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Summary. First a generalized Volterra relation for a transient and coupled poroelastic medium of 
two and three dimensions is derived from a reciprocal theorem, which reveals a direct connection of 
the solid displacement due to solid and fluid point dislocations with the stress and pore pressure due to 
a point force. A decomposition technique is then employed to find the complete fundamental solution 
of fluid and solid point dislocations. The solutions are provided in an exact closed form and are 
needed as influence functions in the displacement discontinuity method in two- and three-dimensional 
poroelastic media. 

1 Introduction 

The displacement discontinuity method (DDM), as a means of solving boundary value 
problems in elasticity, has become a popular numerical method in the field of geomechanies. 
The most significant characteristics is its ability of handling rock discontinuities and 
fractures [1]. The successful application of the DDM, however, relies on the derivation 
of the fundamental  solution for a displacement discontinuity singularity, or mathematical ly  
a point dislocation in the infinite space. 

Dislocation in a homogeneous, isotropie and linear elastic medium has been studied 
by many  investigators. An early discussion on the Volterra dislocaton in a semMnfinitc 
space of three dimensions was given by  Steketee [2]. He found tha t  solutions to six dis- 
location nuclei are required for a general problem and he constructed the solution to one 
of them by  making use of Volterra relation [2]. Maruyama [3] derived the remaining five 
solutions, and proved tha t  the Volterra relation is valid not only for a Volterra dislocation, 
but  also for a Somigliana dislocation [3]. The corresponding two-dimensional problem 
was also studied by  the same author [4]. Maruyama's  work [3], [4] has been extended 
by Singh [5] and Singh and Garg [6] to an isotropic and layered half-space of three and two 
dimensions, respectively and by  Pan  [7] to the corresponding transversely isotropie medium. 

While the solution for the dislocation in a pure elastic medium has been considered 
in great detail, comparatively little work has been done on similar problems in a poro- 
elastic medium, t~ecently, Detournay and Cheng [8] derived the poroelastic solution 
of a point displacement discontinuity in a two dimensional space. The methodology 
used by  the authors is based on a decomposition technique proposed by  Biot [9]. This 
solution has been used by  Vandamme et al. [10] in their DDM program to model the opening 
of a hydraulic fracture in a poroelastie medium. I t  is noted tha t  in using the result in 
[8], however, two subsequent coordinate transformations between the local (crack) and 
the global system are required for an arbi trary crack line, which would make the numerical 
calculation complicated [10]. 
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The objective of this paper is to derive the fundamental  solutions of a point dislocation 

in two- and three-dimensional poroelastic media. The methodology is based on a generalized 
Volterra relation from the reciprocal theorem, and on the variable decomposition technique 

[9]. 

2 Basic equations 

The theory of linearized quasi-static poroelasticity was first introduced by Blot [11], 
[12] for modelling the response of fluid-saturated porous solids. The isotropic version 
of the Blot model [11], [12] has been rationalized by  Rice and Cleary [13] with a consistent 
set of five material  parameters.  As in the original formulation [11], [13], we choose the 
basic dynamic variables to be the total  stress a~j and the pore pressure p. The corre- 
sponding conjugate kinematic quantities are the solid strain z~j, derivable from a solid 
displacement vector ui, and -the variation of fluid volume per unit reference volume, ~. 
The five material parameters are: the shear modulus G, the drained and undrained Poisson's 
ratio v and v~, Skempton's  pore pressure coefficient B and the permeabiii ty coefficient 
k. The equilibrium equation and Darcy's  law with body forces can be expressed, respec- 

tively, as [13] 

~i,J = --F~ (1) 

q~ = - ~ ( p , ~  - / 0  (2) 

where the summation convention is implied with commas indicating spatial differentiation; 

Fi and / i  are body forces per unit volume acting on the mixture (fluid and solid) and fluid, 
respectively; qi is the specific discharge, which multiplied by  the fluid mass indicates 

the fluid mass flow rate in the x~ direction [13]. 
The constitutive relations in the l~ice-Cleary formulation of the Blot model can be 

shown to take the forms [13] 

