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The propagator matrix method is used to solve the problem of the static deformation of a transversely isotropic and
layered elastic half-space under the action of general surface loads. The solution is obtained in two systems of vector
functions for different cases of characteristic root determined by the elastic constants of the media. It is shown that this
general solution contains, as its special cases, the solutions obtained by previous researchers, such as the solution for
isotropic and layered media, and the solutions for the problems of axially symmetric and two-dimensional deformation

of transversely isotropic and layered media.

Numerical examples are given to verify the present formulation. It is noted that by using the propagator matrix
method in two systems of vector functions, the present analysis method is efficient, convenient and easy to apply in

practice.

1. Introduction

Hu (1953, 1954) solved the general problem of
three-dimensional deformation of a transversely
isotropic and homogeneous half-space using the
potential function method. Recently, the double
Fourier transformations, the Hankel transforms
and the so-called finite layer approach were used
by Small and Booker (1984, 1986) to solve the
deformation problem of the corresponding layered
medium. However, that method requires the solu-
tion of a system of simultaneous linear equations
with an order proportional to the number of layers
and the introduction of auxiliary variables and
coordinate transformations for the three-dimen-
sional problem. At the same time, it is difficult to
use direct Hankel transforms to solve deformation
problems by applying some simple surface load-
ings (Wang, 1987) and some internal sources
(Singh, 1970). Using the propagator matrix method
(Gilbert and Backus, 1966) and the generalized
Love’s strain potential, Singh (1986) solved the
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problem by assuming axially symmetric deforma-
tion of a transversely isotropic and layered half-
space by surface loads.

The Cartesian system and cylindrical system of
vector functions are introduced simultaneously in
association with the propagator matrix method in
this paper to solve the problem of static deforma-
tion of a transversely isotropic and layered half-
space by general surface loads. It is shown that the
equilibrium equations are reduced to the same two
sets of simultaneous linear differential equations
for the two systems, which are called type I and
type II. The general solutions and the layer
matrices are then obtained from the two sets of
differential equations. By using the continuity
conditions at the layer interfaces and the boundary
conditions at the surfaces, the displacement and
stress components at any point of the medium are
obtained in the two systems by multiplication of
matrices. As the solutions are contained in the two
systems in terms of a layer matrix and include
different cases of characteristic root, the present
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formulation avoids the complicated nature of the
problem on the one hand (Small and Booker,
1986), and on the other hand can be reduced
directly to the solutions of the corresponding
two-dimensional deformation (Small and Booker,
1984) and axially symmetric deformation (Singh,
1986), and also to the solution of the correspond-
ing isotropic case (Singh, 1970). Three numerical
examples are also given, which represent, respec-
tively, three-dimensional, two-dimensional and
axially symmetric deformation. ‘

2. Basic equations and systems of vector functions

We choose the axis of symmetry of a homoge-
neous and transversely isotropic elastic medium as
the z axis. The generalized Hooke’s law in Carte-
sian coordinates (x, y, z) can then be expressed

as (Lekhnitskii, 1963)
Oux = A'llexx + AlZeyy + A13ezz 0y, = 2A44eyz
Oyy = Al2exx + Alleyy + Al3ezz Oxz = 2‘444@xz

0., = A13exx + AlSeyy + A33ezz axy = 2"466exy

(1)
where ’
Ags = (,An - A12)/2 . : (2)

In (1), o,,, o,,, etc., are the components of stress
and e,,, e, etc., are the components of strain.
Parameters A,,, Ay,, A3, A3y; and A,, are the
five elastic constants of the medium. In the case of

an isotropic medium
Ay ?433 = EQ- V)/[(l +v)(1 - 2”)]
A=A =Ev/[(1+»)(1-2v)] (3)
Au=E/[2(1+»)]
where E is the Young’s modulus and » is the
Poisson ratio. On replacing subscript x by » and
y by 6, we then obtain the generalized Hooke’s
law in cylindrical coordinates (r, 8, z).

