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A generalmethodis developedfor thestudy of transientthermoelasticdeformationin a transverselyisotropic and
layeredhalf-spaceby surfaceloadsandinternal sources.A Laplacetransform is first applied to the field quantities;
Cartesianand cylindrical systemsof vectorfunctionsarethenintroducedfor reducingthebasicequationsto threesets
of simultaneouslinear differential equations.Generalsolutionsareobtainedfrom thesesets,and propagatormatrices
from thesolutionsby a partitionedmatrix method.

Sourcefunctions for a variety of sourcesare derivedin the Cartesianand cylindricni systems,and the Laplace
transformedexpressionsof thefield variablesat thesurfacepresentedexplicitly in the two systemsin termsof a layer
matrix. The effect of gravity is includedby multiplying simply an effect matrix resulting from the modificationof
continuity conditionsat thesurfaceandthe layerinterfaces.

It should be notedthat the present analytical method has greatadvantagesover either the classical thin plate
approachor the finite elementmethod,and that the present result can be reduceddirectly to the solutionsof the
correspondingisotropic case.

1. Introduction
Quantitativestudy of the effect of heatingon duceda systematicstudyof the thermoelasticde-

lithospheredeformationhasreceivedgreat atten- formationof the lithosphere.
tion in recentyears. The classicalthin plate ap- Recently, the finite elementmethod was ~jsed
proach is oneof the frequently usedmodelsfor by McMullen and Mohraz (1987) to study the
this problem.Sleepand Snell (1976) proposeda axisymmetricdeformationof anelasticlithosphere
thermo-mechanicalmodel, to describe the ob- subjectedto thermalloading. They also discussed
served subsidenceof the Atlantic margin and the advantagesof this method over the classical
mid-continent basins, which is spatially one-di- thin plateapproach.For someproblems,however,
mensionalandincludesviscoelasticflexure.More analyticalsolutionscanbeobtainedfrom the ther-
recently,Numi andSleep(1984) suggesteda spa- moelastic governing equations. For example,
tial two-dimensionalmodel of finite extent to in- Lanzano(1986a)derivedthe thermoelasticdefor-
vestigatethe thermal contractionand flexure of mation field of a spherical homogeneousEarth
the Michigan Basin. While Mareschal(1981) ex- due to an internal heatsource analytically, and
aminedthe vertical lithosphereexpansionandthe evaluatedthe temperatureprofile and radial de-
surfaceuplift of an elastic slab in responseto formation in it numerically (Lanzano, 1986b).
conductiveheatingfrom below, Bills (1983) pro- Since the thermoelasticparameterswithin the
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Eartharegenerallyfunctionsof depth(Brown and functions for a variety of sourcesare derived in
Shanldand, 1981; Dziewonski and Anderson, the cylindrical as well as the Cartesiansystemof
1981),a morereasonablemodelwould bealayered vectorfunctions,and solutionsfor the field quan-
system. Rundle (1982) and Small and Booker tities at the surfaceare obtainedin the Laplace
(1986)modelled Earth structureas a thermoelas- transformeddomainin termsof the two systems.
tic, isotropic and horizontally layeredhalf-space, Finally, the effect of gravity and some particular
andderivedthe analyticalsolution of deformation resultscontainedin thesolution are discussed.
causedby an internal heatsource. The former
authoremployeda propagatormatrix methodwith
homogeneousand inhomogeneoussolutionsbeing 2. Governingequationsand solution method
separated,whereasthe latter authorsuseda finite
layer approach.It is apparent,however,that these Supposethat the axis of symmetry of a trans-
analytical methods have great advantagesover versely isotropic thermoelasticmedium is along
numerical methodssuch as the above-mentioned the z-axis.We canwrite the Duhamel—Neumann
finite elementtechnique,sinceverylittle computer constitutive equations in Cartesian coordinates
storageanddatapreparationtime is required. (x, y, z) as follows (Nowinski, 1978):

While the solutionof thermoelasticproblemsin
an isotropic mediumhasbeenconsideredin great °~ = A1~u~+ A12u~~+ A13u~~—

detail, comparativelylittle work hasbeendoneon a~= A12u~~+ A11u~~+ A13u~~—

similar problems in a transversely isotropic a = A13u~ + A13u~~+ A 33u5 —

mediumbecauseof the greaterdifficulty involved. — A / (1)
An earlyreporton this topic wasgivenby Sharma (Jyz — ~ + U2~,1

