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A general method is developed for the study of transient thermoelastic deformation in a transversely isotropic and
layered half-space by surface loads and internal sources. A Laplace transform is first applied to the field quantities;
Cartesian and cylindrical systems of vector functions are then introduced for reducing the basic equations to three sets
of simultaneous linear differential equations. General solutions are obtained from these sets, and propagator matrices
from the solutions by a partitioned matrix method.

Source functions for a variety of sources are derived in the Cartesian and cylindrical systems, and the Laplace
transformed expressions of the field variables at the surface presented explicitly in the two systems in terms of a layer
matrix. The effect of gravity is included by multiplying simply an effect matrix resulting from the modification of
continuity conditions at the surface and the layer interfaces.

It should be noted that the present analytical method has great advantages over either the classical thin plate
approach or the finite element method, and that the present result can be reduced directly to the solutions of the

corresponding isotropic case.

1. Introduction

Quantitative study of the effect of heating on
lithosphere deformation has received great atten-
tion in recent years. The classical thin plate ap-
proach is one of the frequently used models for
this problem. Sleep and Snell (1976) proposed a
thermo-mechanical model, to describe the ob-
served subsidence of the Atlantic margin and
mid-continent basins, which is spatially one-di-
mensional and includes viscoelastic flexure. More
recently, Nunn and Sleep (1984) suggested a spa-
tial two-dimensional model of finite extent to in-
vestigate the thermal contraction and flexure of
the Michigan Basin. While Mareschal (1981) ex-
amined the vertical lithosphere expansion and the
surface uplift of an elastic slab in response to
conductive heating from below, Bills (1983) pro-
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duced a systematic study of the thermoelastic de-
formation of the lithosphere.

Recently, the finite element method was ysed
by McMullen and Mohraz (1987) to study the
axisymmetric deformation of an elastic lithosphere
subjected to thermal loading. They also discussed
the advantages of this method over the classical
thin plate approach. For some probiems, however,
analytical solutions can be obtained from the ther-
moelastic governing equations. For example,
Lanzano (1986a) derived the thermoelastic defor-
mation field of a spherical homogeneous Earth
due to an internal heat source analytically, and
evaluated the temperature profile and radial de-
formation in it numerically (Lanzano, 1986b).
Since the thermoelastic parameters within the
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Earth are generally functions of depth (Brown and
Shankland, 1981; Dziewonski and Anderson,
1981), a more reasonable model would be a layered
system. Rundle (1982) and Small and Booker
(1986) modelled Earth structure as a thermoelas-
tic, isotropic and horizontally layered half-space,
and derived the analytical solution of deformation
caused by an internal heat source. The former
author employed a propagator matrix method with
homogeneous and inhomogeneous solutions being
separated, whereas the latter authors used a finite
layer approach. It is apparent, however, that these
analytical methods have great advantages over
numerical methods such as the above-mentioned
finite element technique, since very little computer
storage and data preparation time is required.

While the solution of thermoelastic problems in
an isotropic medium has been considered in great
detail, comparatively little work has been done on
similar problems in a transversely isotropic
medium because of the greater difficulty involved.
An early report on this topic was given by Sharma
(1958), who developed a displacement potential
method for solving the steady-state thermal-stress
problem of a transversely isotropic semi-infinite
elastic solid. Recently, by introducing three scalar
functions, Noda et al. (1985) described a general
solution method for the three-dimensional tran-
sient thermal-stress problems in transversely iso-
tropic bodies owing to an asymmetric temperature
distribution.

In two recent papers (Pan, 1989a,b), henceforth
referred to as Papers I and II, respectively, the
static response of a transversely isotropic and
layered half-space owing to surface loads and dis-
location sources was studied, by introducing two
systems of vector functions and using the propa-
gator matrix method. This solution method is ex-
tended, in the present work, to the corresponding
transient thermoelastic problem. First, Laplace
transform is used to suppress the time variable;
the systems of vector functions are then intro-
duced to reduce the basic equations to three sets
of simultaneous linear differential equations. In
order to derive the solution and propagator
matrices for the present problem, we have em-
ployed a partitioned matrix method which enables
the result in Paper I to be used directly. Source
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functions for a variety of sources are derived in
the cylindrical as well as the Cartesian system of
vector functions, and solutions for the field quan-
tities at the surface are obtained in the Laplace
transformed domain in terms of the two systems.
Finally, the effect of gravity and some particular
results contained in the solution are discussed.