When the body forces are absent, the equi-
librium equations are
do,,/dx + da,,/dy + d0,,/9z =0
da,,/dx +d0,,/dy + d0,, /92 =0 (4)
d0,,/0x + do,,/dy + d0,,/0z=0

in Cartesian coordinates, and

d0,,/9r + da,,/(r 30)

+90,./0z + (0, — g9) /r=0
00,5/9r + d0yy/(r 30) + 0y, /32 + 20,5/r =0
do,,/dr + da,,/(r 30) + do,,/9z + 0, /r=0

(5)

in 'cylindrical coordinates.
.- The final basic equations are the strain—dis-
placement relations. It is well known that these

¢ relations are

€ =0u,/9x 2e,,=0u,/dy+du,/dx
e,,=0du,/dy 2e, =0u,/dz+u,/dy (6)
e,,=0u,/dz 2e,,=0u,/dz+ du,/0x

in Cartesian coordinates and

e, =0u,/or

2e,,=u,/(r 00) + duy/0r —uy/r
eqg=0uy/(r 30) +u,/r (7)
2ey, = ug/0z + du,/(r 00)
e,,=0u,/0z 2e,,=0du,/or+9du,/dz

in cylindrical coordinates. In (6) and (7),
(uy, u,, u,) and (u,, u,, u,) are the (x, y, z) and
(r, 8, z) components of the displacement vector.

We now introduce two systems of vector func-
tions (Ulitko, 1979). The first system is based on
Cartesian coordinates and is called the Cartesian
system of vector functions

L(x, y; @, B) =1,5(x, y; a, B)

M(x, y; a, B)=grad S=i,8S/dx +1i, dS/dy

N(x, y; @, B) =curli,§=i,9S/dy —1i, 3S/0x
(®)

where (ix,,iy, i,) are the unit vectors in (x, y, z)
directions of Cartesian coordinates. The scalar
function

S(x, y; a, B) =exp[—i(ax+By)]/(27)  (9)
satisfies the Holmholtz equation

328 /0x> + 025 /3y + A& =0 ’ (10)



where

N =a?+ B2

In eqns. (8)-(10), @, B8 and A are parameter
variables. The second system is based on cy-

lindrical coordinates and is called the cylindrical
system of vector functions

L(r,0; X\, m)=1i,S(r, 6; \, m)
M(r, 6; N, m)

=grad S=1i, 0S/9r +1i, 3S/(r 00) (11)
N(r, 8; A, m)

=curli,S=1i,93S/(r 36) —i, 3S/0r

where (i,, iy, i,) are the unit vectors in (r, 6, z)
directions of the cylindrical coordinates. The scalar
function '

S(r, 0; X, m)=J,,(\r) exp(im 8)/(27)"*
m=0, +1, +2,... (12)

also satisfies the Holmholtz equation

3°S/3r*+09S/(r or) + 02S/(r? 3%0) + X3S =0

(13)

In eqn. (12), J,,(Ar) denotes the Bessel function
of order m.

Owing to the orthogonality of the systems (8)
and (11), any vector functions may be expressed in
terms of them. In particular, for the unknown
displacement and ‘surface’ stress vectors, we may
have

u(x7 Vs Z)‘=ff_+o:o[UL(z)L(xa y)
+ Uy (2)M(x, y)
FUNG )] dadp (14)

T(x, y, z) =0,i,+0,i,+o0,i

= [f TInen )
T30 (M, 7)

+Ty(2)N(x, y)] de dB (15)
in the Cartesian system and

u(r, 6, 2) = ):f0+°°[UL(z) L(r, 6)

+ Uy (z)M(r, 6)
+ Uy (2)N(r, 8)] A dA (16)

355
T(r, 8, z) =o0,,i,+ 0y,ip+ 0,1,
+ o0
=Y [ T2, 0)
m 0
+ Ty (z)M(r, 0)

+ Ty (2)N(r, 6)] A dA (17)

in the cylindrical system. In eqns. (14)-(17), the
dependence of vector functions L, M and N on
the parameters a and 8 or A and m have been
omitted for simplicity, and we have used the same
expansion coefficients U, , Uy, Uy, Ty, Ty, and Ty,
in these two systems. It will be shown in the next
section that these coefficients satisfy the same
linear differential equations, whether they are in
the Cartesian system or in the cylindrical system.

