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The static deformation problem of a transversely isotropic and layered half-space by general dislocation sources is
solved. The solution is given in the Cartesian system and the cylindrical system of vector functions using multiplica-
tions of matrices. The source functions of general dislocations in a transversely isotropic medium are obtained in these
two systems using a new approach. Explicit expressions for the surface displacements due to three- and two-dimen-
sional dislocation sources are also obtained in terms of the cylindrical system and the Cartesian system of vector
functions, respectively. It is shown that the present solution contains the solutions to the three- and two-dimensional
source problems for the corresponding isotropic media, and therefore provides a unified solution for these two
problems, which have long been studied separately. The formulation developed can be evaluated numerically to study
the effects of anisotropy, as well as of Earth layering, on the static fields.

1. Introduction

The elasticity theory of dislocations was developed and applied by Steketee (1958), Rongved and
Frasier (1958) and by Maruyama (1964, 1966). Since then, great progress has been achieved using this
theory and its geophysical application (see Okada (1985) and Rybicki (1986) for reviews).

Singh (1970) studied the static response of an isotropic multilayered half-space to three-dimensional
sources by using the propagator matrix method in the cylindrical system of vector functions. Sato and
Matsu’ura (1973) calculated the static displacement fields of a fault that spreads over several layers in an
isotropic layered half-space, but there appear to be numerical instabilities in their computations. Using the
theoretical results of Singh (1970), Jovanovich et al. (1974a, b) developed a more general numerical
method to compute the displacement and strain fields due to an arbitrary shear dislocation in an isotropic
and layered half-space.

The static deformation problem using two-dimensional sources has also been studied by many
investigators. Rybicki (1971) studied the effect of a single surface layer on the elastic residual field due to a
long strike-slip fault using the image method. Freund and Barnett (1976) obtained a two-dimensional
solution of surface deformation due to dip-slip faulting in a uniform half-space, using the theory of
analytic functions of a complex variable. Recently, Singh (1985) and Singh and Garg (1985) studied the
two-dimensional problem of a long displacement dislocation in an isotropic multilayered half-space in
terms of the propagator matrices, and obtained the surface displacements caused by a line source of either
dip-slip or strike-slip type of arbitrary dip.
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However, it is useful to study the effect of anisotropy on the static field resulting from surface loads or
internal sources because the upper part of the Earth is anisotropic (Dziewonski and Anderson, 1981).
Small and Booker (1984, 1986) studied the two- and three-dimensional deformations of a transversely
isotropic and layered material by surface loads, using double Fourier transforms, Hankel transforms and
the finite layer approach. Singh (1986) solved the problem of a transversely isotropic multilayered
half-space deformed by surface loads under the assumption of axially symmetric deformation, and the
propagator matrix method was introduced to avoid the cumbersome nature of the problem. Garg and
Singh (1987) solved the corresponding two-dimensional problem using the same approach. More recently,
by introducing two systems of vector functions and using the propagator matrix method, Pan (1989,
referred to as Paper I hereafter) solved the corresponding three-dimensional deformation problem,
providing a complete and unified solution of the transversely isotropic and layered elastic half-space by
general surface loads.

In the present paper, we formulate the static deformation problem of general dislocation sources in a
transversely isotropic and layered half-space. The solution is given in terms of the general solutions and
layer matrices of Paper I, and in the Cartesian system and cylindrical system of vector functions. The
source functions of general point dislocations in a transversely isotropic medium are obtained in these two
systems using a unified approach. Whereas the solution for the three-dimensional source problem can be
expressed in terms of either the Cartesian system or the cylindrical system of vector functions, the solution
for the two-dimensional source problem is obtained in the Cartesian system of vector functions. Solutions
for both the three- and two-dimensional source problems in the transversely isotropic media can be
directly reduced to the solutions of the corresponding isotropic case.

2. General solution

The model considered is shown schematically in Fig. 1. The layered elastic system consists of p—1
homogeneous and transversely isotropic layers overlying a homogeneous transversely isotropic half-space.
We place the origins of the Cartesian coordinates (x; = x, x, =y, x3=2z) and cylindrical coordinates
(r, 8, z) at the surface. The z-axis is chosen as the axis of symmetry of the transversely isotropic elastic
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medium and is drawn into it. A source is located on the z-axis at a depth, h, below the surface. The layer
interfaces are assumed to be in welded contact.