2. Governing equations and solution method

Suppose that the axis of symmetry of a trans-
versely isotropic thermoelastic medium is along
the z-axis. We can write the Duhamel-Neumann
constitutive equations in Cartesian coordinates
(x, y, z) as follows (Nowinski, 1978):

O =Anly  + Ayptty, , + Aj3u, , — Bio
oyy = A12ux,x + Alluy,y + Al3uz,z - B1¢
0, = A13ux,x + A13uy,y + A33uz,z - B3¢
oyz = A44(uy,z + uz,y)

o'xz = A44(ux,z + uz,x)

axy = (All —AIZ)(ux,y + uy,x)/2

In eqn. (1), partial differentiation with respect to
x, y and z is indicated with a comma followed by
the variables; o,,, o,, etc. are the components of
stress and (u,, #,, u,) the displacement compo-
nents; A,; are elastic moduli; ¢ is the increment
of absolute temperature over a uniform reference

temperature; ; and B, are thermal moduli which
are related to «; and a; by

Bi= (Au + A12)a1 + A4y305
By =240 + Az,

1)

where a; and «, are the coefficients of linear
thermal expansion in horizontal (x or y) and
vertical (z) directions, respectively.

The equations of equilibrium are

oxx,x + c,ch,y + oxz,z +fx =0
Oy xt0,,t0, . +f=0 (2)
Oyz,x + Oz, y + 02,z +fz =0

where f = (f,, f,, f;) is the body force vector.
The third set is the heat conduction equation
which governs the temperature field ¢. If we as-
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sume that the effects of thermoelastic coupling are
negligible, this equation can be simplified to
(Nowinski, 1978)

Gt b, +k,.—¢,/x+pH/ki=0 (3)

Heat fluxes g; are related to temperature gradients
by the generalized Fourier law

q. = _qub,x qy = _kl¢,y q. = _k3¢,z (4)
In eqns. (3) and (4),
k*=ky/ky  k=ky/(pc)

Parameters k; and k; are the coefficients of ther-
mal conductivity in a horizontal and vertical di-
rection, respectively; p and ¢ are the density and
the specific heat of the material, respectively; « is
the diffusivity of the material, and finally H the
heat produced by internal heat sources per unit
time and unit mass.

The corresponding governing equations in cy-
lindrical coordinates (r, 8, z) can also be written
down easily and are similar to those presented
above.

We will solve eqns. (1)—(4) under appropriate
initial and boundary conditions in terms of two
systems of vector functions (Paper I), i.e. the
Cartesian and cylindrical systems of vector func-
tions, and proceed in the Cartesian system only
for illustration. However, one should keep in mind
that the following expressions of expansion coeffi-
cients hold in the two systems.

First, since the problem is transient, we employ
the Laplace transform

f(x,y, z; 5) =j;+°°f(x, v, z; t) exp(—st) dt
(5)

to suppress the variable ¢ for functions depending
upon time. It should be noted that we have used
the same symbols for the functions before and
after the Laplace transform, and that they are
distinguished by using the Laplace variable s for
the transformed one in the place of ¢ before the
transform. Further, the initial values for all field
quantities are assumed to be zero.

Next, we expand the unknown displacement
and ‘surface’ stress vectors, temperature, and heat
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flux in the z-direction as follows

u(x, y, z; 5)
=ff_+:[UL(z)L(x, )+ Uy (2)M(x, »)

+ Uy (z)N(x, y)] da dB (6)
T(x, y, z; s)

=01, + 0,1, +0,l1,

- [ 1m0 ) + T (MG, )
+Ty(2)N(x, y)] da dB (7)
¢(x, y, z; S)=ff_+:<1>(z)S(x, y)dadB (8)
g.(x, y, 2, 8) = —kyo,
= [f Te()s(x. ) daas
)

In eqns. (6)-(9), scalar function S and vector
functions L, M and N were defined in Paper I; the
dependence of expansion coefficients U, , Uy, Uy,
T, Ty, Ty, ® and Q on the variable s and on the
parameters a and 8 has been dropped for brevity.