It is of interest to note from (8), (11), (14) and
(16) that while the displacement solutions ex-
pressed in terms of N have zero dilatation, the
solutions expressed in terms of L. and M give zero
z component of the curl of the displacement vec-

. tor.

3. General solutions and layer matrices

The problem that we analyse is shown sche-
matically in Fig. 1. General surface loading
P(x, y)=P(r, 0) is applied to the surface z=0
of a layered elastic system, which is composed of
parallel, homogeneous and transversely isotropic
p layers lying over a homogeneous half-space. The
continuity conditions at the layer interfaces are
assumed to be in welded contact (with the possible
exception to the layer interface z =z,).

In the following, we will only give detailed
derivation of the results for the Cartesian system
of vector functions, and in the corresponding place
give the results only for the cylindrical system of
vector functions.

Substituting (14) into (6) and then into (1), we
obtain, for any layer k, the stresses expressed in
terms of the coefficients of displacement

92 92
Oy = All(UMﬁ + UNW)

02 02
+A12 (UMa—y‘E — UNW)
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+ A5 dUL/dz}S(x, y)

92 32
%W=‘%4Uﬂa§+l&€a;)‘

92 92
+A11(UM§ — UNW)
+ A dUL/dZ]S(X, )

82 82
o, = | AUy | — + —
zz [ 13 M(8x2 ayz)

+ A4 dUL/dz]S(x, y)

0, =Au UL_GQx— +dUM/dz%
I .
+dUN/dz—é;-S(x, y)

(9 d
% = Aus| U + dU,,/dz 5>

3]
—dUN/dza-S(x, y)
82
Oxy A66 2UM ax a
92 92
+Uy| ———||S(x, 18
-y
zq rayer 1 ) hl X or r
%1 1
k-t Layer k hk
Zk \
zp__1
Layer p hp

z
Fig. 1. Scheme of a layered elastic system under general surface
loads.

Except for special cases, we will omit the sub-
script k and the notations [[*%[- -] da dB for
the Cartesian system, and X, [o"*[- —]A dA for
the cylindrical system. Comparing eqn. (15) with
the above o,,, 0,, and o,,, we have

i) a
a d 9
= A44 UL}E_'-dUM/dZa—FdUN/dZa—y' S
] d
=14 U—g--!-dU d-—a-—dU diS
= |44 L3y M/ Zay N/ Zax
(19)

32 C§

T,S=|A Uy | — + — | + 455 dU,/dz |S
L |:13 M(axz ay2 33 L/

From (19) we can immediately obtain three rela-
tions between the expansion coefficients

T, = —N4,3Uy, + A5; AU, /dz
TM=A44(UL+ dUM/dz) (20)

Substituting (18) into the equations of equi-
librium (4) and by making use of (20), we finally
obtain three other relations

dT, /dz — N°T,, =0
dTy/dz — NAecUy =0 (21)
—NA, Uy + Ay3 AU, /dz + ATy, /dz=0

Similarly, one may also obtain the relations
between the coefficients in eqns. (16) and (17) in
the cylindrical system. With considerable algebraic
manipulation, it is found that they satisfy exactly
the same relations given in (20) and (21). The
following results for these coefficients thus hold
for these two systems.