We will solve the present problem using the approach proposed by Singh (1970) in which the source is
removed from the equations of equilibrium so that they become homogeneous, and, instead, is represented
in terms of the jumps in the displacement and stress components at the source level. However, the
body-force equivalent approach (Burridge and Knopoff, 1964) is also used to obtain the source functions
in terms of the Cartesian system and cylindrical system of vector functions.

When body force (or body-force equivalent) is present, eqns. (22) and (23) in Paper I become
inhomogeneous. Assuming that the body force per unit volume, F(x, y, z) = F(r, 8, z), can be expressed
in terms of the Cartesian system and cylindrical system of vector functions in the form

F(x, 5, 2) = [ TTE(Ux 2)+ Fy(2M(x, ) + Fy (NG, )] dad (2.12)
and
F(r, 0, z) = zj0+°°[FL(z)L(r, 8) + F,, (z)M(r, ) + Fy (2)N(r, )] A dA (2.1b)

the equations (22) and (23) in Paper I then become
dU, /dz = >‘2[]1‘41‘113/1‘133 + T, /A5
AUy /dz= U, + Ty, /Au,

2.2
dT,/dz=NT, - F, (222)
d7,,/dz = }‘ZUM(AuAss _Alzs)/A33 — AT /A3 — Fy
dUy/dz=T,/A
N Lo (2.2b)
dTy/dz=NUyAg— Fy

In eqns. (2.2a) and (2.2b), the expansion coefficients of the body force F;, F,, and F) are determined by
eqns. (2.1a) or (2.1b) according to the system of vector functions chosen. It should be noted that these
coefficients are not necessarily the same in these two systems for a given body force. We use the same
symbols for convenience only.

The homogeneous solutions of eqns. (2.2a) and (2.2b) for any layer, k, are

[E(2)] =[Zz(2)][K] (2.32)
[E“(2)] = [2*(2)][K*] (2.3b)
where the column matrices are defined by

[E(2)] = [Up(2), Ny (2), Te(2)/N, Ty (2)]" (2.4)
[E*(2)] = [Un(2), T ()] (2.5)
[K]=1[4, B, C, D]" (2.6)
[kKE}=[4%, BT (2.7)

with [~ -]T denoting the transpose of the matrix [~ —]. The solution matrix [Z%(z)] is given by (25) in
Paper I with the A before § in the second row being replaced by 1. The elements of solution matrix [ Z(z)]
for different cases of characteristic roots are given in Appendix A of Paper 1. From (2.3a, b) we obtain the
propagating relations

[E(zi_1)] = [ad[E(20)] (2.8a)
[EL(Zk—l)] = [a,’;][EL(zk)] (2.8b)
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where the propagator matrix [af] is given by equation (28) in Paper I, and the elements of the propagator
matrix [a,] for different cases of characteristic roots are given in Appendix B of Paper I.

Let a source be situated at depth z =/ in the layer s (Fig. 1). We divide the source layer into two
sub-layers, s1 and s2, with identical properties. Because of the presence of the source, the functions [ E(z)]
and [ E*(z)] may be discontinuous across z = h. We put

[Esz(h)] - [Esl(h)] = [AE] (293,)
[E5(n)] - [E5(n)] = [AE*] (2.9b)

where the subscript s1 (s2) is attached to [ E] and [ EX] to indicate that they belong to the layer s1 (layer
52). For a given source, we assume that [AE] and [AE~] are known. Using the same approach as Singh
(1970), we find

[E(0)] =[Gl[k,] - [Q] (2.10a)
[EL(0)] = [6*1[ k2] - [@*] (2.10b)
where

[G] =[ailla,]--[a,,][Z,(H)] (2.11)
[6*] = [aF][as]-~[a},][ ZF ()] (2.12)
[Q]=[ailla;]--[a,-;]la,][AE] (2.13)
[o"] = [af]{as]-~[ar][ak][AE"] (2.14)

[K,] and [K pL] are the constant column matrices corresponding to the half-space.
Applying the stress-free boundary conditions at z = 0 and the finiteness condition of the solution in the
half-space, we finally find the expansion coefficients of the surface displacement vector