(1958), who developeda displacementpotential a~= A~(u~+ u~~)
methodfor solving the steady-statethermal-stress ~, = (A1, — A12)( ~ , + ~ ~)/2
problem of a transverselyisotropic semi-infinite
elasticsolid. Recently,by introducingthreescalar In eqn. (1), partial differentiationwith respectto
functions,Noda et al. (1985) describeda general x, y and z is indicatedwith a commafollowed by
solution method for the three-dimensionaltran- thevariables; ~ a~etc. are the componentsof
sient thermal-stressproblemsin transverselyiso- stressand (u~,u,, u~)the displacementcompo-
tropic bodiesowing to anasymmetrictemperature nents; A~areelastic moduli; 4) is the increment
distribution. of absolutetemperatureover auniform reference

In two recentpapers(Pan,1989a,b),henceforth temperature;/3~and $~arethermalmoduli which
refeired to as PapersI and II, respectively,the are relatedto a1 and a3 by
static responseof a transverselyisotropic and $ = (A + A ) a + A a
layeredhalf-spaceowing to surfaceloadsanddis- 1 11 12 1 13 3

location sourceswas studied,by introducingtwo $~= 2A13a1+ A33a3
systemsof vector functionsand using the propa- where a1 and a3 are the coefficients of linear
gatormatrix method.This solution methodis cx- thermal expansionin horizontal (x or y) and
tended,in the presentwork, to the corresponding vertical (z) directions,respectively.
transient thermoelastic problem. First, Laplace The equationsof equilibrium are
transformis usedto suppressthe time variable;
the systemsof vector functions are then intro- ~ + ~ + + f~ 0
ducedto reducethe basic equationsto threesets ~ + ~ + a~2+ = 0 (2)
of simultaneouslinear differential equations.In ~ + ~ + a +f =0
order to derive the solution and propagator XZ,X yz,y ZZ,Z

matricesfor the presentproblem, we have em- wheref = (f~~.f~f~)is the body forcevector.
ployeda partitionedmatrix methodwhich enables The third set is the heatconductionequation
the result in PaperI to be useddirectly. Source which governs the temperaturefield 4. If we as-
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sumethat theeffectsof thermoelasticcoupling are flux in the z-directionas follows
negligible, this equation can be simplified to u(x, y, z; s)
(Nowinski, 1978)

+00

4)~+ 4),~+ k24),~— 4),~/K+ pH/k
1 = 0 (3) = ff~LULL~~y) + UM(z)M(x, y)

Heatfluxes q are relatedto temperaturegradients + UN (z)N(x, y)] dad$ (6)
by thegeneralizedFourier law T(x, y, z; s)

q~= —k14)~ q~=—k14)~ q~=—k34)~ (4) ~
+00

In eqns.(3) and(4), = ff [i~(z)L(x, y) + TM(z)M(x, y)
k
2k

3/k1 Kk1/(pc)
+TN(z)N(x, y)] dad$ (7)

Parametersk1 andk3 are the coefficientsof ther- +00

mal conductivity in a horizontal and vertical di- 4)(x, y, z; s) = ff ~(z)S(x, y) da d$ (8)
rection, respectively; p and c are the densityand 00

thespecific heatof the material,respectively; Ic is i~(x, y, z; s) — k34)~
the diffusivity of the material, and finally H the + 00

heat producedby internal heatsourcesper unit = ff Q(z)S(x~~)da d/3
time andunit mass. (9)

The correspondinggoverningequationsin cy-
lindrical coordinates(r, 9, z) can also be written In eqns. (6)—(9), scalar function S and vector
down easily and are similar to thosepresented functionsL, M andN weredefinedin PaperI; the
above, dependenceof expansioncoefficients

1jL~UM, UN,

We will solve eqns.(1)—(4) under appropriate TL, TM, TN,, cI and Q on thevariables andon the
initial and boundaryconditionsin terms of two parametersa and$ hasbeendroppedfor brevity.
systemsof vector functions (Paper I), i.e. the Finally, by assumingthat the thermoelasticsys-
Cartesianandcylindrical systemsof vector func- tem is free of body force and heat source,and
tions, and proceedin the Cartesiansystemonly proceedingas in PaperI, we find that the above
for illustration.However,oneshouldkeepin mind expansioncoefficientssatisfy the following three
that the fàllowing expressionsof expansioncoeffi- setsof linear differential equations
cientshold in the two systems. UL,Z = A2UMA