It is easy to show that (20) and (21) can be cast
into two independent sets of simultaneous linear



differential equations. They are called type I and
type II, respectively. For type I
AU, /dz =NUy A3/ A5+ Ty /As

dT, /dz =NT,, (22)
dTy/dz= AZUM(A11A33 - A%3)/A33
— AT /A5
and for type II
[dUy/dz| [ 0 1/44|[ U
e [0 1/ MH } o)

| dTy/dz | NAgs 0 Ty

The general solution for type II is found to be
[ Uy 14"
_TN]_[Z ]_BL} (24)

where A* and B’ are the arbitrary functions of A,

and
Ly exp(Asz)
(z7] [AE exp(Asz)

is the solution matrix with

12
§= (Ass/A44) /

exp(—Asz)

— A5 exp(—Asz) } (25)

(26)

§=5A4= (A44A66)1/2

The propagating relation is

Uy (2-1) _ [ L Uy (zi)
= [a%] (27)
Ty(zi-1)/A Ty (zi) /A
where
[aI]‘(] _ COSh(ASkhk) —Sinh(Askhk)/Ek
— 5, sinh(Asghy) cosh(As hy)

(28)

is the layer matrix or the propagator matrix of the
layer k. Noting that :

Ag=1/a4
Age=1/ae6
where a,, and ag are the elastic constants used
by Singh (1986), the layer matrix (28) is then the
same as that obtained by Singh under the assump-

tion of axially symmetric deformation. It is easy to
show (Singh, 1986) that (28) can be reduced di-
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rectly to the layer matrix of the corresponding
isotropic case (Singh, 1970).

The analytical derivation of the general solu-
tion and layer matrix of type I involves consider-
able algebra and the derived results may have
different forms according to different cases of
characteristic root. But with careful treatment they
can be cast into a uniform form, i.e. the general
solution can be unified into the form

[E(2)] = [2(2)][K] (29)

In eqn. (29), the two column matrices are defined
by

[E(z)] = [UL(2), AUy (2), To(2) /A, Ty (2)]"
(30)

and
[K]=[4, B, C, DI" (31)

where A, B, C and D are the arbitrary functions
of A, and [- —]T denotes the transpose of the
matrix [~ —]. The elements of solution matrix [Z(z)]
for different cases of characteristic root are given
in Appendix A.

From eqn. (29) we obtain the propagating rela-
tion

[E(Zk—l)] = [ak][E(Zk)] (32)

where [a, ] is the propagator matrix of layer k, and
its elements for different cases of characteristic
root are given in Appendix B. It is noted from
Appendix B that when the characteristic roots are
all equal to one, the layer matrix is then directly
reduced to the isotropic layer matrix (Singh, 1970).

4. Deformation of a layered elastic system by gen-
eral surface loads

For any surface load P(x, y)=P(r, 0), we may
expand it in terms of the Cartesian system of
vector functions in the form

P(x. ) = [ [P, BIL(x. »)

+PM(a» ﬁ)M(X, y)
+Py(a, B)N(x, )] dadB  (33)
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or in terms of the cylindrical system of vector
functions in the form

P(r, 8) = 2[)+w[PL(A, m)L(r, 0)

+ Py (N, m)M(r, 6)
+ Py (X, m)N(r, §)]A dA (34)
In order to find the displacements and the
stresses at any point of the medium under the
surface load P, we need the continuity conditions
at the layer interfaces and the relations (27) and

(32). By making use of them and by multiplication
of matrices, we obtain

[UN(ZO) TN(ZO)V}\]T
[a ][UN(Z )s TN(Z )/A]

= [31] az )

(35)
[E(0)] =[a1][2,] -~ [a,][E(z,)] (36)

Substituting the surface traction condition (33) or
(34) into eqn. (15) or (17), the left-hand sides of
eqns. (35) and (36) then become

Uy (20) = Uy(0), Ty(z0)/A=Py/A (37)
[E(0)] = [U.(0), AU, (0), P/, Py]T  (38)

The unknown quantities contained in egns. (35)

and (36) may be determined according to the

behaviour of the homogeneous half-space and the

condition at the layer interface z = z,,. We’d'i"scuss

here two typical cases. : Y

4.1. Elastic half-space and welded condition at
z=1z,

In this case, using the contmulty cond1t10n at
layer interface z,, eqns. (35) and’ (36) become