U.(0) = (G203 + G1027Q4) /G 26 — O (2.15)
AUy (0) = (G 1247Q5 + G 57°Q4) /G |24 ~ Q, (2.16)
Uy(0) = G107 /G5 — Qf (2.17)
where

G| k[ij = GiijI - GiIij

If the discontinuities [AE] and [AE*] are known, we can thus find the expansion coefficients of the
surface displacement vector from eqgns. (2.15)—(2.17), and can obtain the surface displacements from eqn.
(14) or (16) of Paper I as the system of vector functions may be. The displacements and stresses at any
point of the medium can also be obtained from suitable equations of Paper I. To obtain the discontinuities
[AE] and [AE"] or the source functions for the dislocation source in a transversely isotropic medium is
complicated; we therefore devote the following section to the derivation of the source functions.

3. Source function

Singh et al. (1973) studied two approaches, in the isotropic case, to the source representation and gave
the source functions for various sources commonly used in seismology. In the transversely isotropic case,
however, Takeuchi and Saito (1972) listed only the source functions for the dislocation source in terms of
the cylindrical system of vector functions, and gave no derivation as they regarded this problem as quite
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complicated. In this section we use the two approaches (Singh et al.,, 1973) simultaneously in the two
systems of vector functions (see Paper I) to give a simple derivation of the source functions for a
dislocation source in a transversely isotropic medium. We first use the body-force equivalent of dislocation
source (Burridge and Knopoff, 1964; Aki and Richards, 1980) to get the body-force representations
(2.1a, b) i.e., to find the expansion coefficients F;(z), F,,(z) and F,(z) in the Cartesian system and the
cylindrical system. For these coefficients, we can find the particular solutions of eqns. (2.2a) and (2.2b) by
using the propagator matrix (Gilbert and Backus, 1966). From the particular solutions we can then find
the discontinuities of the expansion coefficients of displacement and ‘surface’ stress vectors, which are
equivalent to the source functions. It is noted that this method is quite simple and is easy to extend to the
general anisotropic case.

3.1. Three-dimensional source function

It is easy to show that (Aki and Richards, 1980), in elastostatics, the body-force equivalent of an
arbitrary discontinuity of a displacement vector across a fault surface ¥ is

) = = [ 1O 5,800 &) dE(®) (3.)

where the summation convention has been used. In eqn. (3.1), v; is the normal to the surface ¥ at point §
(Fig. 2), ¢;;,, 1s the elastic constant in the generalized Hooke’s law and [u,(§)] represents the displacement
discontinuity across the surface X at point §.

If we assume that the dislocation is of a point source type located at (x,, y,, #) in the Cartesian
coordinate system or (ry, 8, &) in the cylindrical coordinate system, and that the discontinuity in the i

direction is given by [«;] = Aun,, eqn. (3.1) then becomes
d
L(x, y,z2)=—Au dZn,-vjc,-qus}— [8(x—x0)8(y—,)8(z—h)] (3.2a)
q
in the Cartesian coordinate system and

f(r, 8, z)=—Au dZn,-Vjc,qua—?1—[8(r-— 75)8(8—6,)8(z—h)/r| (3.2b)

in the cylindrical coordinate system. In (3.2b), n, =r, 5, = and 7, =:.

y & Fig. 2. Geometry of an arbitrary shear dislocation source which

is used to represent a fault. The rake is ¢ and the dip is 8. » is

* the fault normal and n is the unit slip vector. The strike is
z taken along the x-axis.
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Expanding the body-force equivalents (3.2a, b) in terms of the Cartesian system and the cylindrical
system respectively, as in (2.1a, b), the coefficients are then given by

+ o0
F, = f-L*(x, yydxd
L= [T (e yydxdy
+ o0
FM=>\'2f/_ f-M*(x, y)dxdy (3.3a)

+ o0
F,=A"2 f-N*(x, y)dxd
WA TNT(x p) dxdy
in the Cartesian system and by

2q pt 0
= L*
F, fo fo f-L*(r,8)rdrdé

0 + o0
F,=A"2 f f-M*(r, 8)rdrdé (3.3b)
4]

