Three-dimensional extended displacement discontinuity method for vertical cracks in transversely isotropic piezoelectric media

MingHao Zhaoa,b, RongLi Zhangb, CuiYing Fan, Ernian Pan

Abstract

The conventional displacement discontinuity method is extended to study a vertical crack under electrically impermeable condition, running parallel to the poling direction and normal to the plane of isotropy in three-dimensional transversely isotropic piezoelectric media. The extended Green's functions specifically for extended point displacement discontinuities are derived based on the Green's functions of extended point forces and the Somigliana identity. The hyper-singular displacement discontinuity boundary integral equations are also derived. The asymptotical behavior near the crack tips along the crack front is studied and the ordinary 1/2 singularity is obtained at the tips. The extended field intensity factors are expressed in terms of the extended displacement discontinuity on crack faces. Numerical results on the extended field intensity factors for a vertical square crack are presented using the proposed extended displacement discontinuity method.

1. Introduction

Owing to the coupling effects between mechanical and electric properties, piezoelectric materials are finding more and more applications in modern technological fields such as electronics, lasers, supersonics, sensors, actuators, transducers and micro-waves [1,2]. In practice, however, defects (such as inclusion, void/ crack, etc.) in such materials and related structures are unavoidable and these defects greatly affect the integrity and reliability of the structures. For this reason, analysis of cracks in piezoelectric materials has been always important [3–10].

For some piezoelectric materials, when temperature is higher than the Curie point, spontaneous polarization phenomenon occurs and the hysteresis loop of the polarization P versus the electric field strength E also occurs; meanwhile, the formative aligned electric dipoles remain in the material microstructure. Therefore, the linear constitutive relationship is concerned with the poling direction, and, thus, different poling directions affect the material properties and fracture behavior. A conductive crack (with the crack cavity filled with silver paint) with different poling direction under purely electric loading was studied in [11]. Results showed that the direction of the electric field and the poling direction both could affect the fracture and breakdown resistance of piezoelectric materials. For an arbitrarily oriented crack in a piezoelectric medium [12], the polarization direction plays an important role in the fracture behavior of piezoelectric materials. By carrying out a four-point bending test on a specimen with cracks parallel, perpendicular and inclined to the poling direction under both mechanical and electric field loadings, Banks-Sills et al. [13] and Motola et al. [14] showed that neglecting the piezoelectric effect in calculating stress intensity factors may lead to errors. For a crack normal to the poling direction of a two-dimensional (2D) ferroelectric ceramics [15], crack growth can be retarded under electric and mechanical loadings. There are numerous studies on cracks lying within the plane of isotropy in three-dimensional (3D) transversely isotropic piezoelectric media [16–26]. However, the corresponding problem where the cracks are normal to the isotropic plane has never been investigated. This motivates the work presented in this paper.

The displacement discontinuity boundary integral equation method or boundary element method proposed by Crouch [27] has been demonstrated to be a good framework in handling fractures in elastic and piezoelectric media [6,19,22,25–28]. In the boundary element method [28–34], an important role is played by the Green's function corresponding to a point force or displacement discontinuity. In the present paper, the method proposed by Zhao et al. [35] is extended to derive the extended displacement discontinuity fundamental solutions for the case where a crack is vertical to the isotropic plane and parallel to the electric poling directions in a 3D transversely isotropic piezoelectric medium. These fundamental solutions are then applied to
obtain the boundary integral equations, and calculate the extended field intensity factors of an arbitrarily vertical crack in terms of the extended displacement discontinuity on the crack face. The extended displacement discontinuity boundary element method is also presented, and the finite element method is further utilized to verify the accuracy of the developed method.

2. Basic equations

In the absence of the body force and electric charge, for a 3D piezoelectric medium with the poling direction along the z-axis in the Cartesian coordinates (x, y, z), the equilibrium equations, Eq. (1a), the kinematic equations, Eq. (1b), and the constitutive equations, Eq. (2), are given as

\[
\begin{align*}
\sigma_{ij} &= 0, \quad D_{ij} = 0, \quad (1a) \\
\varepsilon_{ij} &= \frac{1}{2}(u_{ij} + u_{ji}), \quad D_i = -\phi_j, \quad (1b) \\
\sigma_{ij} &= C_{ijkl}\varepsilon_{kl} - e_{ij}E_k, \quad D_i = e_{ijk}\varepsilon_{jk}, \quad (2a) \\
D_i &= \epsilon_{ijk}\varepsilon_{jk} - \kappa_{ij}E_k, \quad (2b)
\end{align*}
\]

where \(\sigma_{ij}\), \(\varepsilon_{ij}\), \(D_{ij}\), and \(E_i\) denote the stress, strain, electric displacement, and electric field strength, respectively; \(u_i\) and \(\phi\) are the elastic displacements and electric potential, respectively; and \(C_{ijkl}\), \(e_{ij}\), and \(\kappa_{ij}\) stand, respectively, for the elastic, piezoelectric, and dielectric coefficients.