[Ty (0), T (0)/A]"

= [a][a5] -+ [a][Z

: )]’[;4£+1;'BpL+1A]T,;
| )
[E(0)] = [2,][2.] - [a,][Z z)|[Kpa] - (40)

For the same reason as S1ngh (1986), AL »+1 10 eqn.
(39) and 4 »+1 and G, ; in eqn. (40) should all be

equal to zero. The remaining unknown quantities
in eqns. (39) and (40) are thus determined by

BpL+1 = PN/()\Fzz) (41)
+1=(GauPr/N= Gy Py) /A (42a)
D, 1= (GynPy— Gy Pr/N)/A (42b)
In eqns. (41) and (42a and b)
= ] at] - [ ] [222,)] @)
[ ]=[a1][az] - [a,1[Z(2,)] (44)
A= GyGy— G34G42
Knowing BP+1, ,+1 and D, ., from eqns. (41)

and- (42a and b), the response at any point of the
medium can be obtained from the relations

[Un(2), Tw(2)A]"
= [a% (2, — 2)][aki]
x - [ag][z)) o, Bl (45)
and '
[E(Z)] = [ak(zk_ Z)][ak+1]
2,1[Z(z,)] [0, B,+1, 0, D,.4]"
(46)

where z,_; <z <z, [af(z,— 2)] and [a,(z; — 2)]
are obtained, respectively, from [a%] in (28) and
[a,] in Appendix B on replacing 4, by z, — z.

4.2. Rigid half-space and rough or smooth condition
atz=z,

In this case, the continuity condition at z, may
be divided into rough-rigid and smooth-rigid
(Small and Booker, 1984, 1986). For rough-rigid,
we have

uy(x, y, 2,) =u,(x, y, 2,) =u,(x, y, z,) =0
and for smooth-rigid, we have
uz(x’ Y Zp) =°xz(x’ Vs Zp) =Uyz(x? y’ Zp) =0

As an illustration of the rigid half-space case, we
give here detailed discussion only for the rough-
rigid type. From eqn. (14) or (16), this contmulty
condition leads to

UL(Zp) UM(Z) UN(Z) 0



Substituting these values into the right-hand sides
of eqns. (35) and (36), we thus obtain the re-
maining unknown quantities

TN(Zp)/}‘=PN/(7\F22) (47)
TL(Zp)/}\= (GaaPr/A = Gy Pyy) /A (48a)
TM(Zp)=(G33PM_G43PL/>\)/A (48b)
where

A= G33Gyy — G43Gyy

Matrices [F] and [G] are obtained, respectively,
from eqns. (43) and (44) by removing the solution
matrices [Z%(z,)] and [Z(z,)]. Knowing the coeffi-
cients T;, T, and Ty from eqns. (47) and (48a
and b), we therefore find the response at any point
of the medium from the relations

[Un(2), Ty(2)/A]"
= [ai(zk_z)] [a%+l] S
x - [a5]]0, Ty(z,)A]" (49)
[E(2)] = [ac(z¢ = 2)][a41]

x -+ [,]]0,0, T,(z,) /A, Ty (z,)]"
(50)

So far, we have obtained the displacement and
‘surface’ stress vectors at any point of the medium
by the general surface load (eqn. (33) or (34)).
They are given by eqns. (14) and (15) or (16) and
(17) as the system may be. In eqns. (14)—(17), the
expansion coefficients are given by eqns. (45) and
(46) or (49) and (50) as the case may be. The final
point is to obtain the remaining stress components
in (18) at any point of the medium. By making use
of the linear differential equations ((22) and (23)),
it is found that they can be expressed as the linear
combinations of the known quantities in eqns.
(45) and (46) or (49) and (50), i.e.