20
T +
FN=>\-2[02 fo “1-N*(r, 8)rdrd8

in the cylindrical system. In eqns. (3.3a) and (3.3b), the asterisk indicates the complex conjugate. Using the
properties of the Dirac delta function, we can divide the right-hand sides of equations (3.3a) and (3.3b)
into the form

F,=F%(z—h)+F“%'(z—h)
Fy=F8(z—h)+ F,/8(z—h) (3.4)
Fy=F(z—h)+ F38'(z—h)
where the prime indicates the derivative with respect to z. The expressions of coefficients F,%, F,° F,%

F,%, F,/ and F, in the Cartesian system and the cylindrical system are given in Appendices 1 and 2
respectively. It can be shown that (Kennett, 1981) the discontinuities caused by the first part of (3.4) are

AT, = -F*% AU,=0

AT, = -F,/ AU,=0 (3.5)
ATy=—F} AUy,=0

and the discontinuities caused by the second part are

AT, = —N°F,/? AU, = —F,%/A,,

ATy = F,A13/4ys AUy = —F\// Ay (3.6)
ATy=0 AUy = —F\ /A4,

The total discontinuities of the source functions are the sum of eqns. (3.5) and (3.6). Expressing in the
components of [AE] and [AE*], they are

AU, = —F,%/ A3,

AAU,, = —AF,/ /A4,
AT, /A= —F,°/A\ —AF,/
AT, = —F + F,%A13/ 45
AUy = —Fy*/ A4
ATy/A=—F/A

(3.7)
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Substituting the elastic constants ¢,;,, of a transversely isotropic medium into Appendices 1 and 2, and

calculating these coefficients F,%, F,°, F\%, F,%, F,” and F, at the point x,=y,=r, =0, =0, we can
finally obtain the discontinuities at the depth z = A, which in the Cartesian system are (omitting factor
Au dL/(2m))

AUL=(nxVx+'ny )Al3/A33+nsz

vy
AU, = A" a(np, +n,p,) + B(n,p, +n,9,))
ATy, = —(nw, +n,w)A} /A5

A2 [np (024, + B2Ay,) + nyp, (@A, + B2Ay) + 2(np, + np,) aBA) (3.8)
AU, = ix™? [,B(nxvz +n,p)—a(n,p,+ nzvy)]
ATy/A=A"[(n,, +n,0,) (B2 — a®) Ags + (n,w,— n,»,) aB( Ay — Ay)]

and in the cylindrical system are (omitting factor Au dX/(27)'/?)

AU, = (nxVx+nyvy)A13/A33+nsz m=0
AAU,, = [i(nxvz+nzux)—i(nyvz+nzvy)]/2 m=+1
ATy, = [(Ayy + Ay3) /2 = AL /Ay (np, + 1 p,) m=0
= [("y”y_ nov)ti(nwp, + nyvx)] Age/2 m=+2 (39)
AUN=>\_1[—i(nxvz+nva)?(nyvz+nzvy)]/2 m=+1

ATN/K=}\_][(nxvy+ np)ti(nwy, — nyvy)] Ag/2 m=+2

In eqns. (3.8) and (3.9), (n,, n,, n,) and (¥,, v,, v,) are the (x, y, z) components of the unit vectors n and
v respectively; components which are not listed in equations (3.8) and (3.9) are zero. In addition, in the
derivation of eqns. (3.8) and (3.9), we have chosen the Cartesian coordinates (x, y, z) to express these two
unit vectors, and taken # = 0 along the x-direction and 8 = #/2 along the y-direction.

Equations (3.8) and (3.9) are the expressions of the source functions for the general three-dimensional
point dislocation. Whereas eqn. (3.9) includes the axially symmetric source functions (corresponding to
m = 0), eqn. (3.8) can be reduced to the corresponding two-dimensional source functions. Noticing the
difference between the definitions of the cylindrical system of vector functions given by Singh (1970),
Takeuchi and Saito (1972) and the author (see Paper 1), it can be shown that eqn. (3.9) is the same as those
listed by Takeuchi and Saito (1972), and when eqn. (3.9) is reduced to the isotropic case, the expressions
for m > 0 are half the value of the corresponding results of Singh (1970). This is due to the fact that Singh
uses only the m > 0 part of the cylindrical system of vector functions. Nevertheless, in the isotropic case,
the final expressions for displacements using the present cylindrical system of vector functions and the
source functions in eqn. (3.9) are coincident with the corresponding isotropic results (Singh, 1970;
Jovanovich et al., 1974a).