3. Boundary integral expressions of extended displacements

For a transversely isotropic piezoelectric infinite medium, we again set up the Cartesian coordinate system \(\text{oxyz}\) such that the plane of isotropy coincides with the \(\text{oxy}\) plane, and the poling direction is along the \(z\)-direction. An arbitrarily-shaped vertical crack S lies in the \(\text{oxyz}\) plane, as shown in Fig. 1. The two faces of the crack S are denoted by \(S^+\) and \(S^-\), respectively. The outward normal vectors of \(S^+\) and \(S^-\) are respectively given by

\[
\{n_i\}_S = (-1,0,0), \quad \{n_i\}_S = (1,0,0).
\]

Then, making use of the extended point-force Green's functions [36] and the Somigliana identity for piezoelectric media [37], the elastic displacements and the electric potential at any internal point \((x, y, z)\) can be expressed by the following integrals:

\[
\begin{align*}
\mathbf{u}(x,y,z) &= -\int_S \left[P_{ij}^D |u_i| + \mathbf{D}_{ij}^p |\phi| \right] dS, \\
-\mathbf{\phi}(x,y,z) &= -\int_S |u_i| + \mathbf{D}_{ij}^p |\phi| dS,
\end{align*}
\]

where \(P_{ij}^D\) and \(D_{ij}^p\) are, respectively, the induced tractions and the electric displacement boundary value on the crack surfaces when a unit point force is applied in the \(ith\) direction; \(P_{ij}^D\) and \(D_{ij}^p\) are those corresponding to a unit point electric charge. In Eq. (4), \(|u_i|\) and \(|\phi|\) denote, respectively, the elastic displacement and electric potential discontinuities across the crack face, defined as

\[
|u_i| = u_i(S^+) - u_i(S^-), \quad |\phi| = \phi(S^+) - \phi(S^-),
\]

which are called the extended displacement discontinuities.

Inserting the extended point-force Green's functions [36] into Eq. (4) yields the following explicit expressions for the elastic displacement \((|u|, \mathbf{v}, \mathbf{w}) = (u_1, u_2, u_3) = (u_x, u_y, u_z)\) and electric potential

\[
\mathbf{u} = \int_S \left[-2C_{66}D_i\mathbf{X} \left(\frac{1}{R_{ij}^4} - 2(\eta-y)^2(\eta-y)^2 \right) \right] dS, \quad (6a)
\]

\[
\mathbf{v} = \int_S \left[(\eta-y) \left(\frac{3}{R_{ij}^2} + C_{66} \frac{4}{R_{ij}^2} \left(\frac{4(\eta-y)^2 + 2(\eta-y)^2}{R_{ij}^2} \right) \right) \right] dS, \quad (6b)
\]

\[
\mathbf{w} = \int_S \left[2C_{66} \frac{3}{R_{ij}^2} \frac{A_i}{R_{ij}^2} \left(\eta^2 - Z_j^2 \right) \right] dS, \quad (6c)
\]

\[
-\mathbf{\phi} = \int_S \left[2C_{66} \frac{3}{R_{ij}^2} \frac{B_i}{R_{ij}^2} \left(\eta^2 - Z_j^2 \right) \right] dS, \quad (6d)
\]

Eq. (6) indicates that the extended displacements at any internal point \((x, y, z)\) can be expressed in terms of the extended displacement discontinuities across the surface of the vertical crack face.
satisfying Eqs. (8a)–(8d) for the case where a crack is vertical to displacement discontinuity Green’s functions, we obtain the system, as shown in Fig. 2. First, when the size of the crack approaches zero, we then have the Green’s functions or the extended displacement discontinuity boundary integral equations for an arbitrarily-shaped vertical crack, where $z_i = z_{i0}$, $z_i = z_{i0}$ ($i = 1, 2, 3, 4$), $R_2 = \sqrt{x^2 + (y - y_2)^2 + (z - z_2)^2}$, $R_1 = \sqrt{x^2 + (y - y_1)^2 + (z - z_1)^2}$, and s_i are the roots of the material characteristic equation, while α_i, ξ_i, β_i, α_i, β_i, and D_i are material-related constants given in [32]. It is noted that the constants D_i are different to the electric displacements defined in Eqs. (1) and (2).