Uxx(x’ y’ Z)
+ o0
= /f_ [TLAIB/ABS - aB(Au _A12)UN
+ (>‘2A123/A33 — oAy — BZAu)UM]
XS(x, y; a, B) da dB
0., (x, », 2)
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=A66ff_+:[(a2 ~ B*)Uy — 208Uy
% S(x, y; a, B) da dB (s1)
o, (x, y,z)
- f f_+:[TLA13/A33 + aB( Ay, — Ayy) Uy
+(Na] /A5y — 024y, — B24y,) Uy |
xS(x, y; a, B) da dB

in the Cartesian system of vector functions, and
orr(r . 0, Z)

+ oo
= Z/; [TLA13/A33 + UN(All “Au)Al
m

+ UMAZ(A%3 *A11A33)/A33
— Uy (Ay _AIZ)AZ] S(r, 6; X, m)XA dX
Urﬁ(ra 0’ Z)
+ oo
=A662f0 [Uy (N +24,) +20,A,]
xS(r, 0; A, m)AdA (52)
09e(r, 8, z)

+ 00
= Z_/(; [TLA13/A33 - UN(All _A12)A1

+ UM>\2(A%3 _A12A33)/A33
+ Ups (A — A1) D5 ] S(r, 85 A, m)N dA

in the cylindrical system of vector functions. In
(52), the surface operators indicate

_1.9 13
YU r9ro0 52036
_19% 13
22002 rdr

S. Numerical examples

In order to verify the above formulation, we
have chosen three examples (Small and Booker,
1986). The model is composed of two transversely
isotropic and homogeneous layers and the
boundary condition at the base z =z, is assumed
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& X Or T
|

Layer 1 hl

Layer 2 h

7777777777, /17777777
Rough-rigid

29 J77777777777777777777777,

z

Fig. 2. Models of layers and surface loads used for computa-
tion, where b/a=2, hy/a=2and h,/a=4.

to be rough-rigid (Fig. 2). Uniform vertical loads
are applied to the surface z = 0 in rectangle, circle
and strip areas. These loadings correspond to
three-dimensional, axially symmetric and two-di-
mensional deformations, respectively. The values
of the elastic constants are given in Table I (Small
and Booker, 1986), where E, and E, are the
Young’s moduli with respect to directions lying in
the plane of isotropy and perpendicular to it; vy,
and »,, are Poisson ratios which characterize the

‘f/e :é{/ EvrzE )
=E =Y
TABLE 1 vh:D

Elastic constants of a transversely isotropic and two-layered
system

E) Layer 1 Layer 2
E)/E, 1.5 xone 3.0%4
f/Ev 0.9 ¥035 1.0 x4
0.25 01 =
7 03—ty y =0.F
hyeo— R 4
N 02 03
(E)n/(E); car (025)
- 5 5
Oy (EV\,Z [,5 LRI
T =1 BN
+ -4 s

. emmmm Rectangle

= == Circle

[— == o = Strip

6.0

Fig. 3. Vertical stresses beneath the central point of the surface
loads.

effects of horizontal strain on complementary
horizontal strain and on vertical strain (i.e., the
z-direction strain), respectively; »,; is the Poisson
ratio which characterizes the effect of vertical
strain on horizontal strain; f/2 is the shear mod-
ulus for the planes normal to the plane of isotropy.

-1.2 -1.0 —0.8
1 I
Interface
— 4.0
Rectangle (cxx/q)
Circle (grr/q)
B - . 5.0
Strip (ovxx/q)
L | 1 ]

6.0
Fig. 4. Horizontal stresses beneath the central point of the
surface loads.
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These constants are related to those in eqn. (1) by
the formulae (Wardle, 1981)

-1
Ay = Ey(1 = vy ) (1 +7y)
X(1—v,— 2”11\/”\/};)_1
-1
Ay = Ey(vy, + ) (1 +vy)
X (1_Vh _'z’ljhvyvh)_l (53)
-1
A= Ethh(l —Vh— zvhvvvh)
-1
Ay =E,(1-v,)(1 = vy = 2vp,000)
As=1/2

For the three types of surface loading to be
considered, the expansion coefficients in the sys-
tems of vector functions are, respectively

