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Abstract. Levinson's solution for the problem of a simply supported rectangular plate of  arbitrary 
thickness by normal surface loads is extended to the transversely isotropic and layered case. The 
exact closed form solution is obtained by using the propagator matrix method in a system of 
vector functions. As a special case of  the layered medium, the normal displacement or deflection 
of a homogeneous plate of  arbitrary thickness by normal surface loads is also given. It is shown 
that it approaches the classical solution for the transversely isotropic thin plate as the thickness 
approaches zero on the one hand, and on the other hand reduces to the thick plate expression as 
given by Levinson when the medium is isotropic. 
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List of symbols 

X = X l , y  =X2,  2 = X 3 =  

¢Yij, eij = 

All ,  AI2, AI3, A33, A44 = 
./166 ~ 

E =  
V= 

( L = 
Ui; Ux, uy ,  U z = 

S(x, y; m, n) = 
m ,  n =  

a, b, H = 

V2( ) = ~2( )/dx ~ + ~2( )/dy2 = 
22= 
~ 2 =  

Cartesian coordinates; In Section 5 and Appendices A 
and C, xt and x2 are the characteristic roots. 
stress and strain components respectively. 
elastic constants. 
(At! -- A12)/2 
Young's modulus. 
Poisson's ratio. 
~( )/~xi 
displacements. 
scalar function. 
integers. 
length, width and thickness of  the layered rectangular 
plate respectively. 
Laplacian operator. 
a 2 + / ~  
(mn)Z/a z 

~2 = (n~)2/b2 
i x, iy, i Z = unit vectors. 

L, M, N = vector functions. 
~ij = Kronecker delta. 

hk = zk -- z~ _ t = thickness of  layer k. 
zk _ 1, z~ = coordinates of  upper and lower interfaces of  layer k. 

P= = P,,nS(x, y; m, n) = normal loading applied to the uppermost surface. 
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u~ *), a,~ ) = displacements and stresses respectively in layer k. 
UL(z), Uu(z), UN(Z)= expansion coefficients of displacement vector u. 
TL(Z), Tu(z), T~v(z) = expansion coefficients of "surface" stress vector T. 

f(z), g(z)= shape functions used by Levinson. 
Wren = deflection coefficients used by Levinson. 

[a(z)], [A L(z)], [Z(z)], [Z~(z)] = matrix functions. 
[C] = [A, B, C, D] r, [C z] = [A ~, B ~] r = column matrices. 

[__] r = transpose of matrix [--] .  
[__] - l = inverse of matrix [ - - ] .  

[ak], [a~] = layer matrices. 
[Ak(z)] = column matrix function of layer k. 

A = F31 F42 -- F41 F32 

[Y] = [al][a2l--[ap] 
F,~ = elements of matrix [F]. 
Yl = Xl 2H 
y2 = x 2 2H 

ch, sh = hyperbolic cosine and sine respectively. 
e(x), d(x) = functions defined in Appendix A. 

c'(x) = dc(x)/dx 
d'(x) = dd(x)/dx 

D = bending stiffness 
S = (A66/A4,1)1 /2  

~ = S/144 

g(x) = function defined and used in Appendix C. 
[b] = matrix used in Appendix C. 

1. Introduction 

It is well-known that the classical thin plate theory places undue restrictions on 

certain types o f  plate problems and thus cannot  provide satisfactory results [ 1]. 

Therefore, various "thick plate theories" based on more  appropr ia te  and 

rational assumptions have been developed [2]. Recently, based on his kinematic 

assumptions,  Levinson proposed a novel thick plate theory [3] in which normal  

stress and strain effects as well as shear effects are incorporated.  Furthermore,  

by making use o f  these assumptions,  he solved the Navier  equations o f  elasticity 

and obtained an exact three dimensional solution for a simply supported 

rectangular plate o f  arbi t rary thickness by normal  surface loads [4]. 
The solution o f  a transversely isotropic and layered elastic medium is o f  

great interest in the fields o f  soil mechanics [5, 6] and of  composi te  materials 

[7]. Tsai [8] solved the symmetrical  problem of  the contact  between a spherical 

indenter and a thick transversely isotropic plate by using the technique o f  the 

Hankel  transform; Small and Booker  [6] solved the three-dimensional prob-  

lem o f  a transversely isotropic and layered elastic medium under  surface 
loadings using double Fourier  t ransformations and the so-called finite layer 

approach.  But that  method requires one to solve a system o f  simultaneous 
linear equations with order propor t ional  to the number  o f  layers and to 
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introduce auxiliary variables and coordinate transformations. Recently, a 
considerably simpler and uniform approach has been proposed by the present 
author to solve this problem [9]. As the method used in [9] is based on two 
systems of vector functions in association with the propagator matrix method 
[10], the formulation has avoided the complicated nature of the problem. 