Finally, by assuming that the thermoelastic sys-
tem is free of body force and heat source, and
proceeding as in Paper I, we find that the above
expansion coefficients satisfy the following three
sets of linear differential equations

Uy, =NUyArs/As; + Ty /A5 + B0/ A3,

Un,.=—U+ Ty /A

T, ,=NTy, (10)

Ty.= }‘2UM (A11A33 - A%s)/Ass — AT,
/As+ (B — 41383/ A433) @

q),z= _Q/k3
Q,z= —k1(>\2+s/n)<1>} (11)
Un,; = Tn/Au

’ 12
TN,2=)\2(A11_A12)UN/2} ( )

In eqns. (10)—(12)
N=qa>+p?

In obtaining eqns. (10)-(12), we have assumed
that the thermoelastic parameters involved are in-
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dependent of the horizontal variables x and y,
but they may be any functions of the vertical
variable z. The three sets of equations can there-
fore be used to analyse the transient thermoelastic
problem in a vertically inhomogeneous half-space.
A numerical propagator matrix method was devel-
oped by Pan et al. (1986) for solving this type of
equation. In the following, however, we assume
that the medium is vertically piecewise homoge-
neous, which is in accordance with the Earth’s
structure.

It should be noted that the deformation of type
II (corresponding to the vector N) is free of the
thermal effect, and thus is exactly the same as the
purely elastic case. Its solution to surface loads
and dislocation sources was given in Papers I and
I1, respectively.

3. General solutions and layer matrices

If a medium is homogeneous, we find, with
some algebraic manipulation, that the general
solutions of eqns. (10) and (11) can be cast into

[E(2)] = [F(2)][K] (13)
where
[E(Z)] = [UL(Z)’ AUM(Z)’ TL(Z)/A’ TM(Z)’
T

@(z), 0(2)]
[K] = [cli C2’ C3, C4, c5’ c6]T
superscript T indicates the transpose of a matrix
and ¢; are constants to be determined; [F(z)] is

the general solution matrix and can be expressed
as a partitioned form

0 ! Y(2) (14)
In eqn. (14), [0]x4) is a zero submatrix, and
[Z(2)](4x 4y the general solution submatrix for the
purely elastic body with elements being given in
Paper I; [Y(z)];x2) is the one for the pure heat
conduction in a thermally transversely isotropic
material, and its elements are found to be

Yy, = exp(x;2) Y}, = exp(—x;z)
Yy = ksx; exp(—x;z)

(15)

Yy = —ksx; exp(x32)
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where
x;=(N+ s/n)l/z/k

The submatrix [X(z)]x2 in eqn. (14) represents
the effect of a temperature field on displacements
and stresses, and has the following non-zero ele-
ments

X1 =By exp(x;2) X, =8, exp(—x3z)

Xa1 = Bs exp(x3z) Xy = B5 exp(—x52) (16)

where
B4 = Bs/ Ay
Bs = Bl - BaAls

The inverse of [F(z)] is derived by a partitioned
matrix method from Horn and Johnson (1985).
Thus a propagator matrix and a propagating rela-
tion which relates the expansion coefficients at
different depths of an homogeneous layer, can be
obtained

[E(21)] = [P(#)][E(z2,)] (17)
where
a! b]

[P] = [6“:'6 (18)

is the propagator matrix, and & =z, — z; the de-
pth difference. In eqn. (18), [a}4x4 is the propa-
gator submatrix for the purely elastic medium
with elements being given in Paper I; [¢];xo, is
the one for the pure heat conduction and its
elements are found as

¢11 = cosh(x;3h)
¢y = k3x3 sinh(x3h)

= sinh(x3h)/(k3x3)
¢y, = cosh(x;h)
(19)

The submatrix [b], ., in eqn. (18) can be ex-
pressed as

[b] = —[2(2))][Z(2,)] ' [X(22)] [¥(22)] '
+[X(2)][¥(2,)] (20)

where superscript —1 denotes the inverse of a
matrix. After some algebra we find, in the case of
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X, # x, the following non-zero elements of [b]

by =f(x1)c(x,) cosh(Axyh) + f(x5)c(x,)
X cosh(Ax,h) + B, cosh(x;h)

by = — f(x,)d(x;) sinh(Ax;h)

—f(x;)d(x,) sinh(Ax,h)

