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Summary 

An exact closed form solution for the displacements and stresses in  a transversely 
isotropic infinite space due to concentrated point forces is presented, which contains the 
solution for the corresponding granular material as its special case and the well-known 
three-dimensional Kelvin solution as its limiting case. 

1. Introduction 

I t  is well-known that  the singular solution for a point source within an in- 
finite medium is the foundation of the integral equation and boundary element 
methods [1]. The frequently used solutions in elastostatics are the famous Kelvin 
solutions for point forces in two- and three-dimensional spaces [2]. Extended 
results of these solutions were obtained by several authors. For example, Benitez 
and Rosakis [3] presented an analytical solution of the displacements and stresses 
in an jnfinlte three-dimensional isotropic layer subjected to concentrated force 
acting upon an arbitrary internal point, Dumir and Mehta [4] extended the 
two-dimensional Kelvin solution to the corresponding orthotropic half-plane 
case, and Chowdhury [5] constructed the solution to an axisymmetric boundary 
value problem of a semi-space of" transversely isotropic (granular) material 
due to a vertical point force. The purpose of this paper is to give an exact closed 
form solution of the three-dimensional problem of an infinite transversely iso- 
tropic elastic medium due to concentrated point forces, which can be reduced 
to the solution for the corresponding granular material [5], as well as to the 
three-dimensional Kelvin solution and its associated stresses [6]. 
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2. General Solutions 

With no loss in generality, we assume that  the concentrated point forces 

/~(r, O, z) : n~(r) ~(0) ~(z)/r, i : r, O, z (2.1) 

are applied to the origin of an infinite elastic space which is homogeneous and 
transversely isotropic. Where (nr, no, nz) are the direction cosines of the unit 
force vector in cylindrical coordinates (r, 0, z), and the material axis of symmetry 
of this medium is chosen as the z-axis. The solution is to provide expressions 
for the displacements and stresses throughout the infinite space. 

This problem can be solved in terms of the cylindrical system of vector func- 
tions L, M, N [7]. We first expand formally the unknown displacement and 
traction vectors, and also the prescribed point forces (2.1), respectively, as 

q-oo 

u(r, O, z) = ~ f [UL(z) L(r, O) -f- UM(z) M(r, O) q- Ux(z) N(r, 0)] 2 d`1 (2.2) 
m 0 

T(r, O, z) = arzir q- (~ozio q- (~z~i~ 

+ o o  

---- ~Y~ f [Tz(z) L(r, O) q- TM(z) M(r, O) q- Tzc(z) N(r, 0)1 2 d2 
ra 0 

(2.3) 

F(r, O, z) : ~ f [F~(z) L(r, O) Jr FM(Z) M(r, O) -ff Fx(z) N(r, 0)] 2 d`1 (2.4) 
m 0 

In Eqs. (2.2)--(2.4), the dependence of the vector functions L, M,  N, and of 
the expansion coefficients UL, UM, UN, Tz, TM, Tx,  F~, FM, F~v, on the para- 
meters ,t, m has been omitted for simplicity. 

In order to obtain the expressions for displacement and stress components, 
we are therefore required to determine their expansion coefficients. Proceeding 
as in [7], we find that  when body forces are present, these coefficients satisfy 
the following two sets of simultaneous linear differential equations 

dU~ldz = `12UMA131A,, § T~/A~3 

dUM/dZ = - ~  + T~/A, ,  

dTz/dz = `12TM - F~ 
(2.5) 

dU~/dz = Tiv/A~4 

dT~/dz ---- ̀ 12U~Ae~ -- F~ 
(2.6) 
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where A ~  = ( A ~  - -  A ~ ) / 2 ,  and Am A~2, A~3, A33, A~4 are the five elastic con- 
stants of the medium [7]; Fz ,  FM, F ~  are the expansion coefficients of the body 
force vector, which are found, for the concentrated point forces (2.1), as 

Fz(z)  =- 6(z) n~/(2~r) 11~, 

F u ( z )  = - ~ ( z )  (Fn .  +/ .~) / [2~(2n)~/~] ,  

Fzc(z) = --O(z) (in,: 4- ~) /[22(2z) ' /e] ,  

. ~  = 0 (2.7) 

m = 4-1 (2.8) 

m = -t-1 (2.9) 

where (n~, n v, n~) are the (x, y, z) components of the unit force vector in the 
space-fixed Cartesian coordinates, with x- and y-directions being taken along 
0 = 0 and 0 = ~r/2 of the cylindrical coordinates respectively. 