Based on our previous work [9], in this paper we have extended Levinson's 
solution [4] for the problem of a simply supported rectangular plate of arbitrary 
thickness by normal surface loads to the corresponding transversely isotropic 
and layered case. The exact closed form solution is obtained using the 
propagator matrix method in a system of vector functions constructed from a 
double Fourier sine series. For a homogeneous thick plate, the solution can be 
expressed in a very simple form, which is useful for investigating the effects of 
the thickness, elastic constants and characteristic roots on the deflection. It is 
found that the classical solution of a transversely isotropic and simply 
supported rectangular plate and the solution of an isotropic thick plate given 
in [4] are all the particular cases of our results. 

2. Basic equations and a system of vector functions 

We take the axis of symmetry of a homogeneous and transversely isotropic 
elastic medium as the z-axis. The generalized Hooke's law in Cartesian 
coordinates (x = xl,  y = x2, z ---x3) can then be written as [11] 

axx = A~le~x + A12eyy + A~3e= 

tTyy : Ai2exx + A ~ e y y  + A13e= 

fizz = A~3exx + A13eyy + A33ezz 

where 

A 6 6  = (A~I  - -  A~2)/2. 

~ry~ = 2A44eyz, 

~rxz ~ 2A44exz , 

~Txy = 2A66exy , 

(2.1) 

In (2.1), axx, ayy, etc. are the components of stress and ex~, eyy, etc. are the 
components of strain. A~I, A~2, ,413, ,433 and A44 are the five elastic constants 
of the medium. In the case of an isotropic medium 

A,~ = A33 = E(1 - v)/[(1 + v)(l - 2v)], 

A~2 = A13 = Ev/[(1 + v)(1 - 2v)], (2.3) 

A44 = E/[2( 1 + v)], 

where E is Young's modulus and v is Poisson's ratio. 

(2.2) 
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When the body forces are absent, the equations of equilibrium in tensor 
notation are 

ao.,j = 0, (2.4) 

where the summation convention is implied. The subscript " , j "  denotes the 
partial derivative with respect to xj and i, j = 1, 2, 3. 

The final basic equations are the well-known strain-displacement relations, 
i.e. 

e~ = (ul.j + uj.i)/2, (2.5) 

where ui is the xi component of displacement vector. 
We now introduce a double Fourier sine series and a system of vector 

functions constructed from it. The series 

S(x ,  y;  m, n) = s in (m~x /a )  sin(nrcy/b) (2.6) 

is assumed after examining the "edge" conditions of a simply supported plate 
occupying the region 0 ~< x ~< a, 0 ~< y ~< b and 0 ~< z ~< H. The constants m 
and n are taken to be integers. It is apparent that the function S(x ,  y;  m, n) 

satisfies Helmholtz equation 

Vzs + 2zS = 0, (2.7) 

where V z is the Laplacian operator, 

2 2 = ~ 2 + / ~  2, 

o~ 2 = (m~)2/a 2, (2.8) 

~2 = (nrc)2/b 2. 

The method of a system of vector functions has been demonstrated to be a 
very efficient means in theoretical physics [12] and especially in elasticity [13]. 
Recently, the author has tackled some layered elasticity problems [9, 14, 15] 
by making extensive use of this method in association with the propagator 
matrix method. The system used to solve the present problem is 

L(x, y; m, n) = i zS(x ,  y;  m,  n), 

M(x, y; m, n) = grad S = i,, OS/Ox + i r OS/Oy, (2.9) 

N(x, y; m, n) = curl(izS) = i,, OS/Oy - iy ~S/Ox,  
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where (ix, iy, iz) are the unit vectors in the (x, y, z) directions and S(x, y; m, n) 
is given by (2.6). It is easy to show that these three vectors are mutually 
orthogonal and have the following normalization factors 

dy dxL(x, y; m, n) • L(x, y; rn', n') = abrmm,6..,/4, 

dy dxM(x, y; m, n) • M(x, y; m', n') = ab226m.,,6..,/4, (2.10) 

dy dxN(x, y; m, n) • N(x, y; m', n ') = ab2 2Omm, Onn,/4, 

where 6 o is Kronecker's delta. 