13/AII+ TL/A33 + $3~/A33)
First,sincethe problemis transient,we employ UMZ = — ~

1L + TM/A~, I
theLaplacetransform

TL,ZXTM / (10)
+00

f(x,y, z; s)=f f(x, y, z; t)exp(—st)dt TMZX2UM(AlIAl
3—A~3)/A3l—Al3TLI

0 I
(5) /A33+ ($i —A13$3/A33)~ /

to suppressthe variable t for functionsdepending ~ = — Q/k3 } ()
upon time. It shouldbe notedthat we haveused Q,~= —k1(X

2+
the samesymbols for the functions before and
after the Laplace transform, and that they are UN,Z = TN/AM
distinguishedby using the Laplacevariable s for TNZ = A2 (A

11 — A12)UN/
2} (12)

the transformedonein the place of t beforethe
transform. Further, the initial valuesfor all field In eqns.(10)—(12)
quantitiesareassumedto be zero. A2 = a2 + $2

Next, we expand the unknown displacement In obtainingeqns.(10)—(12),we haveassumed
and ‘surface’ stressvectors, temperature,andheat that the thermoelasticparametersinvolved are in-
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dependentof the horizontal variablesx and y, where
but they may be any functions of the vertical
variable z. The threesetsof equationscan there- x3 = (A

2 + s/ic)1”2/k
fore beusedto analysethe transientthermoelastic

The submatrix [X(z)](
4x2) in eqn. (14) representsproblemin a vertically inhomogeneoushalf-space.

the effect of a temperaturefield on displacements
A numericalpropagatormatrix methodwasdevel-

and stresses,and has the following non-zeroele-opedby Pan et al. (1986) for solving this type of
ments

equation.In the following, however,we assume
that the mediumis vertically piecewisehomoge- x11 = $~exp(x3z) X12 = $~exp(—x3z) (16)
neous,which is in accordancewith the Earth’s

X41=135 exp(x3z) X42=$5 exp(—x3z)structure.
It shouldbenotedthat the deformationof type where

II (correspondingto the vector N) is free of the
thermaleffect,andthusis exactlythe sameas the $4 = $3/A33
purely elastic case. Its solution to surfaceloads /3 = /3 —

anddislocationsourceswasgivenin PapersI and
II, respectively. Theinverseof [F(z)] is derivedby a partitioned

matrix method from Horn and Johnson(1985).
Thus a propagatormatrix anda propagatingrela-

3. Generalsolutionsand layermatrices tion which relates the expansioncoefficients at
different depthsof an homogeneouslayer, can be

If a mediumis homogeneous,we find, with
obtained

some algebraic manipulation, that the general
solutionsof eqns.(10) and(11) canbecastinto [E(z1)] = [P(h)} [E(z2)] (17)

[E(z)] = [F(z)][K] (13)
where

where

[E(z)] = [UL(z), AUM(z), TL(z)/X, TM(z), [P] = [a : hi (18)o C]
~(z), Q(z)]

T
is the propagatormatrix, and h = z

2— z1 the de-
[K] = [c1, C2, C3, C4, C5, c6]T pth difference. In eqn. (18), [a](4X4) is the propa-

superscriptT indicatesthe transposeof a matrix gator submatrix for the purely elastic medium
and c, areconstantsto be determined;[F(z)] is with elementsbeing given in PaperI; [c](2x2) is
the generalsolution matrix andcan be expressed the one for the pure heat conduction and its
asa partitionedform elementsare foundas

IZ(z) X(z)1
(14) C11 = cosh(x3h) c12 = sinh(x3h)/(k3x3)[F(z)] = [-~-~-~~] c21=k3x3 sinh(x3h) c22=cosh(x3h)

In eqn. (14), [0](2X4) is a zero submatrix, and (19)
[Z(z)](4X4) the generalsolution submatrixfor the
purely elastic body with elementsbeing given in The submatrix [b](4X2) in eqn. (18) can be ex-
PaperI; [Y(z)] (2 2) is the onefor the pure heat pressedas
conduction in a thermally transverselyisotropic
material, andits elementsare found to be [I)] = — [z(zi)] [Z(z2)] ‘[X(z2)] [Y(z2)] 1