3.2. Two-dimensional source

We assume that the two-dimensional deformation is in the (y, z) plane; that is, the long-line source is
parallel to the x-axis. As we have pointed out, by replacing 27 by (27)!/? and a by 0 (so A = | 8], as A
must be positive) in the scalar function (9) of Paper I, we then reduce the three-dimensional deformation
directly to the two-dimensional deformation in the (y, z) plane. In addition, as the source type n », does
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not occur in the (y, z) plane problem, it should be omitted from eqn. (3.8). The source functions for the
two-dimensional case are therefore (omitting factor Au ds/(27)'/2, where ds is the line element)

AUy =n v, A13/A55 + n,v,

AAUy =i(n,v, +n,v,) sign(B)

ATM=nyVy(A11_A§3/A33) (3.10)
AUy =iA"Y(n,v,+n,v.) sign(B)

ATy /A=X""(n,», +n,»,)Ag

where sign(B) is the sign function which has the value of —1 for 8 <0 and +1 for 8 > 0. Equation (3.10)
is the expression of the source functions for the two-dimensional point dislocation. It can be divided into

two types, i.e. a plane strain problem (corresponding to type I of Paper I) and an antiplane strain problem
(corresponding to type II of Paper I).

3.2.1. Plane strain
In this case, we have three elementary sources. Their source functions are

Source(2,2): AU, = A3/ 435, AUy, =0, AT, /A =0, AT, = (A;; — A% /A3;)
Source(2,3): AU, =0, AAU,, =i sign(B), AT, /A =0, AT,, =0 (3.11a)
Source(3,3): AU, =1, AAU,, =0, AT, /A =0, AT,,=0

3.2.2. Antiplane strain
In this case, we have two elementary sources. Their source functions are

Source(1,2): AU, =0, AT, /A=A /A
Source(1,3): AU, =i sign(B)/A, ATy/A=0

It can be shown that, for the isotropic case, the expressions of source functions will be reduced to those
given by Singh and Garg (1985). Therefore we have not only provided the expressions of the source
functions for three- and two-dimensional point dislocation in the transversely isotropic medium, but also
provided a unified approach to the three- and two-dimensional source problems, which have long been
studied separately.

(3.11b)

4. Surface displacement

Having obtained the above elementary source functions, we can find the surface displacements of a
transversely isotropic and layered half-space resulting from these elementary sources using eqns.
(2.15)—(2.17) of this paper and using eqns. (14) or (16) of Paper I according to the system of vector
functions chosen. By suitable linear combinations of these fundamental solutions, we can then get the
surface displacements due to an arbitrary shear dislocation source.

4.1. Three-dimensional dislocation source

Figure 2 is a scheme of an arbitrary shear dislocation source with the strike along the x-axis. v is the
fault normal, n is the unit slip vector and is perpendicular to the normal, ¢ is the rake and § is the dip of
the fault. It is easy to show that for this shear dislocation source, we have the dyadic

nv = cos ¢[i,i, sin & —i,i, cos 8] + sin ¢[i,i, cos 286 —27'(i,i, —i,i,) sin 28] (4.1)
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! §

Fig. 3. Geometry of a long shear dislocation source which is
used to represent a long fault parallel to the x-axis. § is the
V- dip, v is the normal and m is the unit slip vector.

Using the definition of the elementary dislocation source (Steketee, 1958), we find that the displacements
due to an arbitrary shear dislocation source can be expressed as the linear combination of the fundamental
displacements due to the elementary dislocation sources, i.e.

u,=cos ¢[u'sin & — u* cosd| + sin ¢[u? cos 28 —u; sin 28] i=r,0,: (4.2)
We have chosen the cylindrical system of vector functions for the three-dimensional problem, as many
previous researchers have done. However, the fundamental displacements can also be expressed in the
Cartesian system of vector functions and it is perhaps more convenient to use this system than the
cylindrical system for the commonly studied rectangular fault when the integration over the fault area is
required. In eqn. (4.2), u,' represents the displacement due to the source (1,2), or the vertical strike-slip
source (¢ =0°, 8 =90°); u? represents the displacement due to the source (2,3), or the vertical dip-slip
source (¢ = 90°, § =90°); u,* represents the displacement due to the combined source [(2,2)-(3,3)]/2, or
the 45° dip-slip source (¢ =90°, § =45°); u,* represents the displacement due to the source (1,3), which
can be obtained from u? by replacing by 8 — 7 /2. To obtain the displacement field due to an arbitrary
shear dislocation source, we are therefore required to calculate only two fundamental displacement fields
due to the elementary sources (1,2) and (2,3), and one displacement field due to the combined source

[(2,2)-3.3)1/2.