3. General solutions and layer matrices 

In this Section, we will derive, for every layer, the general solutions and layer 
matrices (also called propagator matrices) in the system (2.9). Let us first 
assume that the thick rectangular plate is simply supported on the "edges" 
x = 0, x = a, y = 0 and y = b, and is composed of p parallel, homogeneous 
and transversely isotropic layers. The layers are serially numbered with the 
layer at the top being layer 1. We place the origin of the Cartesian system 
(x, y, z) at the left bottom corner of the uppermost surface, and the z-axis is 
drawn into the plate. The layer k is of thickness hk and is bounded by the 
interfaces z = Zk- 1, Z~,, and for simplicity, the layer interfaces are assumed to 
be in welded contact. Normal loading P= is applied to the uppermost surface. 
If we assume that this loading can be expanded in terms of S(x, y; m, n), that 
is (when the function S(x, y; m, n) occurs in the following, summation with 
respect to m and n is implied) 

Pz~ = P,,,.S(x, y; rn, n), (3.1) 

we then have the complete "boundary" conditions [4] 

g,¢~(x, y, H)  = ayz(X, y, H) = 0, (3.2) 

~x~(x, y, o) = %~(x, y, o) = o, (3.3) 

,rzz(X, y, H )  = 0, (3.4) 

azz(x, y, O) = P.,nS(x, y; rn, n), (3.5) 
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{ u ~ ( O ,  y ,  z )  = u~(a, y ,  z) = O, 

uy(O, y, z) = Uy(a, y, z) = O, 

tr x~:(O, y, z) = trxx(a, y, z) = O, 

(3.6) 

f u~(x, O, z) = u~(x, b, z) = O, 
u~(x,  O, z) = Ux(X, b, z) = O, 

¢T yy(X, O, z) : (Tyy(X, b, z) = 0, 

(3.7) 

and the continuity conditions at the layer interface z = zk 

ugi + ~(x, y, z~,) = u~(x, y, z~), 

a~+ ~(x, y, z~) = a~(x, y, zg) i = X, y, Z, 
(3.8) 

where superscript k (k + l) is attached to denote that the corresponding 
quantity is in layer k (k + 1). 

For any layer k, we will seek the solution of equations (2.4) under the 
above conditions in the form [13] 

u(x, y, z) = Uz(z )L(x ,  y) + U~t(z)M(x,  y) + UN(Z)N(x, y), 

T(x, y, z) =- axzix + ay~iy "~ trzzi~ (3.9) 

= Tz( z )L(x ,  y) + T~l(Z)M(x,  y) + TN(z)N(x ,  y), 

where the parameters rn and n in L, M and N have been omitted for 
simplicity. 

On substituting (3.9) into (2.1), (2.4) and (2.5), the equations of equi- 
librium can finally be reduced to two systems of simultaneous linear differen- 
tial equations [9]. They are called type I and type II respectively. For type I 

dU~/dz  = 22U~A13/A33 + TI~/A~3, 

d U ~ I d z  = - U~ + T M I A ~ ,  

dT~ /dz  = ,~2TM, 

(3.10) 

dT~t /dz  = 22UM(A,,A~3 - A21~)/A3~ - A,3 TL/A~3, 

and for type II 

d U u / d z  = Tu/A44,  

d T u / d z  = 22A66 UN. 
(3.11) 
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Before continuing our derivation, we shall mention here two facts concern- 
ing (3.10) and (3.11). First, it is evident that the original problem breaks up 
into two independent problems, which is the natural result of the orthogonal- 
ity of the system (2.9). Thus we can solve them separately and then use 
equation (3.9) to get the total solution of the problem. Second, the coefficients 
of the displacement components in the system of vector functions for type I 
correspond to the shape functions in [4]. Actually, the relations between them 
are 

U~(z) =f(z) W,.., 

u~,(z) = -g(z) Wm,. 
(3.12) 

By the standard method, the general solutions of type I and type II are 
derived as [9] 

IX(z)] = [Z(z)l[C], (3.13) 

(3.14) [A ~(z)] = [z'~(z)][c'~]. 

