matrix. The elements of the matrix \(\Omega \) are:

\[\Omega_{1m} = a_{um}^{(1)}, \quad \Omega_{2m} = a_{vm}^{(1)}, \quad \Omega_{3m} = c_{1m}^{(1)}, \quad \Omega_{4m} = c_{2m}^{(1)}, \quad m = 1, 2, \ldots, 4 \]

\[\Omega_{1(m+4)} = -a_{um}^{(2)}, \quad \Omega_{2(m+4)} = -a_{vm}^{(2)}, \quad \Omega_{3(m+4)} = -c_{1m}^{(2)}, \quad \Omega_{4(m+4)} = -c_{2m}^{(2)}, \quad m = 1, 2, \ldots, 4 \]

and \(\Omega_{km}, \Omega_{k(m+4)} \) \((k = 5, 6, 7, 8, m = 1, 2, 3, 4) \) corresponding to the 25 sets of interface conditions can also be obtained. For example, for Case 1 interface condition:

\[\Omega_{5m} = a_{qm}^{(1)}, \quad \Omega_{6m} = c_{3m}^{(1)}, \quad \Omega_{7m} = a_{qm}^{(1)}, \quad \Omega_{8m} = c_{4m}^{(1)}, \quad m = 1, 2, \ldots, 4 \]

\[\Omega_{5(m+4)} = -a_{qm}^{(2)}, \quad \Omega_{6(m+4)} = -c_{3m}^{(2)}, \quad \Omega_{7(m+4)} = -a_{qm}^{(2)}, \quad \Omega_{8(m+4)} = -c_{4m}^{(2)}, \quad m = 1, 2, \ldots, 4 \]

For a nontrivial solution of \(F \), the determinant of its coefficient in Equation (14) must be equal to zero, which leads to:

\[|\Omega| = 0 \]

Equation (18) is the derived frequency equation, which reveals the frequency dispersion characters of the Stoneley wave in magneto-electro-elastic bimaterials.

For a fixed row or column in the matrix \(\Omega \), its elements are either composed of one of \(a_{um}^{(l)}, a_{vm}^{(l)}, a_{qm}^{(l)} \) and \(a_{qm}^{(l)} \) or composed of one of \(G_{1m}^{(l)}, G_{2m}^{(l)}, G_{3m}^{(l)} \) and \(G_{4m}^{(l)} \), it is easily concluded from Equations (16) and (17) together with Equations (13) and (10) that the wave velocity \(c \) satisfying Equation (18) is independent of \(k \), which implies that the Stoneley wave in a mechanically bonded magneto-electro-elastic bimaterial is non-dispersive. This statement is also consistent with the result by Abbudi and Barnett [21] for the corresponding piezoelectric bimaterial plane and can be further validated by the numerical results discussed below.
4. Numerical results and discussion

Equation (18) is very complicated and, thus, it is impossible for us to solve analytically the Stoneley wave velocities. In this section, numerical results are presented and discussed for magneto-electro-elastic materials composed of different volumetric ratios of BaTiO$_3$–CoFe$_2$O$_4$. Material properties of the magneto-electro-elastic materials as volume percentage (or volume fraction v_f) of BaTiO$_3$–CoFe$_2$O$_4$ are listed in Table 1 [22–27].

We also define $c_0 = \min\{c/\epsilon_s^{(1)}, c/\epsilon_s^{(2)}\}$, where $\epsilon_s^{(l)} = \sqrt{\mu_{11}^{(l)}/\epsilon_{11}^{(l)}}(l = 1, 2)$ and

$$c_{44}^{(l)} = \frac{\epsilon_s^{(l)} \rho_{15}^{(l)} - 2 \epsilon_{11}^{(l)} g_{11}^{(l)} + \mu_{11}^{(l)} \epsilon_{15}^{(l)} 2}{\mu_{11}^{(l)} \epsilon_{11}^{(l)} - g_{11}^{(l)} 2}.$$

Actually, $c_s^{(1)}$ and $c_s^{(2)}$ denote the shear wave velocities corresponding to the two kinds of the magneto-electro-elastic materials, respectively. For purely elastic materials, the corresponding Stoneley waves are less than one, thus our numerical studies in this paper are limited within the range $0 < c_0 < 1$.