4.2. Two-dimensional dislocation source

Figure 3 is a scheme of an arbitrary two-dimensional shear dislocation source. v is the fault normal; n is
the unit slip vector and is perpendicular to the normal; § is the dip of the fault. The two-dimensional
dislocation source in fact represents a long line source parallel to the x-axis. We will discuss the plane
strain and the antiplane strain problems separately.

4.2.1. Plane strain
This corresponds to the problem of a long dip-slip fault (Singh and Garg, 1985) and its solution is of
the type I of Paper L. In this case

n= (0, cos &, sin §)

v= (0, —sin §, cos 8)

and therefore, we have the dyadic

nv=1i,i, cos 26 — 27 '[i,i, —i,i,] sin 28 (4.3)
Similarly, the displacements due to a long dip-slip source can be expressed as the linear combination of the
displacements due to the elementary source (2,3) and the combined source [(2,2)-(3,3)]/2, i.e.

u,=u’cos28—u’sin28 i=y,z (4.4)
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in which u? and u;*> have the same physical meanings as those in eqn. (4.2), except that the former is in the
two-dimensional sense. To obtain the displacement field due to a long dip-slip source, we are thus required
to calculate only one fundamental displacement field due to the elementary source (2,3) and one
displacement field due to the combined source [(2,2)-(3,3)]/2.

4.2.2. Antiplane strain
This corresponds to the problem of a long strike-slip fault (Singh and Garg, 1985) and its solution is of
the type II of Paper I. In this case

n=(1,0,0)

v= (0, —sin &, cos §)

and therefore, we have the dyadic

nv=i.i,cos6—i,i, sind (4.5)
The displacement due to a long strike-slip source can thus be expressed by

u =u’cos 8§—u'sinéd (4.6)

Again, u * and u ' have the same physical meanings as those in (4.2), except that the former is in the
two-dimensional sense. Consequently, to obtain the displacement due to a long strike-slip source, we are
required to calculate only two fundamental displacement fields due to the elementary sources (1,3) and
(1,2).

So far we have obtained the expressions of the static displacements due to an arbitrary shear dislocation
source in three- and two-dimensional cases. They are expressed by the linear combinations of some
fundamental displacements due to some elementary sources, or of some Green’s functions. The remaining
work therefore is to obtain the Green’s functions appearing in eqns. (4.3), (4.4) and (4.6).

4.3. Three-dimensional Green’s function

As we have mentioned above, to get the static displacement field due to an arbitrary shear dislocation
source in a transversely isotropic and layered half-space, we are actually required to calculate only three
Green’s functions corresponding to the sources (1,2), (2,3) and [(2,2)-(3,3)] /2. Using eqns. (2.15)~(2.17)
and (3.9) of this paper and eqn. (16) of Paper I, they are found to be (omitting factor Au dX /(27))

(1) For source (1,2)

Wl = _j;+w[(UM(O)/i)-%JZ(Ar) + 2UN(O)JZ()\r)/r])\ dA sin 26

w' = = [ 200 /i) ) /r+ Uy (0) 5, (A | 42 cos 26 (4

w'=~ [ 7(U,(0)/1) ,(Ar)X dA sin 26
0

In eqn. (4.7), J,(Ar) is the Bessel function of order m. The expansion coefficients of the surface
displacement vector U, (0), U,,(0) and U, (0) in the cylindrical system of vector functions are respectively

3 (0)/i = A66[(G | 2414V34 + G| 4213V44)/G [ 2434 - Vl4]
AU, (O)/i = Aes[(G | 2424V34 + G| 4223V44)/G | 2434 - Vz4] (4-8)
Uy (O) = A66(GL12VL22/GL22 - Vlli )/}\
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where V,; and vt , are the elements of the matrices [V'] and [V*] respectively, which are given by
v]= [‘11][“2]__[as—1][as1]
[(v*]=[af][az]--[aii][ad]