4. Green’s functions for extended displacement discontinuities

We assume that the vertical crack S is of a square shape with side length $2b = 2d$ centered at the origin of the coordinate system, as shown in Fig. 2. First, when the size of the crack approaches zero, we then have the Green’s functions or the fundamental solutions corresponding to a unit extended point displacement discontinuity. Therefore, these Green’s functions should satisfy the governing equations of piezoelectric media subjected to the following conditions:

\[
\lim_{b \to 0} \int_S \{ \|u\|, \|v\|, \|w\|, \|\phi\| \} dS = \{1, 0, 0, 0\}, \quad \text{(8a)}
\]

\[
\lim_{b \to 0} \int_S \{ \|u\|, \|v\|, \|w\|, \|\phi\| \} dS = \{0, 1, 0, 0\}, \quad \text{(8b)}
\]

\[
\lim_{b \to 0} \int_S \{ \|u\|, \|v\|, \|w\|, \|\phi\| \} dS = \{0, 0, 1, 0\}, \quad \text{(8c)}
\]

\[
\lim_{b \to 0} \int_S \{ \|u\|, \|v\|, \|w\|, \|\phi\| \} dS = \{0, 0, 0, 1\}. \quad \text{(8d)}
\]

Making use of the method in deriving the extended point-displacement continuity Green’s functions [35], we obtain the extended point-displacement discontinuity Green’s functions satisfying Eqs. (8a)-(8d) for the case where a crack is vertical to the isotropic plane and parallel to the electric poling directions in a 3D transversely isotropic piezoelectric medium in Appendix A.

Now we assume that there is a rectangular element S_r of length $2b \times 2d$ in the $oxyz$ plane centered at the origin with its sides parallel to the axes of the coordinate system, as schematically shown in Fig. 2. The uniformly distributed extended displacement discontinuities $|u|$, $|v|$, $|w|$, and $|\phi|$ are applied on the element. Integrating the extended point-displacement discontinuity Green’s functions given in Appendix A on the element, we can obtain the extended Crouch fundamental solution due to the uniformly distributed extended displacement discontinuities as given in Appendix B.

5. Extended displacement discontinuity boundary integral equations

Based on the Green’s functions for unit extended point displacement discontinuities obtained in the previous section, the boundary integral equations of the vertical crack of arbitrary shape will be derived in this section and furthermore the nature of the singularity of the extended stresses along the crack front will be studied in the next section.

If the applied extended tractions on the crack faces satisfy

\[
p_i|_{y = \pm d} = -p_i|_{y = 0}, \quad \omega_i|_{y = \pm d} = -\omega_i|_{y = 0}, \quad i = 1, 2, 3 \quad \text{or} \quad x, y, z, \quad \text{(9)}
\]

and in the absence of the body force and electric charge, by using the Somigliana identity for a 3D piezoelectric medium [37] and the boundary conditions in Eq. (9), we obtain

\[
p_i = \int_{S_r} \{ (P_i^{(o)}|u| + \Omega_i^{(o)}|\phi|) \} dS,
\]

\[
\omega = \int_{S_r} \{ (P_i^{(e)}|u| + \Omega_i^{(e)}|\phi|) \} dS, \quad \text{(10)}
\]

where (P_i, Ω_i) and (U_i, Φ_i) denotes, respectively, the extended traction and the extended displacement due to a unit extended point displacement discontinuity in the ith direction, and the superscripts $|U|$ and $|\Phi|$ denote the Green’s functions corresponding to the displacement discontinuity and electric potential discontinuity, respectively.

Substituting the displacement discontinuity Green’s functions obtained in the last section into Eq. (10), we obtain the extended displacement discontinuity boundary integral equations for an arbitrarily-shaped vertical crack

\[
\int_{S_r} \left\{ 4L_1 \left(\frac{2}{r_1^2} - \frac{1}{r_2^2} \right) - \frac{1}{r_1^2} \right\} dS = -p_i(y, z), \quad \text{(11a)}
\]

\[
\int_{S_r} \left\{ \left(\frac{4}{r_1^2} - \frac{2}{r_2^2} \right) - \frac{1}{r_1^2} \right\} dS = -p_i(y, z), \quad \text{(11b)}
\]

\[
\int_{S_r} \left\{ \left(\frac{2}{r_1^2} - \frac{1}{r_2^2} \right) - \frac{1}{r_1^2} \right\} dS = -p_i(y, z), \quad \text{(11c)}
\]

\[
\int_{S_r} \left\{ \left(\frac{2}{r_1^2} - \frac{1}{r_2^2} \right) - \frac{1}{r_1^2} \right\} dS = -p_i(y, z), \quad \text{(11d)}
\]
where $r_i = \sqrt{(\eta - y)^2 + (z_i - z)^2}$.