= f(x;) sinh(Ax;h)/x,

—f(x;) sinh(Ax,k)/x,

by =f(x;) cosh(Ax,h) + f(x,) cosh(Ax,h)
+ B5 cosh(x;h)

by = By sinh(x3h) /(k3x,)

by, = Bs sinh(x3h)/(ksx;)

b31

(21)
where

f(x) =g(x)[Bs d(x)— B4/x]

c(x), d(x) and g(x) are the functions defined in
Paper I, and x? and x2 are two distinct roots of

the characteristic equation

(Aaax® — Ay (Az3x® — Agy) + (Aps + A4) x> =0

4. Deformation of a layered thermoelastic system

If the thermoelastic parameters of a medium
are vertically piecewise homogeneous, we can
model it with p —1 parallel and homogeneous
layers lying over an homogeneous half-space. The
layers are numbered serially, the layer at the top
being layer 1 and the half-space, layer p. We place
the origins of Cartesian and cylindrical coordi-
nates at the surface, and the z-axis is drawn into
the medium. The kth layer is of thickness 4, and
is bounded by the interfaces z =z, _;, z,. Obvi-
ously, z,=0 and z,_, = HP, where HP is the
depth of the last interface. We further assume that
suitable boundary conditions which make a prob-
lem definite are applied to the surface z =0, and
that a point source is situated on the z-axis at a
depth, d, below the surface. Let the source layer
be designated as layer s with boundaries z =
z,_1, Z,. We divide the source layer into two sub-
layers, s1 and s2, of identical properties. The first
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sub-layer is bounded by the planes z=2z,_,; 4 and
the second by z=4d, z,. Displacement and
‘surface’ stress vectors, temperature, and the heat
flux in the z-direction are assumed to be continu-
ous across any interfaces of layers except at z = d,
which is to be discussed in the following.

4.1. Source representation

4.1.1. Point force source
The point force source in Cartesian coordinates
is expressed as

fi(x’ Vs Z3 t)=p(t)”i8(x)8(y)6(z_d) (22)

i=x,y,z

where (n,, n,, n,) are the direction cosines of the
point force vector in Cartesian coordinates, and
p(t) is the time-dependent factor of the source.
The Laplace transform of this equation is

fi(x, y, z; s)=p(s)n;8(x)8(y)8(z—d)
i=x,y,z (23)

Expanding it in the Cartesian system of vector
functions, we obtain

((x, 359 = [ [F(IL(x, »)
+ Fo (2)M(x, y) + Fy(z)N(x, y)] da dB
(24)
where the expansion coefficients are
F(z)=p(s)8(z—d)n,/(27)
Fy(z)=ip(s)8(z—d)(n.a+ ny,B)/(27r>\2)

Fy(z) =ip(s)8(z—d)(n.B—n,a)/(27X)
(25)

Therefore the discontinuities of [E(z)] and
[EL(2)){ = [Uy(2), Ty(2)/A]T} caused by this
source are

AT /A= —p(s)n,/(27])
AT, = —ip(s)(nxa—i-ny,B)/(Z'n'}\z) (26)
ATy/A=—ip(s)(n.B— nya)/(27r)\3)
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A similar result in the cylindrical system of
vector functions was found as (Pan, 1989c)

AT /N = —p(s)n./[A@27)"]
m=0

ATy =p(s)(xn, +in,)/[2A(27)"7]
m=+1

ATy/A=p(s)(in, + ny)/[2}\2(27r)1/2]
m=+1

(27)

Other quantities in the column matrices [E(z)]
and [E%(z)] are continuous across z = d.

4.1.2. Point dislocation source

A full discussion of this problem was given in
Paper II, and the discontinuities caused by this
type of source were obtained in the Cartesian and
cylindrical systems of vector functions (Paper II).
If the source depends upon time ¢, a factor R(s),
which is the Laplace transform of the time-depen-

dent function of the dislocation source, should

multiply every term of the discontinuities.

4.1.3. Point heat source
When a heat source is applied to a thermoelas-
tic system, eqn. (11) becomes inhomogeneous

(I),z = _Q/k3
Q,=—k(N+s/k)0+W (28)

where W is the expansion coefficient of body heat,
ie.