The piezomagnetic/piezoelectric composite structure (i.e. CoFe$_2$O$_4$–BaTiO$_3$) is widely used in engineering. Thus, the Stoneley wave velocities in this bimaterial infinite plane are firstly examined (CoFe$_2$O$_4$ (in $y < 0$ half plane) and BaTiO$_3$ (in $y > 0$ half plane) correspond to $v_f = 0.0$ and $v_f = 1.0$, respectively). As shown in Table 2, there are two Stoneley waves in this bimaterial CoFe$_2$O$_4$–BaTiO$_3$ infinite plane. It is also interesting that the magnetoelectrical interface conditions have no influence on the wave velocities.

To further understand the properties of the existing Stoneley waves in bimaterial CoFe$_2$O$_4$–BaTiO$_3$, we assume $f_{31}^{(1)} = f_{33}^{(1)} = f_{15}^{(1)} = e_{31}^{(2)} = e_{33}^{(2)} = e_{15}^{(2)} = 0$ with the other

<table>
<thead>
<tr>
<th>v_f</th>
<th>c_{11}</th>
<th>c_{12}</th>
<th>c_{13}</th>
<th>c_{33}</th>
<th>c_{44}</th>
<th>ϵ_{15}</th>
<th>ϵ_{31}</th>
<th>ϵ_{33}</th>
<th>μ_{11}</th>
<th>μ_{33}</th>
<th>f_{15}</th>
<th>f_{31}</th>
<th>f_{33}</th>
<th>g_{11}</th>
<th>g_{33}</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>286</td>
<td>173</td>
<td>170</td>
<td>269.5</td>
<td>45.3</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>0.093</td>
<td>5.9</td>
<td>1.57</td>
<td>560</td>
<td>580</td>
<td>700</td>
<td>0</td>
<td>5300</td>
</tr>
<tr>
<td>0.2</td>
<td>250</td>
<td>146</td>
<td>145</td>
<td>240</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>0.33</td>
<td>2.5</td>
<td>3.9</td>
<td>1.33</td>
<td>340</td>
<td>410</td>
<td>550</td>
<td>2.8</td>
<td>5400</td>
</tr>
<tr>
<td>0.4</td>
<td>225</td>
<td>125</td>
<td>125</td>
<td>220</td>
<td>45</td>
<td>-2</td>
<td>-2</td>
<td>0.8</td>
<td>5.0</td>
<td>2.5</td>
<td>1.0</td>
<td>220</td>
<td>300</td>
<td>380</td>
<td>4.8</td>
<td>5500</td>
</tr>
<tr>
<td>0.6</td>
<td>200</td>
<td>110</td>
<td>110</td>
<td>190</td>
<td>45</td>
<td>-3</td>
<td>-3</td>
<td>0.9</td>
<td>7.5</td>
<td>1.5</td>
<td>0.75</td>
<td>180</td>
<td>200</td>
<td>260</td>
<td>6.0</td>
<td>5600</td>
</tr>
<tr>
<td>0.8</td>
<td>175</td>
<td>100</td>
<td>100</td>
<td>170</td>
<td>50</td>
<td>-3.5</td>
<td>-4</td>
<td>1.0</td>
<td>10</td>
<td>0.5</td>
<td>0.5</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>6.8</td>
<td>5700</td>
</tr>
<tr>
<td>1.0</td>
<td>166</td>
<td>77</td>
<td>78</td>
<td>162</td>
<td>43</td>
<td>-4</td>
<td>-4.4</td>
<td>11.2</td>
<td>12.6</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5800</td>
</tr>
</tbody>
</table>
material properties being the same as those for CoFe$_2$O$_4$ and BaTiO$_3$, respectively. The Stoneley wave velocities of this uncoupled bimaterial infinite plane are, therefore, examined, as shown in Table 3. Obviously, in this case, only one Stoneley wave velocity exists, which is also independent of the magnetoelectrical interface conditions. Thus, Tables 2 and 3 further indicate that, for the bimaterial CoFe$_2$O$_4$–BaTiO$_3$ infinite plane, the first Stoneley wave with velocity c_1 is closely associated with the elastic properties of both the piezomagnetic and piezoelectric materials; while the second Stoneley wave with velocity c_2 is associated with both the piezomagnetic properties of CoFe$_2$O$_4$ and the piezoelectric properties of BaTiO$_3$.