(2) For source (2,3)

u?= _j;+w[(UM(0)/i)%Jl(Ar) + UN(O)JI(}\r)/r])\ dA sin 8

ug? = —f0+°°[(UM(o)/i)Jl(>\r)/r+ UN(O)%Jl(Ar)]A dA cos 8 (4.9)
ul= —fOMo(UL(O)/i)Jl(Ar)}\ dA sin 0

In eqn. (4.9)

U(0)/i = = [(Gl24"*Vis + G| V1) /G |27 — V5]

AU (0)/i = = [(G 1287V + G| "Vi2) /G 128 = Vi) (4.10)

Uy(0) = - (GleVLn/Gsz - V1L1)/7\
(3) For source [(2,2)-(3.3)]/2

u?= L+w{UMo(O)%JO(Ar) + (UMZ(O)%JZ()\r) - 2(UN2(0)/i)J2(}\r)/r] cos 20}>\ dA
"} = /+°°[_2UM2(0)J2(}\r)/r + (UNZ(O)/i)-aa—JZ(Ar)]A d\ sin 26 (4.11)
A r

u

z

3=f0+oo[UL0(0)JO(}\r) + U,2(0)J,(Ar) cos 28] A dA

In eqn. (4.11), U,*(0), U,,*(0) and U,*(0) are the expansion coefficients of the surface displacement vector
corresponding to m = 2 and they are given by

U.2(0) = Ag | (G| 24" Vaa + G | 4Vas) /G 1 2™ = Via] /2
ANULA(0) = Ago[(G 1 262Vas + G| 557Vas) /G | 1™ — Vaa] /2 (4.12)
UNZ(O)/i = _Aes(GleVzli/Gsz - Vle)/(ZA)

U,°(0) and U,,°(0) are the expansion coefficients of the surface displacement vector corresponding to
m = 0 and they are given by

ULO(O) = (G | 24]4Q3 + G| 4213Q4)/G | 2434 -
}‘UMO (0) = (G | 2424Q3 + G| 4223Q4)/G | 2434 - Qz
where

Qj= {(A13/A33 - 1)le + [(Au +A12)/2 _A123/A33] Vj4}/2 j= 1,2,3,4

(4.13)

4.4. Two-dimensional Green’s function

We have shown that it is convenient to use the Cartesian system of vector functions to study the
problem of two-dimensional deformation. The two-dimensional solution can be obtained directly from the
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corresponding three-dimensional solution by replacing 27 by (27)!/? and a by 0 in the scalar function
(2.9) of Paper 1. The two-dimensional Green’s functions appearing in eqns. (4.4) and (4.6) are derived by
this approach and are given in the following.

4.4.1. Plane strain
In this case, the Green’s functions corresponding to the elementary source (2,3) and the combined

source [(2,2)—(3,3)] /2 are required to obtain the surface displacement field (4,4).

(1) For source (2,3), the expansion coefficients U, (0) and U,,(0) of the surface displacement vector due
to this elementary source are (omitting factor Au ds/(27)"/?; this factor is also omitted in the following
expressions of expansion coefficients)

U.(0)/i=sign(B)[(G124'Vis + G| 2"Via) /G 24 =~ V1] (4.14)
Ny (0)/i = sign(B)[(G | 2*Via + G| ,2V3) /G | 24 = V2o

Using equation (14) of Paper I, we find that the surface displacement components are (omitting factor
Au ds/m; this factor is also omitted in the following expressions of surface displacement components)

+ oo
u,’ =f [(G123Vi+ G ™Vi2) /G| 24™ = Vo] cos BydP
o (4.15)
u,’ =f0 [(G124Vs + G| 5Viy) /G | 2% — Vi3] sin By dB

(2) For source [(2,2)-(3,3)]/2, the expansion coefficients U, (0) and U,,(0) in this case are

UL(0) = (G124"Q; + G15°04) /G124 — (4.16)
Ay (0) = (G [ 24703 + G| £27°Q4) /G | 2™ = @,

where

Qj = [(A13/A33 - 1)le + (An _A123/A33)Vj4]/2 j=1,2,3,4

The surface displacement components are found to be

u,’= _f+w[(G|z424Q3 + G| 15204)/G 2>~ Q,] sin By dB
(4.17)

0
uz3 = j(;+oo[(G , 2414Q3 + G| 4213Q4)/G | 2434 - Ql] cos By dB

4.4.2. Antiplane strain

In this case, the Green’s functions corresponding to the elementary sources (1,2) and (1,3) are required
to obtain the surface displacement field (4.6).