+ o0
pH=[[ W(2)S(x, y) dadp (29)
If we assume that the body heat is of a point
source )
pH =D(s)8(x)8(y)8(z—d) (30)

with D(s) being the Laplace transform of the
time-dependent factor of the heat source, we then
find that

W(z)=D(s)6(z—d)/(27) (31)

This source causes a discontinuity of Q with mag-
nitude

AQ=D(s)/(27) (32)
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A similar result in the cylindrical system of vector
functions is found to be

AQ=D(s)/(27)"* m=0 (33)
4.2. Layered half-space

In order to solve problems in this system, we
need to know the surface boundary condition at
z =0, the continuity condition at the layer inter-
faces, and the discontinuity caused by sources at
z=d. First, we assume, as an example, that the
‘surface’ stress vector T and the temperature ¢ at
z =0 are known, i.e. in expansion forms, we have

T(x, y,0; )
=[] TR0, ») + TOMG, »)
+ Ty (O)N(x, )] da dB (34)
#(x. 7.0:5)= [ “0(0)5(x, ») da ap
(35)

Next, it is easy to show that the continuities of
displacement and ‘surface’ stress vectors, tempera-
ture, and heat flux in the z-direction at the layer
interfaces are equivalent to those of the column
matrices [E(z)] and [EX(z)]; finally, the discon-
tinuities of [E(z)] and [E%(z)] caused by point
force, dislocation and heat sources have just been
derived, and we will use

[AE] = [AU,, AAU,,, AT, /A, AT,,, A®, AQ]”
and
[AE"] = [AUy, &Ty/A]"
to indicate them.

Extending Singh’s technique (Singh, 1970) to
the present case, one may find the expressions of
the field quantities at any point of the medium. In

particular, we can obtain the expansion coeffi-
cients of the surface displacements and heat flux

Q(O) = (Gss/Gss)(Bs + (D(O)) - B (36)
U.(0) = {[(B, + T.(0)/A)

—(Gis/Gss)(Bs + ©(0))] G |34

+[(By + T3 (0)) — (Gas/Gss)

X (Bs+@(0))]G1i3}/G13¢

+ (GIG/G56)(BS + (IJ(O)) - B, (37)
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AUy (0) = {[(B; + T.(0)/A)

—(Ga6/Gss)(Bs + @(0))] Gl

+[(By + T3 (0)) — (Gus/Gss)

(8, + 00)]f3) ]

+(Gys/Gss)(Bs + ®(0)) — B, (38)
Uy (0) = Gi3(Bf + Ty(0)/A) /G — Bf  (39)
In eqns. (36)-(39)

[G] =[P ][P;] — — [P,_.] [F-(HP)] (40a)
[G*]=[af][a5] - — [af-a][Z5(HP)]  (a0b)
[B] =[P, ][P,] — — [P,_;][P4][AE] (41a)
[B*] = [af][a3] — —[a%_1][ahi][AE"] (41b)
Gl = ikGﬂ“ Gilij

where the solution matrix [Z{;(HP )] and the prop-
agator matrix [a’;,] were given in Paper I, and
subscript p is attached to indicate that the quan-
tity belongs to the pth layer.

It should be noted that the solution for the
pure surface load and internal source problems
can be obtained, respectively, by setting [B] = [B”]
=[0] and T,(0)=Ty(0)=Ty(0)=2(0)=0 in
eqns. (36)—(39).

Formulation for obtaining other field variables
is simple, and similar to that given in Paper I
However, the quantity — ;¢ should be added to
the expressions for the normal stress components
Oyys Oy, OF O,,, Gyg, as one could observe from eqn.
(1). Additionally, the heat flux components in
horizontal directions are given by

+
a.= k[ “0s , da df (42a)
+ o0
g,= —k, f f_w oS, da dB (42b)
in the Cartesian system, and
+ oo
g=—kY f ®S ,rdr dé (43a)
mv0
+ 00
do=—k Y f ®S ,drdé (43b)
m Y0

in the cylindrical system.

U,(0) = {[m16li4 + [W]6],,) /Gl
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4.3. Layered plate

By removing the homogeneous half-space, we
thus get a layered plate consisting of p — 1 homo-
geneous layers. In this case, suitable boundary
conditions should be applied to both surfaces z =0
and z = HP. As an illustration we assume that at
z=0, we know T and ¢, as given by eqns. (34)
and (35), and that at the bottom surface z = HP,
we have

u(x, y, HP; 5)

=ff_+:[UL(HP)L(x, »)
+ Uy (HP)M(x, y)
+ Uy (HP)N(x, y)] da dB (44)

0.(x. y, #P; 5) = [ “Q(HP)S(x, y) da dB
(45)

Following the same procedure as above, we
obtain the unknown quantities at both surfaces:

Q(HP) = (Bs + (D(O) = GssQ(HP))/Gss
T,(HP) /A = {Gu[W;] - Gy [W,]} /Gl
Ty (HP) = { Gy [ W3] - G [W11} /G2,
Ty (HP) /A = [ Bf + Ty (0) /A
~GjiUy(HP)] /G};