(12)

and the material-related constants L_{ij} are given by

$\begin{align*}
L_{11}^4 &= D_{c66}c_{66}, \\
L_{12}^4 &= D_{c66}c_{11}, \\
L_{13}^4 &= D_{c66}c_{12}, \\
L_{14}^4 &= D_{c51}c_{51}, \\
L_{15}^4 &= D_{c51}c_{52}, \\
L_{16}^4 &= (A_{c13} - B_{c13})c_{66}c_{51}, \\
L_{17}^4 &= (A_{c13} - B_{c13})c_{66}c_{52}, \\
L_{18}^4 &= D_{c66}c_{66}c_{54}, \\
L_{19}^4 &= D_{c66}c_{66}c_{44}, \\
L_{21}^4 &= D_{c66}c_{66}c_{14}, \\
L_{22}^4 &= D_{c66}c_{66}c_{12}, \\
L_{23}^4 &= D_{c66}c_{66}c_{42}, \\
L_{24}^4 &= D_{c66}c_{66}c_{44}, \\
L_{25}^4 &= D_{c66}c_{66}c_{52}, \\
L_{26}^4 &= D_{c66}c_{66}c_{54}, \\
L_{27}^4 &= D_{c66}c_{66}c_{66}, \\
L_{28}^4 &= D_{c66}c_{66}c_{66}.
\end{align*}$

(13)

Of particular interest is the fact that the displacement discontinuity in the normal direction $|u|$ appears only in Eq. (11a). In other words, it is decoupled from the other extended displacement discontinuities and dependent only on the normal traction p_0. On the other hand, the other three extended displacement discontinuities $|v|$, $|w|$ and $|\varphi|$ are clearly coupled in Eqs. (11b)–(11d). This feature is fundamentally different to that associated with a horizontal crack (or a crack in the isotropic plane [6,22]) where the displacement discontinuities $|u|$ and $|v|$ on the crack faces are coupled, and the displacement discontinuity $|w|$ and the electric potential discontinuity $|\varphi|$ are coupled. As such, it is important to investigate the fracture mechanics of the vertical crack in a transversely isotropic piezoelectric solid.

6. Singular behavior and field intensity factors

Knowing the singular behavior of fields near the crack tip and calculating the field intensity factors are the key tasks in fracture mechanics. Due to the complexity of the three-dimensional problem, only the singular behaviors near some special points are investigated in the present paper.

Consider the special point on the smooth portion of the crack front Γ where z reaches the minimum value, we place a Cartesian coordinate system $oxyz$ such that the y-axis and z-axis are, respectively, tangential and normal to Γ, while the x-axis is normal to the crack plane S, as depicted in Fig. 3a.

We define the infinitesimal ε as the radius of a circle Σ centered at point o on crack S as shown in Fig. 3a. Based on the elastic fracture theory [38], the extended displacement near the crack tip o can be obtained by superposing the extended in-plane and anti-plane displacements. Therefore, at the neighborhood of point o, the extended displacement discontinuities can be expressed asymptotically as

$$|u| = A_0(o)\varepsilon^{2s}, \quad |v| = A_2(o)\varepsilon^{2s}, \quad |w| = A_3(o)\varepsilon^{2s}, \quad |\varphi| = A_0(o)\varepsilon^{2s},$$

(14)

where $A_0, A_1, A_2, A_3, A_0, A_1, A_2, A_3, A_0, A_1, A_2, A_3$ are coefficients to be evaluated at the origin o, and $z_0, z_1, z_2, z_3, z_0, z_1, z_2, z_3, z_0, z_1, z_2, z_3$ are the so-called coefficients of the extended displacements with values lying between (0,1).

Substituting Eq. (14) into Eq. (11), letting ε be sufficiently small and taking the limit $z \to 0$, and further making use of the finite-part integral theory, we obtain the conditions for the existence of a non-trivial solution

$$\cot \pi z_0 = \cot \pi z_2 = \cot \pi z_2 = \cot \pi z_0 = 0.$$

(15)

Therefore, we obtain the singular indices

$$z_0 = z_2 = z_3 = z_4 = 1/2.$$

(16)

Eq. (16) indicates that near the crack front, the field behaves the same way as in the classical fracture mechanics with singularity $O(1/\varepsilon^1)$, which is further identical to the singularity when the crack is along the isotropy plane [6,22].

Substituting Eq. (16) into Eq. (14), and using Eq. (10), we obtain the following extended stress components at point $(0,0,-\rho)$:

$$\sigma_{x0} = k_{11}A_0(0)\frac{\pi}{\sqrt{\rho}},$$

$$\sigma_{y0} = -k_{12}A_0(0)\frac{\pi}{\sqrt{\rho}},$$

$$\sigma_{z0} = -\sum_{i=1}^{3} L_{i1}^4 A_0(0) + L^{17}_{i1} A_0(0) \frac{1}{\sqrt{\rho}},$$

$$D_4 = -\sum_{i=1}^{3} L_{i2}^4 A_0(0) + L^{17}_{i2} A_0(0) \frac{1}{\sqrt{\rho}},$$