Y11=exp(x3z) Y12=exp(—x3z) +[X(z1)][Y(z2)]~ (20)
Y~= —k3x3 exp(x3z) Y22 = k3x3exp(—x3z)

where superscript —1 denotesthe inverse of a
(15) matrix. After somealgebrawefind, in thecaseof
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x
1 ~ x2 the following non-zeroelementsof [b] sub-layeris boundedby theplanesz = z~-1 d and

the second by z = d, ;. Displacement and
b11 =f(x1)c(xi) cosh(Ax1h)+f(x2)c(x2) ‘surface’ stressvectors,temperature,and the heat

X cosh(Ax2 h) + $~cosh(x3h) flux in the z-directionareassumedto be continu-

= —f(x1)d(x1)sinh(Ax1h) ous across anyinterfacesof layersexceptat z = d,

—f(x2)d(x2)sinh(Ax2h) which is to be discussedin the following.

b31 = —f(x1) sinh(Ax1h)/x1
4.1. Sourcerepresentation

—f(x2) sinh(Ax2h)/x2

b41 =f(x1) cosh(Ax1h)+1(x2) cosh(Ax2h) 4.1.1. Pointforce source

+ $~cosh(x3h) The point forcesourcein Cartesiancoordinates

= $~sinh(x3h)/(k3x3) is expressedas

= /35 sinh(x3h)/(k3x3) J(x, y, z; t) =p(t)n~S(x)i~(y)6(z—d) (22)

(21) 1X, y, Z

where where(ny, n,, n~)are the directioncosinesof the
point force vector in Cartesiancoordinates,and

f(x) = g(x)[$5 d(x) — /34/x] p(t) is the time-dependentfactor of the source.
The Laplacetransformof this equationis

c(x), d(x) and g(x) are the functionsdefinedin
PaperI, and x? and x~are two distinct roots of f(x, y, z; s) =p(s)n,&(x)~(y)~(z — d)
the characteristicequation

i=x, y, z (23)
(A~x

2— A
1i)(A33x

2— A~)+ (A
13+ A~)

2x2= 0
Expanding it in the Cartesiansystemof vector
functions, we obtain

+00

4. Deformationofalayeredthermoelasticsystem f(x, y, z; s)=Jf [FL(z)L(x, y)

If the thermoelasticparametersof a medium +FM(Z)M(x, y) + FN(z)N(x, y)] da d$
are vertically piecewise homogeneous,we can (24)
model it with p — 1 parallel and homogeneous
layerslying overanhomogeneoushalf-space.The wheretheexpansioncoefficientsare
layersare numberedserially, the layer at the top FL(z) =p(s)8(z —

beinglayer 1 andthehalf-space,layerp. Weplace
the origins of Cartesianand cylindrical coordi- FM(z)= ~p(s)~(z — d)(n~a+
natesat the surface,and the z-axisis drawninto
the medium.The k th layer is of thicknessh k and FN (z) = ip (s) ~( Z — d )( n~/3— nya)/(2~A2)
is boundedby the interfacesz = Zk_1, Zk. Obvi- (25)
ously, z

0 = 0 and z~_1= HP, where HP is the
depthof the last interface.Wefurther assumethat Therefore the discontinuities of [E(z)] and
suitableboundaryconditionswhich makea prob- [EL(z)1{ = [UN(z), TN (z)/X T) caused by this
lem definite are applied to the surfacez = 0, and sourceare
that a point sourceis situatedon the z-axis at a ~7~L/A=

depth, d, below the surface.Let the sourcelayer
be designatedas layer s with boundariesz = L~TM= —ip(s)(n~a+ n~$)/(2irA

2) (26)
~, z

5. Wedivide the sourcelayerinto two sub-
layers,sl ands2,of identicalproperties.The first ~TN/X = — ~p(s)( n~$— nya)/(2~X

3)
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A similar result in the cylindrical systemof A similar result in thecylindrical systemof vector
vector functionswasfound as (Pan,1989c) functionsis found to be

t~TL/A=_p(s)nz/[X(21T)1~~’2] ~Q=D(s)/(2ir)”2 m=0 (33)

m 0 I 4.2. Layeredhalf-space

~TM=p(s)(±n~+ in~)/[2A(2~)1~2]~ (27) In order to solve problemsin this system,we

m = ±1 1 need to know the surfaceboundarycondition at

1~sTN/A =p(s)(in~±n~)/[2A2(2~)h/’2}I z= 0, the continuity conditionat the layer inter-
m=±1 faces,and the discontinuitycausedby sourcesat

z = d. First, we assume,as an example,that the
Other quantities in the colunm matrices[E(z)] ‘surface’ stressvectorT andthe temperature4) at
and[E’~(z)] are continuousacrossz= d. z= 0 areknown, i.e. in expansionforms,we have