We introduce an imaginary plane z =  0, which passes through the point 
of the applied forces and divides the infinite space into two half-spaces (z > 0 
and z < 0). I t  is obvious that  Eqs. (2.5), (2.6) become homogeneous in these 
two domains. Further,  the general solutions in the z > 0 half-space are derived 
a~ 

[E(z)] = Ce-a~'Z[G(o~)] -4- De-a~Z[G(fl)] (2.10) " 

U~v(Z) = B L e  -~sz, T~v(Z)/~ = - -BLUe -~Sz (2.11) 

and in the z < 0 half-space as 

[E(z)] = Ae~'"Z[G(--or ~ Be~'~Z[G(--fl)], (2.12) 

U~v(Z) ---- A L e  ~sz, T~v(Z)/~ ---- ALOe ~sz. (2.13) 

In Eqs. (2.10)--(2.13), the column matrices are defined by  

[E(z)] = [~)z(z), 2UM(Z), Tz(z)/2,  TM(Z)] T, 

[a(x)] = [c(x), --d(x), --1Ix, 1] r 

with [- _]T denoting the transpose of the matrix [- -]; a s and fl~ are two distinct 
roots of the equation 

( A , , x  2 - -  A l l )  (A33 x2 - -  Aa4) ~- (AI~ ~- A4,) 2 x 2 = 0 ,  (2.14) 

and 
s : (A~3/A4,) 112, ~ : sA4~. (2.15) 

As ~2 and f12 may be either real or complex conjugates depending upon the elastic 
constants, we have specified that  ~ and fl always have positive reM parts; Func- 
tions c(x) and d(x) are defined by 

c(x) ~-- (A~I § x ~ A ~ ) / [ x 2 ( A ~ A ~  - -  A~3)], 
(2.16) 

d(x) = (AI~ q- x~A83)/[x(AnA33 __ A13)].2 
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Finally, A, B, C, D, AL ,  B L  are the constants which can be determined by  the 
discontinuities or jumps of stresses c~used by  the concentrated forces a t  z ~ 0. 

I t  is shown tha t  these discontinuities can be equivalently represented by  the 
jumps in the expansion coefficients of traction vector, which can be expressed 

i n t h e  forms [8] 

T d + 0 )  - vz ( -O)  = -n~/(2~) '/2, m = 0  

T~t(-~O) - -  Tz~(--O) = (~=[=nx + iny)/[2~(2~)112], m : =kl (2.17) 

TN(~-O) --  T~(--O) = (inx ~: n~)/[22(2u)l/2], m : =[=1 

the expansion coefficients of displacements are continuous across z = 0. 
Once the constants in Eqs. (2.10)--(2.13) ~re determined, we can obtain the 

expressions for the displacement and traction vectors at any point of the infinite 
space by  Eqs. (2.2), (2.3), and those for the remaining stresses by  the generalized 
Hooke's  law and the strain-displacement relations [7]. 

3. Concentrated Forces  

3.1 Concentra~d Force in z-Direction 

Let  z --> §  in Eqs. (2.10), (2.11), z --> - -0  in Eqs. (2.12), (2.13), and using 
the continuity condition a t  z = 0, we can determine the constants, and derive the 
following solutions for the z > 0 and z < 0 half-spaces 

[E(z)] = Ag-~e=F~"Z[G(• A- B2-1e~:~[G(• z >~ O, (3.1) 

Ux(z) = T~(z)/Z = O, X 0 (3.2) 

where the upper (lower) sign is corresponding to the z > 0 (z < 0) domain, and 

.4 -~ ac(~)/[2(c(~) --  c(fl)) (2~)1/2], B ~- --fic(fl)/[2(c(~) - -  c(fl)) (2~)1/2]. (3.3) 

The fundamental  solutions for the infinite transversely isotropic medium due to 
the concentrated force in z-direction at  the origin can therefore be obtained from 

[7] 

~.(r, o, z) = Z f W~(.) as~or + u~(z) as/(r ao)] ~ ~ ,  
m 0 

+ c o  

~0(~, 0, z) = Z" f [u~(~) os/(~ oo) - u~(~) os/o~] ~ d~, (3.4) 
m 0 

+ c o  

~.(~, o, z) = Z f u~(z) s~ gz. 
m 0 
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We see that  in the case of a concentrated force in z-direction, only the terms for 
m : 0 are present on the right-hand side of Eq. (3.4). Substituting Eqs. (3.1), 
(3.2) into Eq. (3.4) and making use of the integral formula [9] 

+oo  

f Jm(~r) e -xa d]~ : [(r ~ -F aa) 112 - -  a]m/[rm( r2 -F a2) 11~] (3.5) 
l)  

we derive the fundamental solutions as follows 

uo~(r, 0, z) = O, (3.6) 

~/(r, o, ~) = [g (~ ,  ,, ~) ~(~) - q(n ,  ,, ,) ~ ( n ) ] / [ 4 . ( ~ ( ~ )  - ~(n))], 

where the superscript z is attached to denote the z-direction of the concentrated 

force, and g(~, r, z) is defined by  

g(x, r, z) = xf[r~ + (xz)2] ~/~. (3.7) 