(17)

where

$$k_{11} = \sum_{i=1}^{3} \frac{1}{s_i^4} (2L_{i1}^4 - L_{i1}^4 - 2L_{i1}^4 + L_{i1}^4),$$

$$k_{12} = \frac{t_4^4}{s_4^4}.$$

(18)

Substituting Eqs. (17) and (14) into the definition of the field intensity factors

$$K_{I} = \lim_{\rho \to 0} \sqrt{2\pi \rho} \sigma_{x0}(0,0,-\rho),$$

$$K_{II} = \lim_{\rho \to 0} \sqrt{2\pi \rho} D_4(0,0,-\rho),$$

$$K_{III} = \lim_{\rho \to 0} \sqrt{2\pi \rho} \sigma_{z0}(0,0,-\rho),$$

(19)

the extended field intensity factor at a crack tip along the horizontal front of the vertical crack can be finally expressed in terms of the extended displacement discontinuities as

$$K_{I} = \sqrt{2\pi \lim_{\rho \to 0}} \frac{1}{\varepsilon_i} |u|/\|z_0|,$$

$$K_{II} = -\sqrt{2\pi \lim_{\rho \to 0}} \sum_{i=1}^{3} L_{i2}^4 |w| + L_{i2}^4 |\varphi|) \frac{1}{s_i^4} /\|z_0|.$$
\[K_{II} = -\sqrt{2\pi \lim_{\Delta y \to 0} \sum_{i=1}^{n} L_i \left[S_i \right]} / \sqrt{z}, \]
\[K_{III} = -\sqrt{2\pi \lim_{\Delta y \to 0} \sum_{i=1}^{n} L_i \left[S_i \right]} / \sqrt{z}. \]

Similarly, for a crack tip along the left front of the vertical crack as schematically shown in Fig. 3b, the extended field intensity factors in terms of the extended displacement discontinuities can be found as
\[K_{I} = 2\pi \lim_{\Delta y \to 0} \sum_{i=1}^{n} L_i \left[S_i \right] / \sqrt{\Delta y}, \]
\[K_{II} = -2\pi \lim_{\Delta y \to 0} \sum_{i=1}^{n} L_i \left[S_i \right] / \sqrt{\Delta y}, \]
\[K_{III} = -2\pi \lim_{\Delta y \to 0} \sum_{i=1}^{n} L_i \left[S_i \right] / \sqrt{\Delta y}. \]

The domain of the crack is divided into \(N \) square elements. The geometric centroid of the \(n \)th element is denoted by \((y_n, z_n)\). From the extended Crouch fundamental solution, the extended stresses at the centroid of element \(q \) can be obtained by superposing the contribution of all elements. Using the boundary conditions on the crack faces, one obtain

\[\sum_{q=1}^{N} \sum_{i=1}^{4} T_q \left(y_q - y_n, z_q - z_n \right) u_i \left| q \right| = \sigma_i \left(q \right), \quad q = 1, 2, \ldots, N, \]

where \(\sigma_i \) are the applied extended loadings on the crack face.

Solving Eq. (24), we obtain the extended displacement discontinuities on the crack faces. With these, the extended field intensity factors can be calculated by using Eqs. (20) and (21).

8. Numerical results and discussion

We consider a square crack of side length 2a in an infinite piezoelectric medium in the oyz plane. The material is BaTiO3 with the following coefficients:

\[c_{11} = 16.6 \times 10^{10} \text{N m}^{-2}, \quad c_{12} = 7.7 \times 10^{10} \text{N m}^{-2}, \quad c_{13} = 7.8 \times 10^{10} \text{N m}^{-2}, \]
\[c_{33} = 16.2 \times 10^{10} \text{N m}^{-2}, \quad c_{44} = 4.3 \times 10^{10} \text{N m}^{-2}, \]
\[e_{33} = -4.4 \text{C m}^{-2}, \quad e_{13} = 18.6 \text{C m}^{-2}, \quad e_{15} = 11.6 \text{C m}^{-2}, \]
\[k_{11} = 112 \times 10^{-12} \text{C (V m)}^{-1}, \quad k_{33} = 126 \times 10^{-12} \text{C (V m)}^{-1}. \]