In equations (3.13) and (3.14), the elements of solution matrices [Z(z)] and 
[ZL(z)] are given in Appendices A and B respectively, and superscript L is 
attached to denote that the corresponding quantities belong to the type II. 
The column matrices are defined by 

[A(z)] = [U~(z), ,W~,(z), :r~(z)/L T~,(z)] ~, 

[A ~(z)] = [ ~ , ( z ) ,  ~,(z)/~.]  h 

[C] = [A, B, C, D] T, 

[ c  '~] = [A ~, B '~] ~, 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

where A, B, C, D, A/~ and B/~ are arbitrary functions of m and n, and [__] r  
denotes the transpose of the matrix [ - - ] .  

From (3.13) and (3.14), we can get the following important relations 

[A(z~_,)] = [a,,][A(z~)], (3.19) 

[A ~(z~ _~ )] = [a ~][A t'(z~)], (3.20) 
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where 

[a~] = [Z(z~ _ 1 )][Z(z~,)] - '  ( 3.21) 

and 

[a~] = [ z l ~ ( z k - l ) ] [ Z C ( z , ) ] - l  (3.22) 

are the layer matrices or the propagator matrices of  layer k, and are the 
essentials of  the propagator matrix method [10]. Their elements have been 
obtained analytically in [9] and are listed in Appendices C and B for the 
purpose of  completeness. 

4. Particular solutions 

In this Section, we will find the solutions of  (3.19) and (3.20) which satisfy the 
given conditions (3.2)-(3.8). It is evident that the type II system has only the 
trivial solution for the given conditions. Our task is then to investigate the 
type I system. From (3.9) and (4.9) below, we notice that the "edge" 
conditions (3.6) and (3.7) have been automatically satisfied because of  our 
selection of  the system of vector functions. The remaining requirements are 
that the coefficients in the system satisfy the traction boundary conditions 
(3.2)-(3.5) at z = 0 and z = H, and the continuity conditions (3.8) at the 
layer interfaces. With regard to (3.9), the conditions (3.8) yield 

[A, ,_ l (z~ ,_ l ) ]  = [A~(zk_l)], (4.1) 

where subscript k (k - 1) is attached to the column matrix [A] to denote that 
it is in layer k (k - 1). Using relation (3.19), we get 

[A, ,_ ,  (z~,_ 1)] = [akl[A~(zk)]. (4.2) 

By making repeated use of (4.2), we finally arrive at 

[A, (0)1 = [a, ][a2] - [a~,][A~,(H)]. (4.3) 

Using the remaining boundary conditions (3.2)-(3.5) which give 

T~(O) = Pmo, T~,(O) = O, 

T z ( H )  = O, T M ( H )  = O, 

(4.4) 
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we thus obtain the following expressions for the unknown quantities on both 
sides of (4.3) 

{ UL(H) = F42Pmn/(~A), 

2 U u (H)  = - F41 Pmn/(). A), 
(4 .5 )  

{ U L ( 0 )  = (Fll F4: -- F~F41 )Pmn/().A), 

"~UM(O) = (F21 F42 - F 2 2 F 4 1 ) P m . / ( 2 A ) ,  
(4.6) 

where 

A ----" F31 F42 - -  F41 F32 , 

[F] = [a,][a:]--[ap]. 

Knowing UL(H) and UM(H)  from (4.5), we can get the coefficients of  the 
displacement and "surface" stress vectors at any point z of the medium, say 
Zk ~ <~ Z <~ Zk, from the right-hand side of  (4.3) by multiplications of matrices 

[Ak (Z)] = [ak (zk -- z)][ak +, ] --[ap][Ap(H)], (4.7) 

where [ak(Z k -- 2)] is obtained from [ak] in Appendix C on replacing hk by Z k - -  Z. 