(1) For source (1,2), the expansion coefficient U, (0) is found to be

Uy(0) = Ass(GleVzé/szz -V )/)\ (4.18)
and therefore the surface displacement component is

+0o0
ul=—dg) (GiVh/Gs~ Vis) sin By dB (4.19)

(2) For source (1,3), the expansion coefficient U, (0) is given by

Uy (0) /i = sign(B)(GisV31 /G — Vi) /A (4.20)
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and the surface displacement component is found to be

+ 00
ul= [ (GhLVE/Gh~ V) cos By dB (4.21)
0

5. Discussion and conclusion

The results of Paper I have been used to solve the corresponding deformation problem by internal
sources in a transversely isotropic and layered half-space. The source functions of general point disloca-
tions in a transversely isotropic medium are derived in the Cartesian system and the cylindrical system of
vector functions by a unified and simple approach. Explicit expressions for the surface displacements due
to three- and two-dimensional dislocation sources are obtained in these two systems of vector functions in
terms of propagator matrices. Whereas the same procedure can be applied to get the displacement and
stress fields at any point in the medium, the results for a finite fault can be obtained by integration over
the fault area. It is shown that the present solution contains the solutions to the three- and two-dimen-
sional source problems for the corresponding isotropic media, and therefore provides a unified solution for
these two problems, which have long been studied separately. The formulation developed can be calculated
using the numerical procedure of Jovanovich et al. (1974a, b) to study the effects of anisotropy, as well as
of Earth layering, on the static fields.
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Appendix 1

In the Cartesian system of vector functions, the coefficients F,°, F,°, F,°, F,% F,? and F," in eqn.
(3.4) are given respectively by (omitting factor Au dY)

_ d d
FLS = (27) lniVj{(cijzxa + Cijzy@) CXP[i(“x + ,B)’)]}
0

s 5 32 32 32
F=A" ny; c,--”—+2c,-x Tt T S*
M J{ J 8x2 JX¥ dx By Jyyayz) }0

& -2 az az az
F=-A n,—Vj{ Cijxy(ﬁ - W) T (€ = o) dx dy S*}
0

Fi= _(2.,,)‘lniyjc,.jzz{exp[i(txx+.3)’)]}o
FMd= -A 2ni”j{(cisza +CU}V25)S*}O

- d 0
FNd= A Z”i”j{(cijyza - Cisz@)S*}o
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where {~ -}, implies x = x4, y =y, S* is the complex conjugate of the scalar function defined by eqn.
(9) of Paper I, that is

S* =expli(ax+ By)] /(27)

Appendix 2

In the cylindrical system of vector functions, the coefficients F,°, F,° F.°, F“ F, and F, in eqn.
(3.4) are given respectively by (omitting factor Au dY)

-12 d ) 0 ;
3= (27) {n,vjcijz,r—g;[.lm(}\r)r] exp(—im8) + c,jz,Jm(Ar)m [n,.vj exp(—tmﬂ)]}o

. 9 ( as* 8 as* 925+ 9 as*
By’ =2 {n’”fc””r ar(’ or ) 'ﬂ"rao(”"’f or )+" iCier gy a9 T o0 2 aa( Y )}

e 0 (£)+ ( a_S:)_ 35 __f'é_( as_*)
= Cuoryar\"Tar )t i ag " ar a8~ ot T\ "0 ),

F=—(Q7)” /2{n %1z dm(Ar) exp(—im8)}

ijzz

FM =-—A" { 1V(cljrzaa +cij02 aao)S*}O

where (- -}, implies r=r,, § =8,; J,(Ar) denotes the Bessel function of order m; S* is the complex
conjugate of the scalar function defined by eqn. (12) of Paper I, that is

S*=J (Ar) exp(—im8)/(27)"° m=0, 1, +2,
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