Similarly, the components of the traction vector due to the concentrated force 

in z-direction are found as 

~=(., ~, ~) = -~[o(~) y(~,., ~i - ~ (~)  y ( ~ , . ,  ~ ) ] f [ 4 ~ ( ~ ( ~ )  - ~(~))], 

~z(r, 0, z) = 0 '  (3.8) 

~( . ,  0, ~) = -z[~(~, ,, ~)o(~) - y ( ~ ,  ~, ~)~(~)]/[4~(~(~) - ~(~))], 

where y(x,  r, z) is defined by 

y(x,  r, z) -= x/[r 2 H- (xz)2] a/2 �9 (3.9) 

I t  is noted tha t  Eqs. (3.6), (3.8) can be reduced directly to the solutions for 
concentrated force in z-direction in an infinite granular material [5]. 

The remaining stress components are derived as follows 

~.(., 0,  ~) = { ~ ( ~ )  ~ ( ~ ) / [ 4 ~ ( ~ ( ~ )  - ~(~))]} 

• { A . ( u ( ~ ,  , .  ~) - -  u (~ ,  , .  ~)) + 2 A . ( ~ ( ~ .  , .  ~) - -  ~ (~ ,  ,-, ~ ) ) / ,~  

- -  A ~ . [ ~ e ( ~ )  y(~,  r, z)/c(t3) - -  fl~c(fl) y(fl, r, z)/c(~,)]}, 

~o(r,  0, z) = 0, (3.10) 

~ o , ( . .  0, ~) = { ~ ( ~ )  ~(~)/[4=(~(~) - ~(~))]} 

x { . 4 , ( y ( ~ , ,  ,., ~) - y (~ ,  ,., ~)) - 2 A 4 ~ ( ~ , ,  , ,  ~) - -  ~ (~ ,  ,., ~ ) ) / ,~  

- -  A , ~ [ ~ c ( a )  y(~,  r, z)/c(fl) - -  fl~c(fl) y(fl, r, z ) / c (~) ] } .  
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3.2 Concentrated Force in  x-Direct ion 

In this case,, the expansion coefficients of displacement and traction vectors 
are given by 

[E(z)] = =LA(m) ~-le~=~Z[G(• • B ( m )  2-1eT~Z[G(~=fl)] z ~ 0 (3.11) 

U~(z) = iD~-~e § TN(z)/~ : ~, i D ~ - ~ e  ~:~s~ z ~ 0 (3.12) 

where 

A(~)  : m.(~)/[4(2.), , .  (~(~) - c(Z))] 

B(  m) = - - m c (  ~ ) /[ 4( 2~) ~1" (c( ~ ) - -  c(fl))] 

D : --1/[4(2~)1a~]. 

m = - - [ - 1  (3.13) 

Following the same procedure as in Section 3.1, we get the following expres- 

axrz(r, O, z) = [z cos 0/(4~r2)] {[y(a, r, z) q~(a, r, z) c(fl) - -  y(fl, r, z) q~(fl, r, z) c(a)]/ 

[4~ )  - 4 # ) ]  + g(~, r, ~)}, 

a~z(r, 0, z) = [z sin 0/(4~#)] {[g(cr r, z) c(fl) - -  g(fl, r, z) c(c~)]/[c(~) - -  c(fl)] (3.15i 

+ y(s,  r, z) q1(s, r, z)}, 

a~(r, 0, z) = --[r cos 0/(4~)] {[y(~, r, z) c(fi)/a ~ - -  y(fl, r, z) c(or - -  c(fl)]}, 

where p(x, r, z) and q~(x, r, z) are defined by 

p(x, r, z) : [r ~ ~- (xz)2]l/2/r 2, ql(x, r, z) = 2r 2 + (xz) ~. (3.16) 

sions of displacement and traction vectors in the infinite transversely isotropic 
space due to the concentrated force in x-direction 

u,~(r, o, ~) = [~ o/(4~)1 {z~[g(~, r, z) c~(~) - -  g(~, r, ~) ~(~)]/[r~(~(~) - -  c(~))] 

+ p(8, r, ~)/~}, 

uoX(r, 0, z) = [sin 0/(4~)] {[p(~, r, z) c~(fl)/or - -  p(fl,  r, z) c2(~)/fl]l[c(~) - -  c(fl)] (3.14) 

+ 8~2g(,, r, ~)/(ir~)}, 

~ : ( ~ ,  o, ~) = - ~ ( ~ )  ~(~) cos  otg(~, ~, ,) - g(~, ~, ~ ) 1 I [ ~ ( ~ ( ~ )  - c(~))], 
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The remaining stress components are found to be 

ar~.(r, O, z) =--A,ac(o~)  c(tS) r cos O(y(or r, z) - -  y(fl, r, z))/[4~z(c(~) - -  c(fl))] 