So far, we have derived the displacement and "surface" stress vectors at any 
point of  the medium caused by the normal loading (3.5) at its uppermost 
surface z = 0. They are 

u(x, y, z) = UL (z) L(x, y) + UM (z) M(x, y), 

T(x, y, z) = TL(z)L(x ,  y) + TM(z )M(x ,  y), 
(4.8) 

where the coefficients are given by (4.7). 
The final task is to get the remaining stress components axe, tr~y and tryy at 

any point of  the medium. It is shown in [9] that with the generalized Hooke's  
law (2.1), the strain-displacement relations (2.5) and the reduced system of 
linear differential equations (3.10), they can be expressed as linear combina- 
tions of  the known elements in (4.7); that is 

trxx(X, y,  z) = [TLAI3/A33 q- ()~2A~3/A33 - ~2All -- f lZAl2)UM]S(x , y; m, n), 

0 2 
trxy(X, y, z) = 2A66 U g ~ S(x, y; m, n), (4.9) 

ayy(X, y, z) = [TL A,3/A33 + ().2A~3/A33 - o~2A,2 - f lVAl , )UM]g(x  , y;  m, n), 

where the elastic constants are understood as those of  layer k. 
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5. Particular cases 

5. I. Transversely isotropic and homogeneous thick plate 

When the medium between z ,_  ~ and z~ +~ is homogeneous, one can get the 

following relation from (3.21) 

[a(z~, - Zk_ , ][a(zk + ~ -- Zk)] = [a(Zk + ~ -- Zk- , )]. (5.1) 

For  a homogeneous plate with thickness H, we therefore find that 

[F] = [a(Zp - Zo) ] = [a(H)]. (5.2) 

In this case, the solution can be expressed in a very simple form. For  example, 
using the equation (5.2) and the elements of  matrix [a] in Appendix C, we can 
get the normal displacement or deflection at the upper surface from the first 

formula of (4.6): 

Uz(X, y, O) = (Pro,/2) {[c(x2) -- C(X I)] 

x (sh y~ ch yz~/X 2 - -  ch Yl sh y 2 / X l ) S ( x ,  y; m, n)} 

/{ -2 / (x~x2)  ÷ 2 ch y~ ch y2/(x~x2) 

- ( x ~ 2 + x ;  z) shy~shy~}  x ~ ¢ x 2 ,  (5.3) 

uz(x, y, O) = (P,,m/2)Xl c'(xl )(2H + ch y~ sh y~ Ix, )S(x, y; m, n) 

/ [ sh2y~ /x~-  (2H)2], Xl = x2 (5.4) 

where yl = Xl2H and Y2 = x2,~H; Xl and x2 are the characteristic roots 
determined by the elastic constants of  the plate; ch and sh stand for hyper- 
bolic cosine and sine respectively. The function c(x) and its derivative c'(x) are 
also dependent on the elastic constants of  the plate and their definitions are 
given in Appendix A. It is of interest to note that for the transversely 
isotropic, simply supported and homogeneous thick plate, the deflection 
caused by the normal surface loading is dependent on the characteristic roots 
no matter whether they are equal or not. 

With some algebraic manipulations it is also found that the formula (5.3) 
will reduce to (5.4) as x2-~ x~, and they all reduce to the following expression 
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as Xl -~ 1: 

uz(x, y, O) = [ - 2( 1 - v 2) ~El(Pro,/2)[(29 ÷ ch Yl sh y , )S (x ,  y; m, n)] 

/[ sh2 Yl -- (2H)2] • (5.5) 

Noticing that y~ = 2H for the isotropic case, and 22 = g2(m2/a2 + n2/b~), we 
see that this expression is then exactly the same as the formula (30) in 
reference [4]. That is, the solution in [4] may be considered to be a special case 
of the present result. It has been shown in [4] that (5.5) will approach the 
classical Navier solution [16] for the simply supported rectangular plate as H 
approaches zero. 

5.2. Transversely isotropic thin plate 

We now examine the thin plate limit of (5.3) and (5.4). By expanding all 
functions on the right-hand sides of these equations in power series of  2H and 
retaining only the lowest order terms in both the numerator and denominator, 
it is found that they all approach the following result 

uz(x, y, O) = -- 12PmnS(x, y; m, n)/[24H3(AI~ - Az~3/A33)], (5.6) 

which is independent of the characteristic roots and depends on only three 
elastic constants. On using the definition of bending stiffness for a transversely 
isotropic thin plate [7] 

D = (A~, - A ~3/A 33)H3/1 2 (5.7) 

our result is then exactly the same as the classical solution for the correspond- 
ing thin plate theory [7]. It is obvious that (5.6) can be directly reduced to the 
classical Navier solution by using the expressions of  A~, A~3 and A33 in (2.3) 
for the isotropic medium. 