(~i~ - -  2Ge l j  ~-  [2Gv / (1  - -  2v)] ~je - -  ~6~p (3) 

p = --{2GB(1 § v~)/[3(1 - -  2v~)]} e + {2GB2(1 - -  2v) (1 -~ v~)"/[U(v~ - -  ~) (1 - -  2v~)]} ~ (4) 

where 6~j is the Kronecker 's delta, and ~ is the Biot coefficient of effective stress [14], 

defined as 

= 3(v= --  ~)/[B(1 - -  2v) (1 § v~)]. (5) 

The solid strain ei~- is related to u~ by  

eij  = (u~,j ~-  ui .~) /2  (6) 

and e --  e, .  I t  is noted tha t  in writing Eq. (4) we have chosen ~, instead of the variation 

of fluid mass [13], as the second kinematic quantity.  
The final equation needed to complete the poroelasticity theory of Blot is tha t  of 

fluid-mass conservation, which, on the basis of the present notation, can be shown to 

be [15] 

~ / ~ t  + q~,~ = y (7) 

in which y is the rate of injected fluid volume from fluid source. 
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Equation (7) can also be expressed in an alternative form by integrating it with respect 
to time, i.e. 

- ~o + v~,~- = Q (8) 

where ~0 is the initial value of ~ at t ---- 0; 

t 

v ~ = f q i d t  (9) 
o 

is the relative fluid displacement, and 

t 

Q = f y dt (10) 
0 

the volume of injected fluid. 
In summary, the basic formulation of the theory of Biot for linear, isotropic and 

quasi-static poroelasticity consists of Eqs. (1)--(7). This set of equations with the selected 
variables and parameters is quite convenient in some applications [13], and  yet, as em- 
phasized by Rice and Cleary [13], does not prohibit the continuum viewpoint, i.e. it is 
possible to compare the present formulation with those from the continuum theory of 
mixtures [16], [17]: While the continuity Eq. (7) is obviously equivalent to the linearized 
mass-conservation law for the fluid constituent [15], the constitutive Eqs. (3) and (4) 
are coincident with the reduced results of the general porous media models in the present 
circumstances [16, Eqs. (9.23), (9.24)], apart from minor differences in notation and an 
error in [16, Eq. (9.24)] probably due to misprint. The governing Eqs. (1) and (2) can 
also be derived from the theory of mixtures. The simplest approach to do so is to make 
direct use of some Beskos' linearized results [17, Eqs. (24)--(27), (32)]. But one should 
add body force terms to and neglect inertia terms in the linear momentum balance Eq. [17], 
and identify appropriately the variables and parameters involved. We shall, however, 
omit details of the procedure as they are very straightforward and turn our at tention 
to the reciprocal relations based on the basic equations. 

3 Reciprocal theorem and representat ion relations 

We start  with a generalized reciprocal theorem of Betti  type in poroelasticity that  can 
be expressed as 

1 2 p l ~ 2  2 1 p2~1 (11)  aijeij -F ~ aijeij ~- 

where superscript 1 and 2 denote two independent systems of the field quantities. I t  
is shown that  this relation is a direct consequence of the constitutive Eqs. (3) and (4). 
In addition to reciprocity in space, we shall also require the two systems to be reciprocal 
in time. Following Burridge and Knopoff [18], we define two adjoint systems: while 
the first adjoint system is identical to the original one, the time variable t is replaced 
by -- t  to get the second adjoint system u~2(x, --t), F~2(x, --t), etc. 

Using these two systems and their corresponding Eqs. (1)--(10), we can integrate 
the reciprocal relation (11), with respect to space and time, to obtain 

[ ( ~ i i u ~  - . ~ju~l) ~ (ply2 ~2vl)] dS dt 

+ f f  - + - + ( ~ o 1 Q  2 - -   2Q1)] dV d t =  0 (12) 
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where an overbar  has been used to indicate the second adjoint  system, i.e. ~ie(x, t) = ui 2 

•  --t), _Fi2(x, t) = F~2(x, --t), etc.; n s is the unit  outward normal  of the boundary ;  

dS and d V denote the boundary  and domain integral, respectively; v = vin~ is the normal  
component  of fluid displacement. I t  is noted tha t  in obtaining Eq. (12), we have assumed 

tha t  the initial value of the var ia t ion of fluid content  is zero, i.e. ~o r = ~o 2 = O. 