T(x, y, 0; s)
4.1.2.Point dislocationsource +00

A full discussionof this problemwasgiven in = ff [TL(0)L(x, y) + TM(0)M(x, y)

PaperII, and the discontinuitiescausedby this
typeof sourcewereobtainedin the Cartesianand + TN(0)N(x, y)] da d$ (34)

+00

cylindrical systemsof vector functions(PaperI~ 4)(x, y, 0; s) = ff ~(0)S(x, y) da d$
If the sourcedependsupon time t, a factor R(s),
which is the Laplacetransformof the time-depen- (35)
dent function of the dislocationsource, should Next, it is easyto show that the continuitiesof
multiply everyterm of the discontinuities. displacementand‘surface’ stressvectors,tempera-

ture, and heatflux in the z-directionat the layer
4.1.3. Pointheatsource interfacesare equivalent to thoseof the column
When aheatsourceis appliedto a thermoelas- matrices[E(z)] and [EL(z)J; finally, the discon-

tic system,eqn.(11) becomesinhomogeneous tinuities of [E(z)] and [E’~(z)] causedby point

= — Q/k
3 force, dislocationand heatsourceshavejust been

(28) derived,andwe will use
Q,~=—ki(A

2+s/ic)(I)+ W
[i~E] = [WL, XMJM, I~TL/A, ATM, M, ~Q]T

whereW is the expansioncoefficientof bodyheat,
and

i.e.

+00 [L~EL] = [SUN, I~TN/A]T
pH = ff W(z)S(x, y) da d/l (29) to indicatethem.

00 Extending Singh’s technique(Singh, 1970) to

If we assumethat the body heat is of a point the presentcase, one may find the expressionsof
source thefield quantitiesat anypoint of themedium.In

pH = D(s)6(x)6(y)8(z — d) (30) particular, we can obtain the expansioncoeffi-
cientsof the surfacedisplacementsandheatflux

with D(s) being the Laplace transform of the Q(o) = (G
66/G56)(B5+ ~(o))— B6 (36)

time-dependentfactor of the heatsource,we then
find that UL(0)’ ([(B3+TL(0)/A)

W(z)= D(s)8(z — d)/(2~r) (31) — (G36/G56)(B5 + 1(O))] G I~
This sourcecausesa discontinuityof Q with mag- + [(B4 + TM (0)) — (G~/G56)
nitude X (B5 + cb(0))]GI~2~)/G l~
L~~Q= D(s)/(2sr) (32) + (G16/G56)(B5 + 1(0)) — B1 (37)
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AUM(0) = {[(B3 + TL(0)/A) 4.3. Layered plate

— (G36/G56 )(B5 + di (0))] GI By removing the homogeneoushalf-space,we

+ [(B4 + TM (0)) — (G~/G56) thusget a layeredplateconsistingof p — 1 homo-
34 geneouslayers. In this case, suitable boundary

x (B5 + d(o))]GI~)/GJ conditionsshouldbeappliedtobothsurfacesz = 0
/ 24 and z = HP. As an illustration we assumethat at

+ (G26/G56)(B5+ tI)(0)) — B2 (38) z = 0, we know T and 4), as given by eqns.(34)

UN (0) = G~( B~+ TN(0)/A )/G~— B~ (39) and (35), and that at the bottom surfacez = HP,
we have

In eqns.(36)—(39)
u(x, y, HP; s)

[G]=[P1][P2]— —[P~....1][F~(HP)] (40a) +00

[GL] = [at] [a~] - - [a~1] [z~(HP)] (40b) = II [UL(HP)L(x, y)

[B] = [P1][P2] — — [P5...1][P51][i~E] (41a) + UM(HP)M(x, y)

[B’~] = [at] [a’i] — — [a’...i] [at1] [i~E’~] (41b) + UN(HP)N(x, y)} da d$ (44)
±00

GI,~iGIkGjlG,lGjk q~(x,y, HP; s)=ff Q(HP)S(x, y)dad$
wherethe solution matrix [Z~(HP)] andthe prop- 00

(45)
agator matrix [at] were given in Paper I, and
subscriptp is attachedto indicatethat thequan- Following the sameprocedure as above, we
tity belongsto the pth layer. obtain the unknownquantitiesat both surfaces:

It should be noted that the solution for the
pure surface load and internal source problems ~(HP) = (B5+ d(0) — G56Q(HP))/G55“i

34 Icanbe obtained,respectively,by setting[B] = EBL] TL(HP)/A = (G~[w1] — G34[ W2]}/G134 I
= [0] and T~(O)= TM(O) = TN(O) = d(0)= 0 in I
eqns.(36)—(39). TM(HP) = (G33[w2] — G43[wi]}/G1

3434 1
Formulationfor obtainingotherfield variables TN(HP )/A = [B~ + TN(0)/A

is simple, and similar to that given in Paper I.
However, the quantity ~$i4) shouldbe addedto — G~IUN(HP)1/G~ )
the expressionsfor the normalstresscomponents (46)
~ ~ or arr, a

09,as onecould observefrom eqn.
(1). Additionally, the heat flux componentsin Q(0) = G65(B5+ d(0) — G56Q(HP))/G55
horizontaldirectionsaregiven by +G66Q(HP) — B6

+00 13 34
q~= —k1(( dS~dad$ (42a) .UL(O){[J4/I]G[’

4+[W
2]G~}/GI34

•~ ‘

±00 +G11UL(HP)+GI2AUM(HP)
q~= _k1ff ~Sy da d$ (42b) +G15~(HP)+ G16Q(HP)— B1

23 34
in the Cartesiansystem,and AUM(0) = {[w1]Gj~ + [w2]G143}/G134

+00

q,.= _k1~f 4S~rdr dO (43a) +G2IUL(HP) + G22XUM(HP)
0 +G25(J)(HP)+G26Q(JJP)-B2

±00

q0= _k1~f dS9dr dO (43b) UN(0) = Gl’iUN(HP) + G~TN(HP)/A— B~
m

0
(47)

in thecylindrical system.
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where at the surface z = 0. In eqns. (48) and (49),
[W1] = B3 + TL(0)/A— G35d(HP) — G36Q(HP) Pk’ g~,u~anda~are the density,gravity acceler-

ation, displacementand stresscomponent,in the
— G31UL(HP) — G32AUM(HP) k th layer, respectively;~ is the surfaceload in

verticaldirection; g0 is thesurfaceaccelerationof
[w2] = B4 + TM(0) — G45d(HP)— G~Q(HP)

gravity and Po the densityof the materialfilling
— G4IUL(HP) — G42AUM(HP) the vertical lithospheredeflection(McMullen and

Mohraz, 1987). It is obvious that gravity has no
While the column matrices[B] and [B’S]are given effect on the deformationof type II relatedto the
by eqns. (41a,b), matrices[G] and [GL] are ob- vectorN.
tamedfrom eqns.(40a,b)by removingthe solution Usingtheexpansioncoefficients,eqns.(48)and
matrices[F] and [ZUJ, respectively,from its ex- (49) canbe equivalentlyexpressedas
pression.It is notedagainthat the solution for the
pure surfaceload and internal source problems 7j~~— p~g~~’= 7~Lk±l— ~ (50)
canbeobtained,respectively,by setting[B] = [B’S] and
=[O] and TL(O)=TM(O)=TN(O)=dI~(O)=Oin
eqns.(46) and(47). TL — P1g0U~= — p0gQU~ (51)

where~L is the expansioncoefficientof the verti-
cal surfaceload ~ in theCartesianor cylindrical

5. Isostaticresponse systemof vectorfunctions.
If we introducea new column matrix

Wehavejust solvedthe transientthermoelastic [A(z)] = [UL(z), XUM(z), TL(z)
deformationproblem of a transverselyisotropic
and layeredhalf-spaceby surfaceloadsandinter- —pgUL(z),TM(z), 4’(z), Q(z)] ~‘

nal sources.Whendealingwith somedeformation (52)
problemsof the Earthmedium, however,the ef-
fect of gravity must be included (Cathies,1975; thegeneralsolution (13) is thenmodified into
TurcotteandSchubert,1982). The directway, of [A(z)] = [M] [F(z)] [K] (53)
course,is to solve the original elastic-gravitational
equations,as presentedby Rundle (1980, 1981). where [M] is an effect matrix with non-zeroele-
But for a transverselyisotropic medium, the ad- mentsas below
vantagesof usingthis methodare not asapparent (1, 1) = (2, 2) = (4, 4) = (5, 5) = (6, 6) = 1
as for theisotropiccase,sinceanexactsolution to
the formeris quitedifficult. Anotherapproachwe, (3, 3) = A (54)
thus, adopt here is to solve the non-gravitating (3, 1) = — pg