Py (a, B) = —24 sin(aa) sin(Bb)/(afm) (54a)
P,(X,0) = —agl;(Aa)(27)"* /A (54b)
P,(a, 0) = —2g sin(aa)/[a(27)"?] (54c)
It is noted that for these three problems
P,=Py=0

and therefore the type II has only trivial solution.
Equations (54a)—(54c) are obtained by using for-
mulae (33), (34) and (33), respectively. It is obvi-
ous that m=0 in eqn. (34) corresponds to the
axially symmetric deformation and that (8) will
represent two-dimensional deformation after re-
placing 27 by (27)'/* and B by 0 in the scalar
function (9). Using eqns. (54a—c) we obtain 7;(z,)
and Ty (z,) from eqns. (48a and b) and the re-
sponse at any point of the medium from eqn. (50).

Using these equations, we have calculated the
normalized stress components o, /g (or o,,/q for
the circular loading) and o,,/q and displacement
component u,(E,),/(aq) along the z axis. The
infinite integrals involved in the numerical compu-
tations are carried out by a 16-point Gauss for-
mula. The results are shown schematically in Figs.
3-5. First we note that with the change of signs
for o,,/q (or o,,/q) and o,,/q, the curves in Figs.
3 and 4 will be, respectively, the same as those in
fig. 5a and b plotted by Small and Booker (1986).
The change of signs results from the definition for
positive stresses. Second, because the elastic mod-
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uZ\Ev)I/(aq)
0.0 0.3 0.6 0.9 1.2 1.5 1.8

2.0 Interface

Rectangle

e —— Circle

= o === SCTip —

6.0

Fig. 5. Deflections beneath the central point of the surface
loads.

ulus in vertical direction E, has a four times
difference in the two layers, the lower layer is
more ‘rigid’ than the upper layer, as can obviously
be seen from Fig. 5. Thirdly, it is interesting to
note that for examining the characteristics of the
response of a layered medium to surface loads, it
is sufficient to choose only some simple surface
loads, such as circle or strip loads (Small and
Booker, 1984) to do so.

6. Conclusions

The method of vector functions is introduced in
association with the propagator matrix method to
solve the deformation of transversely isotropic and
layered elastic materials under general surface
loads. The formulation is presented so that it can
be used directly to perform practical calculations.
As the solution is given simultaneously in two
systems of vector functions, one can easily solve
some problems by choosing the system suitable
for the different types of surface loading. It is
shown that the formulation given is especially
suitable for two-dimensional (Small and Booker,
1984) and axially symmetric (Singh, 1986) defor-
mation. Since the general solution and the propa-
gator matrix for different cases of characteristic
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root are also given, which includes the isotropic
case (Singh, 1970), the present formulation pro-
vides a complete solution of deformations by gen-
eral surface loads of transversely isotropic and
layered elastic half-space. Numerical examples are
also carried out for three-dimensional, two-dimen-
sional and axially symmetric deformation.
Finally, we point out that, with slight modifica-
tions, the present results can be used to analyse
some other problems of transversely isotropic and
layered media, in particular, the problems of the
static response of this medium to displacement
dislocation sources (Ben-Menahem and Singh,
1968) and cracks (Parihar and Sowdamini, 1985).
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Appendix A

The elements of the solution matrix [Z(z)] in
eqn. (29) are:

(1) When x; # x,
Zy;=c(x;) exp(Ax,2)
Zp =c(x;) exp(—Ax,2)
Zy =d(x;) exp(Ax,2)
Zy = —d(x;) exp(—Ax,z) (A1)
Zs =x1 " exp(Axz)
Zsy = —x1 ' exp(—Ax,z)
Z4 = exp(Ax;2)
Z,,=exp(—Ax;z)
where x; and x, are the characteristic roots of the
following equation

(1‘1443‘2 _1‘111)(1‘133)62 _A44)