(46)

Q(0) = Ggs(Bs + ®(0) — GssQ(HP)) /Gss
+GgQ(HP) — B

+GhU,(HP) + G,AUy, (HP)
+Gs®(HP) + GxQ(HP) — B,
AUy (0) = {[W:16l5; + (W16} /GLs
+ G, iU, (HP) + Gy, AUy (HP)
+G,s®(HP) + G,c,Q(HP) — B,
Uy (0) = GLUy (HP) + G5Ty(HP) /A — BE

(47)
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where

[W1] =By + T.(0) /A — G3s®(HP) — G3xQ(HP)
— Gy U, (HP) — G AU, (HP)

[W,] =B, + T),(0) — G;s@(HP) — G,sQ(HP)
—G4U (HP) — G, AUy (HP)

While the column matrices [B] and [BZ] are given
by eqns. (41a,b), matrices [G] and [G] are ob-
tained from eqns. (40a,b) by removing the solution
matrices [F] and [Z], respectively, from its ex-
pression. It is noted again that the solution for the
pure surface load and internal source problems
can be obtained, respectively, by setting [B] = [B]
=[0] and T7;(0)=T,(0)=Ty(0)=@(0)=0 in
eqns. (46) and (47).

5. Isostatic response

We have just solved the transient thermoelastic
deformation problem of a transversely isotropic
and layered half-space by surface loads and inter-
nal sources. When dealing with some deformation
problems of the Earth medium, however, the ef-
fect of gravity must be included (Cathles, 1975;
Turcotte and Schubert, 1982). The direct way, of
course, is to solve the original elastic-gravitational
equations, as presented by Rundle (1980, 1981).
But for a transversely isotropic medium, the ad-
vantages of using this method are not as apparent
as for the isotropic case, since an exact solution to
the former is quite difficult. Another approach we,
thus, adopt here is to solve the non-gravitating
equations, which we have just done, and to modify
the continuity conditions at the layer interfaces as
well as at the surface for the inclusion of the
gravity effect (McConnell, 1965; Iwasaki and
Matsu’ura, 1982). Following Iwasaki and
Matsu’ura (1982), modification is required for the
normal stress component o,, only, which now
becomes

k
0!2 - pkgkuf = °z’§+l ~ Pr+18k+1Y4; (48)
at the kth interface, and

0, — P18o%; = Prz; — Po8olh: (49)
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at the surface z=0. In eqns. (48) and (49),
Px» 8> u* and of are the density, gravity acceler-
ation, displacement and stress component, in the
kth layer, respectively; p,, is the surface load in
vertical direction; g, is the surface acceleration of
gravity and p, the density of the material filling
the vertical lithosphere deflection (McMullen and
Mohraz, 1987). It is obvious that gravity has no
effect on the deformation of type II related to the
vector N.

Using the expansion coefficients, eqns. (48) and
(49) can be equivalently expressed as

Tzf( - pkgkUI{( = Tlfﬂ - Pk+18k+1U1fc (50)
and
T, — p18UL = P, — pogoUL (51)

where P, is the expansion coefficient of the verti-
cal surface load p,, in the Cartesian or cylindrical
system of vector functions.

If we introduce a new column matrix

[A(z)] = [UL(Z)’ >‘UM(Z)a TL(Z)
— 08U, (2), Ty (2), ®(2), Q(2)]”

(52)
the general solution (13) is then modified into
[A(2)] = [M][F(2)][K] (53)

where [M] is an effect matrix with non-zero ele-
ments as below

1,1)=(2,2)=(4,4)=(5,5)=(6,6)=1
(3,3)=A (54)
(3,1)= —pg

The propagating relation for the new column ma-
trix becomes

[A(Zk—l)] = [M,_,] [P(h)] M, ] —I[A(zk)]
(55)

where h=z,—z,_,. Finally, the discontinuity
[AE] caused by internal sources is also modified

- 1nto

[AA] = [M][AE] (56)

Using these new relations, we can proceed in
the same way as in the above section to study the
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isostatic response. It should be noted, however,
that the actual effect of gravity results in the
modification of the surface boundary condition
only, as one could easily observe from the propa-
gating relation (55). Therefore, the solution to the
gravitating case is nearly as simple as that to the
non-gravitating case. This conclusion is coincident
with McConnell (1965), and is obtained without
additional restrictions on the properties of the
layered structure (Iwasaki and Matsu’ura, 1982).