If, for the second system, we set/~2 = Q2 = O, and 

F~2(x, t) = ~@(x, t; y, --3) 

5ijd(xl - -  yl) d(x2 - -  y:) (~(x3 - -  y3) d(t @ 3) (13) 

where y is a point  in V, and ($ the Dirac delta function, then ]i2 = ~2 = 0, 

Y~2(x, t) = ~@(x ,  t; y ,  3) (14) 

and Eq. (12) becomes 

u,(u, 3) = f f  as(x) dtt[ .(x, t) - t ;  y, -3 )  

- u~(x, t) ~i~Xx, - t ;  y, -3)] n~(x) + Iv(x, t) FpJ(x, - t ;  y, -3)  

- p ( x ,  t) %~(oe, - t ;  y, -3)]} + f f dV(x) dt[Fdx, t) %](x, --t; y, --T) 

+ / d x ,  t) %~i(x, --t; y, --3) -- Q(x, t) FpJ(x, - t ;  y, -3)] (15) 

where the superscripts 1 and 2 have been dropped, and the left superscript F has been 

used to denote the Green's functions. For  instance, Fuii(~e, --t;  y,  --3) is the  solid dis- 

placement in the / -d i rec t ion  at (x, --t) due to an instantaneous point  force of uni t  impulse 

in the ]-direction at (y, --v). The point  force acting on the mixture (solid and fluid) will 

hereafter be referred to as point  force for simplicity. 
Similar procedure as above can be used to derive other two integral equations related 

to the Green's functions of a fluid dilation and of a fluid body  force [19]. ] n  the following, 
however, we will devote our effort to  the derivation of the representat ion relations between 

the Green's functions of a point  force and those of a point  dislocation. 
I f  we fur ther  set Fi(x,  t) = /~ (x ,  t) = Q(x, t) = 0, Eq.  (15) is then  simplified to 

3) - f f  ds(x) dt(t .(x, t) %J(x, - t ;  y, -3)  
- -  ui(X, t) f aik(X, --t; y, --3)] nk(x) ~- [v(x, t) Fpi(x, --t;  y, --~c) 

- -  p (x ,  t) FVi(X, - - t ;  y ,  --3)]}. (16) 

Let  it be assumed tha t  we wish to find the response from prescribed discontinuities 

in the solid and fluid displacements across a surface (or a curve in two-dimensional space) 

Fig. 1, Schematic diagram of boundaries and domain used in the integration, n is the unit outward 
normal vector of the boundary S, ! the unit normal of the surface Z imbedded in V. Solid and fluid 
displacements may be discontinuous across Z" 
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Z imbedded in V (Fig. 1). Let  1 be the unit normal to X, and [nil (x, t) and [v] (x, t) be 
the discontinuities in u~ and v : vil~ across 2: in the direction of 1 at (x,  t). These dis- 
continuities may have any form, provided that  the following relations hold: 

~i~li + § ~ l j -  = 0 
(17) 

p+ - - p -  ~ 0  

where --lj + = l~- ~ 1 i. We call the discontinuity satisfying relation (17) the generalized 
Somigliana dislocation. I t  is an extension to poroelasticity of the Somigliana dislocation 
in elasticity [3]. 