6. Discussion and conclusion 

Though the solutions of a simply supported, orthotropic and layered rectan- 
gular plate have been reported by some previous researchers [ 17, 18] within 
the three-dimensional theory of  linear elasticity, all of them require the 
solution of  a system of simultaneous linear equations with order proportional 
to the number of layers, and no explicit solution has ever been obtained for 
the corresponding homogeneous rectangular plate. Levinson [4] is probably 
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the first who provided an exact closed form solution for the problem of a 
simply supported and isotropic rectangular plate of arbitrary thickness by 
making use of his kinematic assumption [3]. 

The present solution is an extension of Levinson's result [4] to the trans- 
versely isotropic and layered case. As the solution is based on a system of 
vector functions in association with the propagator matrix method, the result 
is presented in a simple and exact closed form, which is of interest to 
laminated plate theory as well as to various thick plate theories. It has been 
shown that the present solution contains Levinson's thick plate result [4] as a 
special case and the classical solution for the transversely isotropic thin plate 
as a limiting case. It is noted that for the isotropic case, the dependence of 
deflection on the elastic constants is the same no matter whether the plate is 
thick or thin; for the transversely isotropic case, however, this dependence is 
more complicated for the thick plate than for the thin plate. 

Finally we point out that, with slight modifications, the present result can 
be used to solve the corresponding shear surface loading problem, which may 
be of interest to foundation theory because the frictional forces on the plate- 
foundation interface need to be considered by more appropriate methods 
[19, 20]. 

Appendix A 

The elements of the solution matrix [Z(z)] in (3.13) are given below. 

1. When x~ :~ x2, 

Z ~  = c(x~) exp(2xlz), 

Z21 = d(x l  ) exp(2x~ z), 

Z3~ = x i- ~ exp(2xj z), 

Z4~ = exp(2x~ z), 

Z~2 = c(x~ ) exp( - 2x~ z), 

Z22 = - d(x~ ) exp( - 2x~ z), 

Z32 = - x i- ~ exp( - 2x~ z), 

Z42 = exp( -)~xl z), 

(A.1) 

where x~ and x 2 are the characteristic roots of the equation 

(A44x 2 - Al~)(A33 x z  - A44) + (A13 + A44) 2x2 = O. 

Zi3 and Zi4 are obtained from Zi~ and Ziz respectively on replacing x~ by xz 
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(i = 1, 2, 3, 4). In equation (A.1), 

C(X) ---- (A~I q- x2A ~3)/[x2(Atl A33 - A ~23)], (A.2) 

d(x) = (A 13 ~- x2~z~33)/Ix(A11 A33 - A 123 )]. ( A . 3 )  

2. When xl = x2, 

"Z~3 = [c'(x, )/2 + c(x~)z] exp(2x~ z), 

Z23 = [d'(Xl )/2 + d(x~ )z] exp(2x~ z), 
(A.4) 

Z33 = ( -x~-2/2  + x~-'z] exp(2xlz), 

Z43 = z exp(2x~ z); 

while Z~I and Z~2 are the same as in equation (A.1), the Z~4 are obtained from 
Z~3 on replacing x~ by -x~  (i = 1, 2, 3, 4). In equation (A.4), the prime 
denotes differentiation, i.e. 

c'(x~) = dc(x~)/dxt,  d '(xl)  = dd(x~)/dx~. (A.5) 

Appendix B 

The elements of  the solution matrix [ZL(z)] in (3.14) are 

Z~l = exp(--2sz), Z~2 = exp(2sz), 
(B.1) 

Z~l = - ~  exp( -2sz ) ,  Z~2 = g exp(2sz), 

where 

s = (A66/A44) 1/2, 
(B.2) 

~ = sA44 = (A44A66) 1/2. 