+ [cos O/(4;rr3)] {--z2A,,[c2(fl) y(a, r, z) q3(o~, r, z) 

- -  c2(a) y(fl, r, z) qa(fl, r, z)]l(c(~ ) - -  c(fl)) 

+ Al~[c~(~) g(o,, r, z) q~(~,, r, z)/o,~ 

- c~(~) g(~, r, ~) ~(~, r, ~) /~] / (c (~)  - -  c @ )  

- -  2Ae~g(s, r, z) q~(s, r, z)/(8~)}, 

~,~o(r, 0, z) = --[A,. sin 0/(4~r3)] {2[c2(fl) g(cr r, z) q2(o~, r, z)/~ ~ 

- -  c2(~ it(~, r, z) q~(tS, r, z)/tS~]/ 
(3.17) 

(c(o~) - -  c(fl)) + y(s,  r, z) 

X [ra + 6(rsz) z + 4(sz)a]/(si)}, 

,,or(,, o, z) = - A ~ ( ~ , )  c @ ,  cos O(y(o,, r, ~) - -  y(~, , ,  ~))/[4dc(~,) - -  c@)]  

+ [cos O/(4rrra)] {--zeA~2[G(fl) y(c~, r, z) q3(~, r, z) 

- c~(~) y(~, r, ~) q~(~, , ,  z)]/(c(~) - -  c @ )  

+ A,,[c2(fl) 9(c~, r, z) q~(~, r, z)/o~ ~ 

- -  c~(~ 9(~, ", z) q~(fl, ", z)/~]/(c(~') - c@) 
+ 2A, ,g(s ,  r, z) q~(s, r, z)/(s~)}, 

with q~(x, r, z) and q~(x, r, z) being defined by 

q~(x, r, z ) =  r 2 + 2(xz) 2, q,(x, r, z) : 3r 2 + 2(xz) 2. (3.18) 

3.3 Concentrated Force in y-Direction 

Though the same procedure as above may be used to derive the solutions for 
this case, we can simply obtain the expressions of displacements and stresses in 
the infinite space due to the concentrated force in y-direction from the following 
relationships 

ud(r ,  O, z) = u**(r, 0 - -  ~/2, z) 

o~(r, o, z) = ~ ( , ,  o - ~/2, z) 
i, ] = r, O, z. (3.19) 

That is, the solutions for the corresponding problem of the concentrated force in 
y-direction are the same as those in Eqs. (3.14), (3.15), (3.17) with cos 0 and sin 0 
being replaced by sin 0 and --cos 0, respectively. 
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So far we have obtained the displacements and stresses in a homogeneous and 
transversely isotropic infinite space due to concentrated forces. They are given 
by  Eqs. (3.6), (3.8), (3.10), (3.14), (3.15), (3.17), (3.19). While the concentrated 
force vector is decomposed in terms of Cartesian coordinates, the displacements 
and stresses caused by  it are expressed in terms of cylindrical coordinates, as the 
expressions for displacements and stresses are simpler in the later system than  in 
the former one. However, in order to obtain the results in Cartesian coordinates, 
we are only required to perform well-known coordinates transforms. 

The complete three-dimensional solution for the corresponding granular 
material  is the same as tha t  for the transversely isotropic medium with the five 
elastic constants being replaced by  the appropriate quantities since in this case, 
Eq. (2.14) still has two distinct roots [5]. In  the isotropic case, however, ~ = fl = 1, 
and accordingly the expressions for displacements and stresses become indefinite. 
In  order to get the result for the corresponding isotropic case, we first let a --> fi 
and use the rule of de l ' t tospi ta l  in the expressions of displacements and stresses 
to derive a result for ~ = fi, and then, substitute the elastic constants for isotropie 
medium [7] into the middle result with ~ ~ fl ---- s ~ 1. In  doing so, we obtain 
the result in the cylindrical coordinates, and after performing coordinate trans- 
forms, we find tha t  our result is exactly the same as the classical three-dimensional 
Kelvin solution and its associated stresses [6]. 

Finally we point out that ,  since the present result is actually a generalized 
three-dimensional Kelvin solution, it can be used, as a fundamental  result, to 
obtain displacement and stress distributions for a number  of problems of practical 
importance. On the one hand, some nuclei of strain and the generalized Mindlin 
solution [10] in a transversely isotropic medium may  be obtained from the 
present solution by  the method of synthesis and superposition. On the other hand, 
using it as a basic elementary solution, we may  construct the integral equation 
formulation for the three-dimensional transversely isotropic elastic solid in the 
same way as in [11], to s tudy the effect of anisotropy on the elastostatic field for 

various problems in engineering. 
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