equations,whichwehavejust done,andto modify
The propagatingrelationfor the newcolumn ma-

the continuityconditionsat the layer interfacesas
tnx becomes

well as at the surfacefor the inclusion of the
gravity effect (McConnell, 1965; Iwasaki and [A(zk_l)] = [Mk_l1[P(h)][Mk]~[A(zk)]
Matsu’ura, 1982). Following Iwasaki and (55)
Matsu’ura(1982), modification is requiredfor the
normal stress component a~only, which now where h = Zk — Zk ~. Finally, the discontinuity
becomes [i~ E] causedby internal sourcesis also modified

into
— pkgku~ = — pk+lgk÷1u2 (48)

[iSA] = [M][i~E] (56)
at the k th interface,and

Using thesenew relations,we can proceedin
— p1g0u~= — p0g0u~ (49) the sameway as in the abovesectionto studythe
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isostatic response.It should be noted, however,
that the actual effect of gravity results in the b11 = x1 { —$~[c’ (x1)x~ coshy1
modification of the surfaceboundarycondition +Xhc( x~)xj’ sinh yi]
only, as onecould easily observefrom the propa- + $4c’( x1) xj~cosh(x3h)
gatingrelation (55). Therefore,thesolution to the
gravitatingcaseis nearly as simpleas that to the +$5Xhc(x1)d(x1) sinhy1)/c’(x1)
non-gravitatingcase.This conclusionis coincident b21 = x1 ~$~[a” (x1) xj~’sinh Yi
with McConnell (1965), and is obtainedwithout
additional restrictions on the propertiesof the + A hd(x1 )x~’cosh j’~]

layeredstructure(IwasakiandMatsu’ura, 1982). — $s[d(xi)(d(xi)xj1 + 2d’(x1))

Xsinh y1 + Ahd
2(x

1)cosh yi])

/c’(xi)

b31 = xi{$4[ —x~
3sinh y

1 + Xhx1
2cosh y

1J
6. Particularcases

_$s[d’(x1)x~1 sinh )‘1

We first point out that since the formulation + A lId ( X1) ~ coshYi] } /c’ (x1)
given aboveholdsin thecylindrical systemas well b41 = x1 ( — $4Xhxj’ sinh Yi
as in theCartesiansystemof vectorfunctions,two
typesof particularsolution— two-dimensionaland + $~c’ (x1) xi~cosh(x3 h)
axially symmetricdeformations—canbe obtained + $s[(d(xi)xi1 + d’(x1)) coshYi
directly, as we haveshownin PapersI and II for +Ahd(x1) sinh Yi] )/c’(x1)

the purely elasticcase.
Solutionfor the transient,thermoelasticprob- b12 = $~sinh(x3 h )/( k1x3)

lem in an isotropic and layeredmediumcan also b22 = b32 = 0
be derivedeasily. In the caseof a thermoelastic b42 = $~sinh(x3h)/(k1x3)
isotropic material, we have k1 = k3, a1 = a3 and
the eqn.(3) in PaperI, so that (58)

in which y1 = Ax1h; $~,$~and x3 are given in

k = i eqn. (57); the definitions of functions c(x), d(x)
1/2 and their derivativesweregivenin PaperI.

x3 = (A
2 + s/ic) Finally, a solution for the steady-statethermo-

$1 = $~= Ea
1/(1 — 2v) (57) elastic problem in a transverselyisotropic and

= a~(1+ v)/(1 — ~) layeredhalf-spacecan also be obtaineddirectly

= Ea1/(1 — ) from the formulation above.Sincein this caseall
quantitiesare time-independent,time factors in
the expressionsof surfaceboundaryconditions

where E and v are the Young’s modulus and and of internal sourcesshould be removed. In
Poissonratio, respectively.While the elementsof addition, theexpressionof thethird root x3 should
thesubmatrices[Z] hi eqn.(14)and[a] in eqn.(18) bereplacedby x3 = A/k for a similar reason.The
for the isotropiccasehavebeengiven in PaperI solution is therefore reduced to a simple form
thoseof the submatrices[Y] and [X] in eqn. (14) which containsno Laplacetransform.
and [c] in eqn.(18) are obtainedfrom eqns.(15),
(16) and (19), respectively,by substitutingeqn.