Fig. 4 shows the variation of the elastic displacement discontinuity \(\left[u_i \right] \) at the center crack as a function of the uniform loading \(P_x \) applied to the crack surface, whilst Fig. 5 displays the variation of the extended displacement discontinuities \(\left[v^e \right], \left[w^e \right] \) and \(\left[\phi^e \right] \) at the crack center vs. the uniform surface loading \(D_s \). The results show that there is only elastic displacement discontinuity \(\left[u_i \right] \) under pure mechanical loading, whilst the extended displacement discontinuities \(\left[v^e \right], \left[w^e \right] \) and \(\left[\phi^e \right] \) exist at the crack center under the uniform electric loading \(D_s \). These results also demonstrate the special coupling behavior of the extended displacement discontinuities in the boundary integral equations (11). In both cases, other loads on the crack surface are assumed to be zero. These results are calculated by the extended displacement discontinuity method using \(N = 15 \times 15 \) elements. It is observed from these two figures that with only 225 constant elements, very accurate results can be obtained as compared to the results using the finite element software ANSYS (Figs. 4 and 5).
along the crack front parallel to the \(z \)-axis. It is observed that, under this mechanical loading, the only nonzero intensity factor along the crack fronts is \(F_I \), which is symmetrical with respect to the midpoint of each side and reaches its maximum value at the midpoint. Since the poling direction is along the \(z \)-axis and vertical to \(y \)-axis, the stress intensity factor along the crack front parallel to the \(y \)-axis is larger than that along the crack front parallel to the \(z \)-axis.

Fig. 6 shows the normalized mode I stress intensity factor \(F_I \) along the crack front due to the uniform force \(P_x \) applied on the crack surface

\[
F_I = \frac{K_I}{P_x \sqrt{\pi a}}. \tag{26}
\]

along the crack front, where the subscripts “\(z \)” and “\(y \)” denote, respectively, the crack front parallel to the \(z \)- and \(y \)-axis. It is observed that, under this mechanical loading, the only nonzero intensity factor along the crack fronts is \(F_I \), which is symmetrical with respect to the midpoint of each side and reaches its maximum value at the midpoint. Since the poling direction is along the \(z \)-axis and vertical to \(y \)-axis, the stress intensity factor along the crack front parallel to the \(y \)-axis is larger than that along the crack front parallel to the \(z \)-axis.

Fig. 6 shows the normalized mode I stress intensity factor \(F_I \) along the crack front due to the uniform force \(P_x \) applied on the crack surface

\[
F_I = \frac{K_I}{P_x \sqrt{\pi a}}. \tag{26}
\]

along the crack front, where the subscripts “\(z \)” and “\(y \)” denote, respectively, the crack front parallel to the \(z \)- and \(y \)-axis. It is observed that, under this mechanical loading, the only nonzero intensity factor along the crack fronts is \(F_I \), which is symmetrical with respect to the midpoint of each side and reaches its maximum value at the midpoint. Since the poling direction is along the \(z \)-axis and vertical to \(y \)-axis, the stress intensity factor along the crack front parallel to the \(y \)-axis is larger than that along the crack front parallel to the \(z \)-axis.

Fig. 6 shows the normalized mode I stress intensity factor \(F_I \) along the crack front due to the uniform force \(P_x \) applied on the crack surface

\[
F_I = \frac{K_I}{P_x \sqrt{\pi a}}. \tag{26}
\]

along the crack front, where the subscripts “\(z \)” and “\(y \)” denote, respectively, the crack front parallel to the \(z \)- and \(y \)-axis. It is observed that, under this mechanical loading, the only nonzero intensity factor along the crack fronts is \(F_I \), which is symmetrical with respect to the midpoint of each side and reaches its maximum value at the midpoint. Since the poling direction is along the \(z \)-axis and vertical to \(y \)-axis, the stress intensity factor along the crack front parallel to the \(y \)-axis is larger than that along the crack front parallel to the \(z \)-axis.
On the other hand, along the crack front parallel to the \(z \)-axis, these extended field intensity factors possess no symmetric feature (Fig. 8b) due to the poling direction selected.

Fig. 9a and b plot the nonzero extended normalized field intensity factors \(F_D, F_{II}, \) and \(F_{III} \) along the crack fronts under the electric loading \(D_x = 0.1 \, \text{C/m}^2 \) with the mechanical loads being zero. These intensity factors are normalized by

\[
F_D = \frac{K_D}{D_x \sqrt{\pi a}}, \quad F_{II} = \frac{\sqrt{2}K_{II}}{D_x \sqrt{\pi a}}, \quad F_{III} = \frac{\sqrt{2}K_{III}}{D_x \sqrt{\pi a}}.
\]

(29)

It is observed that while along the crack front parallel to the \(y \)-axis, these intensity factors exhibit either symmetric or anti-symmetric behaviors (Fig. 9a), those along the crack front parallel to the \(z \)-axis are not symmetric due to the poling direction chosen (Fig. 9b).