+ (445 "‘1444)2)C2 =0

Z;; and Z;, are obtained from Z, and Z,,, re-
spectively, on replacing x; by x, (i=1,2, 3, 4).
In eqn. (Al) '

c(x)= (Au + x2A13)/[x2(A11A33 _A123)] (A2)

d(x) = (A13 + x2A33)/[X(A11A33 _A123)] (A3)
(2) When x; = x,

Zyy= [c’(xl)ﬂ\—i— c(xl)z] exp(Ax;z)

Zyy= [d’(xl)/k+d(x1)z] exp(Ax;z)

Zyy= (—x{z/}\+x{lz) exp(Ax;z)

Z;3 =z exp(Ax;z)

(A4)

while Z,; and Z,, are the same as those in eqn.
(Al), Z,, are obtained from Z;; on replacing x,
by —x; (i=1,2,3,4). In eqn. (A4), the prime
denotes derivative, i.e.

¢'(xp) = de(xy)/dx,

d’(x;) =dd(xl)/dx1 (A3)

Appendix B

The elements of the layer matrix [a,] in eqn.
(32) are (omitting the subscript k):
(1) When x; # x,

an =a33=[g(X1)C(X1)/x1] cosh y,
+[g(x3)e(x,)/x,] cosh y,

a = —ag;=_g(x;)c(x,) sinh y,
+g(x;)c(x;) sinh y,

aj3= —g(x;)c*(x;) sinh y,
—g(x,)c*(x,) sinh y,

a1y = —ayp=—g(x;)c(x1)d(x;) cosh y,
—g(x;)c(x,)d(x,) cosh y,

an=—ay=—[g(x)d(x,)/x,] sinh y,
—[g(xz)d(xz)/xz] sinh y, (B1)

Ay =au= —g(x,)d(x;) cosh y,
—g(x,)d(x,) cosh y,

ay=g(x,)d*(x;) sinh y,
+g(x,)d*(x,) sinh y,



ay = —[g(x1)/%}] sinh y,
~[8(x2)/x3] sinh y,

ayp=—any=—[g(x;)/x;] cosh y,
- [g(xz)/xz] cosh y,

ag,=g(x;) sinh y, +g(x,) sinh y,

In eqn. (B1)

Y1 =Axih (B2)
Y, =Ax,h (B3)
g(x) =x/[e(x)-xd(x)] (B4)

where the definitions of functions ¢(x) and d(x)
are given, respectively, in eqns. (A2) and (A3) of
Appendix A.

(2) When x, = x,
The layer matrix [a,] in eqn. (32) can be expressed
in the form

[a,]= _(xl/c,(xl))[bk] (Bs)
In eqn. (BS), the elements of matrix [b,] are
(omitting the subscript k)

_[C/(Xl)/xl] cosh y,
b= —by=—[c(x;)/x; +¢'(x,)] sinh y,
— Mhc(x;) cosh y,
bys=c(x1)[e(x) /% +2¢"(x,)] sinh y
+ Ahc*(x,) cosh y,
b1y = —byy =Ahc(x,)d(x;) sinh y,
by = —by= [d,(xl)/xl] sinh y,
+ [Ahd(x;)/x;] cosh y;
by = by =[d(x;)/x,+d’(x;)] cosh y,
+ Ahd(x,) sinh y,
by = _d(xl)[d(xl)/xl +2d’(x1)] sinh y,
— Ahd?*(x,) cosh y,
by = —x; ® sinh y; + Ahxy 2 cosh y,
b32 = —b41 _—.Ahxl_l Sin.h yl
by, = —x; ! sinh y; — Ak cosh y,

by =by=

(B6)

where y; is given in eqn. (B2), and the definitions
of functions ¢(x), d(x) and their derivatives are
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given in Appendix A. For an isotropic layer, we
have

x;=1 y,=Ah
c(x)=d(x))=(1+»)/E
(x)=-20+»)1-»)/E
d’ (x;)=0Q+»)1-2»)/E

Upon the substitution of these values in (B6), we
then obtain the layer matrix [a,] for the isotropic
case (Singh, 1970).
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