6. Particular cases

We first point out that since the formulation
given above holds in the cylindrical system as well
as in the Cartesian system of vector functions, two
types of particular solution—two-dimensional and
axially symmetric deformations—can be obtained
directly, as we have shown in Papers I and II for
the purely elastic case.

Solution for the transient, thermoelastic prob-
lem in an isotropic and layered medium can also
be derived easily. In the case of a thermoelastic
isotropic material, we have k; = k;, a; =a; and
the eqn. (3) in Paper I, so that

k=1
xy;=(N+ s/;c)l/2
B =B;=Ee/(1—-2v) (57)

Bi=ey(1+2)/(1—v)
Bs=Ea/(1—»)

where E and » are the Young’s modulus and
Poisson ratio, respectively. While the elements of
the submatrices [Z] in eqn. (14) and [a] in eqn. (18)
for the isotropic case have been given in Paper I,
those of the submatrices [Y] and [X] in eqn. (14)
and [c] in eqn. (18) are obtained from eqns. (15),
(16) and (19), respectively, by substituting eqn.
(57) into them. The elements of the submatrix [b]
in eqn. (18) for the isotropic case are given by the
following equation with x; = 1.

E. PAN

by =x1{ _:34[5"(961)751_1 cosh y,
+Ahe(x,)x; ! sinh y]
+ Byc’(x;)x1 ! cosh(x;h)
+BsAhc(x;)d(x,) sinh y, }/c’(x;)
by =xl{.34[‘1',("1)3‘71_1 sinh y,
+Ahd(x;)x ! cosh y,]
— Bs[d(x))(d(x))xi " +2d"(x,))
Xsinh y, + Ahd?(x,) cosh y,]}
/¢ (%)
by, =x1{,84[—x1_3 sinh y; + Ahx{? cosh yl]
= Bs[d’(x))x7 " sinh »,
+Ahd(x,)x; " cosh yl]}/c'(xl)
by = x,{ —BAhx ! sinh y
+ Bsc’(x;)xy ! cosh(x;h)
+ Bs[(d(x)x " +d'(x1)) cosh py
+Ahd(x,) sinh yl]}/c'(xl)

by =B, sinh(x3h)/(k1x3)
by, =by =0

by, = Bs sinh(x3h)/(kyx3)

(58)

in which y, =Ax;h; B,, Bs and x; are given in
eqn. (57); the definitions of functions c(x), d(x)
and their derivatives were given in Paper I.

Finally, a solution for the steady-state thermo-
elastic problem in a transversely isotropic and
layered half-space can also be obtained directly
from the formulation above. Since in this case all
quantities are time-independent, time factors in
the expressions of surface boundary conditions
and of internal sources should be removed. In
addition, the expression of the third root x, should
be replaced by x; = A/k for a similar reason. The
solution is therefore reduced to a simple form
which contains no Laplace transform.

7. Conclusion and discussion

A general solution method is developed for the
study of transient thermoelastic deformation by
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surface loads and internal sources in a transversely
isotropic and layered half-space. The approaches
proposed in Papers I and II are employed, in
conjunction with a partitioned matrix method, to
obtain the solution analytically. Source functions
for a variety of sources are derived in the Carte-
sian and cylindrical systems of vector functions.
The effect of gravity is included by multiplying
simply an effect matrix resulting from the modifi-
cation of continuity conditions at the surface and
the layer interfaces. It is noted that the present
solution can be reduced directly to that of the
corresponding two-dimensional and axially sym-
metric deformations and of the corresponding iso-
tropic case. _

Since the present solution is obtained directly
from the three-dimensional transient thermoelastic
equations and expressed in the Laplace trans-
formed domain in terms of two systems of vector
functions, its advantages over the classical thin
plate approach and the finite element method are
obvious. While multiplication of the partitioned
propagator matrices is required for three sub-
matrices only since all the elements of one subma-
trix are always zero, we eventually must resort to
some quadrature methods to evaluate the inver-
sion of the Laplace transforms and the infinite
integrals involved. Fortunately, much work on this
topic has appeared in the literature. We can thus
employ suitable quadrature methods to investigate
quantitatively various problems of the Earth’s
thermoelastic deformation related to a trans-
versely isotropic and layered model.
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