9. Concluding remarks

The conventional displacement discontinuity method has been extended to analyze vertical cracks in transversely isotropic piezoelectric 3D media. The Green’s functions or extended Crouch fundamental solutions corresponding to the extended elastic displacement discontinuities have been derived by making use of the fundamental solutions of an extended point force and the Somigliana identity. The hyper-singular displacement discontinuity boundary integral equations and the extended field intensity factors in terms of the extended displacement discontinuities on the crack faces have been derived. For the special crack orientation studied in this paper, the following conclusions can be drawn:

1. Special coupling behavior has been found in the boundary integral equations: the normal displacement discontinuity \(u \) is decoupled from the other extended displacement discontinuities, which is fundamentally different from that for the crack in the isotropic plane.
2. The singularity index near the vertical crack tip is still \(1/2 \). However, the expressions of the extended stress intensity factors show the anisotropic property.
3. The mode I stress intensity factor \(K_I \) is related only to the displacement discontinuity or the mechanical loading in the direction normal to the crack plane, whilst the other field.

![Fig. 8](image1.png)

![Fig. 9](image2.png)
intensity factors are coupled together, with their features depending on the crack tip location and the poling direction.

The displacement discontinuity method has been coded to calculate the extended displacement discontinuities on the crack surface and the field intensity factors along the crack fronts. The program has been validated by the commercial code ANSYS. Numerical results have demonstrated further that the poling direction (with respect to the crack surface) can significantly influence the fracture mechanics behavior of the cracks in piezoelectric 3D media.

Acknowledgment

The work was supported by the National Natural Science Foundation of China (Nos. 11102186, 11072221 and 10872184), the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (2010IRTSTHN013) and the Bairen Program in Henan Province.

Appendix A. Green’s functions for extended unit point displacement discontinuities

A.1. Green’s function satisfying Eq. (8a)

\[
\begin{align*}
\varphi &= -2c_{66} \sum_{i=1}^{3} A_i \left(\frac{1}{R_i} - \frac{x^2}{R_i^3} - \frac{y^2}{R_i^3} - \frac{z^2}{R_i^3} \right) + 3 \sum_{i=1}^{3} \lambda_i A_i \frac{z_i}{R_i^2}.
\end{align*}
\]

A.3. Green’s function satisfying Eq. (8c)

\[
\begin{align*}
\mathbf{u} &= -\omega_4 D_4 \left(\frac{1}{R_4 R_4} - \frac{y^2}{R_4^3} - \frac{y^2}{R_4^3} \right) + \sum_{i=1}^{3} \omega_{h_i} D_i \left(\frac{1}{R_i} \frac{x^2}{R_i^3} \frac{x^2}{R_i^3} \right),
\end{align*}
\]

\[
\begin{align*}
\mathbf{v} &= -\sum_{i=1}^{4} \omega_{h_i} D_i \left(\frac{1}{R_i} + \frac{1}{R_i^3} \right),
\end{align*}
\]

\[
\begin{align*}
\mathbf{w} &= -x \sum_{i=1}^{3} \omega_{h_i} A_i \frac{z_i}{R_i^2},
\end{align*}
\]

\[
\begin{align*}
\mathbf{\phi} &= x \sum_{i=1}^{3} \omega_{h_i} B_i \frac{R_i}{R_i^3}.
\end{align*}
\]

A.4. Green’s function satisfying Eq. (8d)

The Green’s functions satisfying Eq. (8d) can be obtained from Eq. (A4) by simply replacing \(\omega_{h_1} \) by \(\omega_{h_2} \).

Substituting the obtained extended displacements into the constitutive equations (2), the extended stress can be obtained.

Appendix B. Extended Crouch fundamental solutions

When the uniformly distributed extended displacement discontinuities \(|\mathbf{u}^e|, |\mathbf{v}^e|, |\mathbf{w}^e|\) and \(|\mathbf{\phi}^e| \) are applied on a rectangular element \(S_e \) of length \(2b \times 2d \) in the \(oyz \) plane, as schematically shown in Fig. 2, the extended Crouch fundamental solution can be expressed as

\[
\begin{align*}
\sigma_{x_{11}} &= 4 t_1^{a_{Q_1}} + \sum_{i=1}^{3} \left(6 L_{i1} Q_i^1 + 2 L_{i1} Q_i^2 - 2 L_{i1} Q_i^3 \right) \frac{|\mathbf{u}^e|}{C_0}, \quad \text{B1a}
\end{align*}
\]

\[
\begin{align*}
\sigma_{x_{33}} &= t_1^{a_{Q_1}} (-4 Q_1^4 + 4 Q_1^4 - 2 Q_1^4) - 4 \sum_{i=1}^{3} L_{i1} Q_i^1 \frac{|\mathbf{v}^e|}{C_0}
\end{align*}
\]

\[
\begin{align*}
\sigma_{x_{22}} &= t_1^{a_{Q_2}} (Q_2^4 - 3 Q_2^4) - 3 \sum_{i=1}^{3} L_{i2} Q_i^1 \frac{|\mathbf{w}^e|}{C_0} + \frac{|\mathbf{\phi}^e|}{C_2}.
\end{align*}
\]