7. Conclusionanddiscussion
(57) into them.The elementsof the submatrix [bJ
in eqn.(18) for the isotropiccaseare given by the A generalsolutionmethodis developedfor the
following equationwith x1 = 1. study of transient thermoelasticdeformationby
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surfaceloadsandinternalsourcesin a transversely Brown, J.M. and Shankland, TJ., 1981. Thermodynamic

isotropic andlayeredhalf-space.The approaches parametersin the Earth asdeterminedfrom seismic pro.

proposedin PapersI and II are employed, in files. Geophys.J.R.Astron. Soc.,66: 579—596.Cathies, L.M., 1975. The Viscosity of the Earth’s Mantle.
conjunctionwith a partitionedmatrix method,to PrincetonUniversity Press,NewJersey,386 pp.

obtain the solution analytically. Sourcefunctions Dziewonski, A.M. and Anderson,D.L., 1981. Preliminaryref-

for a variety of sourcesare derivedin the Carte- erenceEarthmodel. Phys.EarthPlanet.Inter., 25:297—356.

sian and cylindrical systemsof vector functions. Horn, R.A. and Johnson,C.R., 1985. Matrix Analysis. Cam-

The effect of gravity is included by multiplying bridgeUniversityPress,NewYork, 561 pp.Iwasaki, T. and Matsu’ura, M., 1982. Quasi-staticcrustal de-
simply aneffect matrix resultingfrom the modifi- formationsdue to a surfaceload: rheologicalstructureof

cation of continuity conditionsat the surfaceand the Earth’s crust and upper mantle. J. Phys. Earth, 30:

the layer interfaces.It is noted that the present 469—508.

solution can be reduceddirectly to that of the Lanzano,P., 1986a.Thermoelasticdeformationsof theEarth’s
- lithosphere: a mathematicalmodel. Earth, Moon and

correspondingtwo-dimensionaland axially sym- Planets,34: 283-304.

metric deformationsandof the corresponding~5O Lanzano,P., 1986b. Heat conductionwithin an elastic Earth.

tropic case. Earth,Moon andPlanets,36: 157—166.

Sincethe presentsolution is obtaineddirectly Mareschal,J.C., 1981. Uplift by thermal expansionof the

from the three-dimensionaltransientthermoelastic lithosphere.Geophys.J. R. Astron. Soc.,66: 535—552.
McConnell, R.K., 1965. Isostaticadjustmentin alayeredearth.

equationsand expressedin the Laplace trans- J. Geophys.Res.,70: 5171—5188.

formeddomain in termsof two systemsof vector McMullen, R.J. and Mohraz, B., 1987. Axisymmetric finite

functions, its advantagesover the classical thin elementanalysisof anelasticlithospheresubjectedto ther-
plateapproachandthe finite elementmethodare mal loading.Geophys.J.R.Astron. Soc., 88: 325—343.

obvious. While multiplication of the partitioned Noda, N., Talceuti, Y. and Sugano, Y., 1985. On a general
treatise of three-dimensionalthermoelastic problems in

propagatormatrices is required for three sub- transverselyisotropic bodies.Z. Angew. Math. Mech., 65:

matricesonly sinceall the elementsof onesubma- 509512.

trix are always zero,we eventuallymust resortto Nowinski, J.L., 1978. Theoryof Thermoelasticitywith Applica-

some quadraturemethodsto evaluatethe inver- tions. Sijthoff and Noordhoff, Alphen ann den Rijn, 836

sion of the Laplace transformsand the infinite PP~
Nunn, J.A. and Sleep, N.H., 1984. Thermal contraction and

integralsinvolved. Fortunately,muchwork on this flexure of intracratonalbasins: a three-dimensionalstudy

topic has appearedin the literature.We can thus of the Michigan basin. Geophys.J.R. Astron. Soc., 76:

employ suitablequadraturemethodsto investigate 587—635.

quantitatively various problems of the Earth’s Pan, E., Ding, Z.Y. and Wang, R., 1986. The responseof a
thermoelastic deformation related to a trans- sphericallystratified earthmodel to potential body forces

andsurfaceloads.Acta ScientiarumNaturalium,Universi-
verselyisotropic andlayeredmodel. tis Pekinensis,22 (4): 66—79 (in Chinese, with English

abstract).
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