As discussed in [20], for 2D anti-plane problems of the homogeneous magneto-electro-elastic medium, different magnetoelectrical interface conditions would generally induce waves along the interface. For the present 2D in-plane problems, we assume 25 sets of interface conditions as Case 1 to Case 25 via Equation (4), but with the same homogeneous material in the infinite plane. Numerical calculations are carried out for various percentages of CoFe$_2$O$_4$–BaTiO$_3$ to show the effects of magnetoelectrical interface conditions on the Stoneley waves.

As shown in Table 4, for an infinite homogeneous magneto-electro-elastic medium containing an interface (xoz plane), both the material properties and magnetoelectrical contact conditions along the interface have important effects on the Stoneley waves. For example, for $v_f = 0.2$ and $v_f = 0.4$, there are two Stoneley wave velocities for each case. However, for material volume ratio $v_f = 0.6$, only one Stoneley wave velocity exists. Furthermore, if $v_f = 0.8$, there is no Stoneley wave for the magnetically impermeable

Table 2. Stoneley wave velocity c and corresponding normalized value c_0 in CoFe$_2$O$_4$–BaTiO$_3$ bimaterial; material properties of CoFe$_2$O$_4$ (in $y > 0$) and BaTiO$_3$ (in $y < 0$) are the same as those given in Table 1 when $v_f = 0.0$ and $v_f = 1.0$, respectively.

<table>
<thead>
<tr>
<th>Cases 1–25</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1 (ms$^{-1}$)</td>
<td>0.3081×10^3</td>
</tr>
<tr>
<td>(c_{01})</td>
<td>(0.1006)</td>
</tr>
<tr>
<td>c_2 (ms$^{-1}$)</td>
<td>2.7089×10^3</td>
</tr>
<tr>
<td>(c_{02})</td>
<td>(0.9320)</td>
</tr>
</tbody>
</table>

Table 3. Stoneley wave velocity c and corresponding normalized value c_0 for the purely elastic bimaterial reduced from CoFe$_2$O$_4$–BaTiO$_3$ by letting both piezomagnetic and piezoelectric constants equal to zero in these materials. Material properties of CoFe$_2$O$_4$ and BaTiO$_3$ are the same as those given in Table 1 when $v_f = 0.0$ and $v_f = 1.0$, respectively, and their piezomagnetic and piezoelectric constants are set to zero.

<table>
<thead>
<tr>
<th>Cases 1–25</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1 (ms$^{-1}$)</td>
<td>0.4822×10^3</td>
</tr>
<tr>
<td>(c_{01})</td>
<td>(0.1771)</td>
</tr>
</tbody>
</table>
interface conditions (i.e. $B_1^1 = B_2^2 = 0$). Table 4 also implies that magnetoelectrical interface conditions have no influence on the existing Stoneley wave velocities. In addition, it should also be noted that in this case, Case 4 and Case 5, Case 9 and 10, Case 14 and Case 15, Case 19 and case 20 are, respectively, equivalent; and Case 21 to Case 25 are equivalent to Case 16 to Case 20, respectively. Therefore, there are actually only 16 sets of independent magnetoelectrical interface conditions.

5. Conclusions

- For a mechanically bonded magneto-electro-elastic infinite bimaterial plane, the existing Stoneley wave is a non-dispersive guided wave under the 25 sets of magneto-electrical interface conditions.
- For the bimaterial plane made of CoFe$_2$O$_4$ in the half plane $y > 0$ and BaTiO$_3$ in the half plane $y < 0$, there are two Stoneley wave velocities. One is closely associated with the combined elastic properties, and the other with the piezomagnetic properties of CoFe$_2$O$_4$ and piezoelectric properties of BaTiO$_3$.
- For an infinite homogeneous magneto-electro-elastic medium under the 25 sets of interface conditions, both the material properties and the magnetoelectrical interface conditions can have a significant effect on the existence of the Stoneley waves.
- Although the magnetoelectrical interface conditions could affect the existence of the Stoneley wave, they have no influence on the existing Stoneley wave velocities.

Acknowledgements

This work was supported by Natural Science Fund of China (10772123). The authors thank the reviewer and editor for their constructive comment/suggestion.

References