The elements of  the layer matrix [a~] in (3.22) are (omitting the subscript 
k) 

a ~1 = cosh(s2h), a ~2 = - g -  1 sinh(s2h), 
(B.3) 

a2~ = - g sinh(s2h), a2L2 = cosh(s2h). 
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For  the isotropic medium, we have 

s = l ,  

g = E/[2(1 + v)]; 

the elements o f  [a~] are then reduced to those o f  the isotropic layer matrix [14]. 

Appendix C 

The elements o f  the layer matrix [a~] in (3.21) are (omitt ing the subscript k) 

given below. 

1. When  x~ ¢ x2, 

a~ = a33 = [ g ( x  l ) c ( x  I ) /X l ]  cosh Yl q- [g(x2)c(x2) IX2] cosh y2, 

a~2 = - a 4 3  = g(xl)¢(Xl ) sinh y~ + g(x2)c(x~) sinh Y2, 

a~3 = -g (x~)c2(x~  ) sinh y~ - g(x2)c2(xz)  sinh Y2, 

a14 = - -  a23 = --g(x l)c(x I ) d ( x  1) cosh Yl - -  g(x2)c(x2)d(x2) cosh y~, 

a2~ = - a34 = - [g(x~)d(x~)/x~] sinh Yl - [g(x~)d(x2)/x~] sinh Y2, 
(C.1) 

a2~ = a44 = - g ( x ~ ) d ( x ~ )  cosh Yl - g(x2)d(x2)  cosh Y2, 

a~4 -- g(Xl)d:(x~ ) sinh Yl + g(x2)dE(x2) sinh y~, 

a31 = - [g(x~)/x2~] sinh Yl - [g(xE)/X2~] sinh Y2, 

a3~ = - a4~ = - [g(x~)/x~ ] cosh y~ - [g(x2)/x2] cosh Y2, 

a42 = g(x I ) sinh y~ + g ( x 2 )  sinh Y2' 

In equation (C.1), 

y~ = 2x~ h, (C.2) 

y2 = 2x2h, (C.3) 

g(x)  = x /[c(x) - xd(x)],  (C.4) 

where the definitions o f  functions c(x) and d(x)  are given respectively in 

equations (A.2) and (A.3) o f  Appendix  A. 
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2. When x~ = x2, 
The layer matrix [ak] in (3.21) can be expressed in the form 

lag] = -- (X,/C'(X~ ))[bk]. (C.5) 

In equation (C.5), the elements of  matrix [bk] are (omitting the subscript k) 

b l l  = b33 = - [ c ' ( x  I ) / X l ]  cosh Yl - [2hc(x~)/x~] sinh Y l ,  

b12 = - b43 - -  - [ c ( x  1 ) I x  1 -q- c ' ( x  1 )] s i n h  y~ - 2hc(x~ ) cosh y~, 

b~3 = c(x~ )[C(X 1 ) I x  I "~- 2 C ' ( X  1 )] s i n h  y~ + ,~hc2(xl ) c o s h  Y l ,  

b~4 = - b23 = 2hc(xl )d(x~ ) sinh y~, 

b2~ = -b34 = [d'(x~)/x~] sinh Yl + [2hd(x~)/Xl] cosh yl ,  

(C.6) 

b:~ 2 - -  b44 = [ d ( x  I ) I x  I d- d ' ( x  1)] c o s h  Yl q- 2hd(x~) sinh y~, 

b24 - -  - d ( x  1 ) [ d ( x  I ) I x  I d- 2d'(x~)] sinh y~ - 2hd2(x~) cosh y~, 

b3~ = - x ~  -3 sinh y~ + 2hx?  2 cosh yl,  

b32 = - b41 = 2hx ~ ~ sinh y~, 

b42 = - x i- ~ sinh y~ - 2h cosh y~, 

where y~ is given in (C.2), and the definitions of  the functions c(x), d(x) and 

their derivatives are given in Appendix A. For the isotropic medium, we have 

x ~ = l ,  y ~ = 2 h ,  

c(x~) = d(x~) = (1 ÷ v)/E, 

c'(x~) -- - 2 ( 1  ÷ v)(1 - v)/E, 

d'(Xl) = (1 + v)(1 - 2v)/E. 

Upon the substitution of these values in (C.6), we then obtain the layer matrix 

[ak] for the isotropic case [14]. 
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