\[
\begin{align*}
D_1^e &= t_1^{a_{Q_1}} (Q_1^4 - 3 Q_1^4) - 3 \sum_{i=1}^{3} L_{i2} Q_i^1 \frac{|\mathbf{\phi}^e|}{C_2}.
\end{align*}
\]

where the functions are given by

\[
\begin{align*}
Q_1^{a} &= F_{11} + F_{12} + M_{i1} G_{i1} + M_{i2} G_{i2} - M_{i3} G_{i3} - M_{i4} G_{i4},
\end{align*}
\]

\[
\begin{align*}
Q_2^{a} &= - (M_{i1})^2 G_{i1} - (M_{i2})^2 G_{i2} - (M_{i3})^2 G_{i3} - (M_{i4})^2 G_{i4} - F_{21} - F_{22} + F_{23} + F_{24}.
\end{align*}
\]
\[
Q_3 = M_{11} \left(-G_{31} + \frac{4}{3} G_{11} \right) - M_{12} \left(\frac{2}{3} G_{12} - G_{32} \right) - M_{13} \left(G_{33} + \frac{4}{3} G_{13} \right) + M_{14} \left(-G_{34} + \frac{4}{3} G_{14} \right) + \frac{4}{3} F_{11} + \frac{4}{3} G_{11}.
\]

\[
Q_4 = 3 \left(-M_{11} G_{11} - M_{12} G_{12} - M_{13} G_{13} - M_{14} G_{14} \right).
\]

\[
Q_5 = M_{21} M_{31} G_{11} + M_{22} M_{32} G_{12} + M_{23} M_{33} G_{13} + M_{24} M_{34} G_{14}.
\]

\[
Q_6 = -F_{31} M_{11} + F_{32} M_{12} + F_{33} M_{13} + F_{34} M_{14}.
\]

\[
Q_7 = F_{41} M_{11} + F_{42} M_{12} + F_{43} M_{13} + F_{44} M_{14}.
\]

\[
Q_8 = \frac{1}{2} \left(-G_{31} + G_{42} - G_{41} - G_{44} \right) = M_{11} - M_{12} - M_{13} - M_{14}.
\]

where \(F_{11}, \ldots, F_{44} \) and \(G_{11}, \ldots, G_{44} \) are the fundamental functions listed below:

\[
F_{11} = \frac{4 b_s z}{(d-y)^2}, \quad F_{12} = \frac{4 b_s z}{(d-y)^2}, \quad G_{11} = \frac{-b+z}{(d-y)^2}, \quad G_{12} = \frac{(b+z)}{(d-y)^2}.
\]

\[
F_{13} = \frac{\sqrt{2} b_s (z^2 - (d-y)^2)}{3(d-y)^2}, \quad G_{13} = \frac{\sqrt{2} b_s (z^2 - (d-y)^2)}{3(d-y)^2}, \quad F_{14} = \frac{\sqrt{2} b_s (z^2 - (d+y)^2)}{3(d+y)^2}.
\]

\[
F_{21} = \frac{s(b-z)^2}{3(d-y)^2}, \quad F_{22} = \frac{s(b+z)^2}{3(d+y)^2}, \quad F_{23} = s(b+z)^2, \quad F_{24} = s(b-z)^2.
\]

\[
F_{31} = \frac{1}{\sqrt{2} b_s (z^2 - (d-y)^2)}, \quad F_{32} = \frac{1}{\sqrt{2} b_s (z^2 - (d+y)^2)}, \quad F_{33} = \frac{1}{\sqrt{2} b_s (z^2 + (d-y)^2)}, \quad F_{34} = \frac{1}{\sqrt{2} b_s (z^2 + (d+y)^2)}.
\]

\[
F_{41} = \frac{8 b_s d}{(d-y)^2}, \quad M_{41} = \frac{1}{s(d-y)^2}, \quad M_{42} = \frac{1}{s(d+y)^2}.
\]

\[
F_{42} = \frac{1}{s(d+y)^2}, \quad F_{43} = \frac{1}{s(d+y)^2}, \quad F_{44} = \frac{1}{s(d+y)^2}.
\]

\[
G_{41} = \frac{4 b_s (z - d-y)}{(d-y)^2}, \quad G_{42} = \frac{4 b_s (z - d+y)}{(d-y)^2}, \quad G_{43} = \frac{4 b_s (z - d+y)}{(d+y)^2}, \quad G_{44} = \frac{4 b_s (z - d-y)}{(d+y)^2}.
\]

\[
F_{61} = 3(d-y)^2 + 4s^2(b-z)^2, \quad F_{62} = \frac{3(d-y)^2 + 4s^2(b+z)^2}{s(d-y)^2}.
\]

References