Assume v, u~, p and glk satisfy the same homogeneous boundary condition on S, and 
apply Eq. (16) to the region bounded internally by 2: and externally by S. rvJ and Fuj  
do not have prescribed discontinuities on Z. Then the boundary integral over S vanishes 
and we are left with the surface integral over Z' only: 

u~(y, = f f d Z ( x )  dt{[ui] (x ,  t) Faik(X, - - t ;  y ,  --T) 4(X)  

- Iv] (x, t) ~ps(x, - t ;  y, - ~ ) } .  (18) 

This is a representation relation that  gives the solid displacements due to instantaneous 
solid and fluid dislocations in terms of the Green's functions of a point force. The variables 
in the functions should, however, be changed to those in normal sense. I t  is done by direct 
observation of the expressions of ~aik and Fpj in [19]. Equation (18) thus becomes 

= f f  dZ( ) dt(--[u,] t) + Iv] t) t)}. (19) 

Equation (19) is called a generalized Volterra relation, for it is a direct extension to poro- 
F i  elasticity of the Volterra relation in elasticity [2]. In this equation, aik(y, ~; x, t) and 

Fpi(y, T; x ,  t) are the total stress (~ik and the pressure p,  respectively, at (y, v) due to an 
instantaneous point force of unit impulse in the ]-direction at (x, t). With the point force 
solution being known [19], we can immediately obtain, from Eq. (19), the solid displacement 
field due to a point dislocation. That  is, the fundamental solid displacement in the l- 
direction at (y, ~) due to an instantaneous fluid point dislocation and solid point dislocation 
(i, k), of unit impulse at (x, t) are 

%j(y ,  ~; x ,  t) = Fpj(y, v; X, t) (20) 

and 

~uiik(y, 7:; x ,  t) --  --Faik(y, v; x ,  t) (21) 

respectively. While the physical meaning of a fluid point dislocation is apparent (Fig. 2), 
some explanations for a solid point dislocation are needed. A general solid point dislocation 
can be described by a dyadic bl,  where b is the unit vector in the direction of solid dis- 
location, and l the unit normal to the dislocation surface. Though there are nine elements 
in bl, only six are independent since aik ~ ak~. These six elements are therefore called 
elementary dislocations [2], [3]. They are marked as (i, k) and illustrated in Fig. 2. While 
the first letter in (i, k) indicates the /-direction of the dislocation, the second indicates 
the k-direction of the normal to the dislocation surface. Notice that  by  (i, k) - ( k ,  i) 
is meant that  the response from the dislocation (i, k) is identical with that  from the dis- 
location (k, i). 
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Fig. 2. Definitions of the basic solid and fluid dislocations. 
b is the unit vector of the solid ~lislocation [u] and ! the unit 
normal of the dislocation surface. Iv] is the fluid dislocation, 
i.e. the normal discontinuity of the fluid displacement 
across the dislocation surface 
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4 Fundamental solutions 

We have shown, in the foregoing, tha t  the fundamental  solid displacements due to solid 
and fluid point dislocations can be obtained directly from the total  stress and pore pressure 
solutions of a point force which have been derived in [19]. However, it is seen from the 
basic equations in Section 2, tha t  other field quantities can not be obtained directly from 
these equations. We thus employ the decomposition technique [9] to solve this problem. 

By combining Eqs. (1)--(7), we obtain the following two equations 

GV2ui  + [G/(1 - -  2v,)] e.~ - -  {2GB(1 -7 v,)/[3(1 --  2v~)]} ~,i - -F i  (22) 

~ / ~ t  - -  cV2~ = {/cB(1 + v,)/[3(1 - -  v~)]} Fi.~ - -  k/ i , i  + V (23) 

where 

c = 2kGB2(I - -  v) (1 -7 v~)2/[9(1 - -  v~) (v~ - -  v)] 

is a generalized consolidation coefficient [13]. 
We now introduce the following decomposition [9] which allows further uncoupling 

of the field Eqs. (22) and (23): 

ui ~ ui e -7 Au~ ~ us e -7 {B(1 + v~)/[3(1 --v~)]} ~bi. (24) 

I f  we require the first par t  of the solid displacement field to satisfy the Navier equation 

of elasticity with undrained coefficient, i.e., 

GV2ui  e -7 [G/(1 - -  2v~)] e ~. : --F~ (25) 

it can then be proved from Eq. (22) tha t  the second part  is governed by 

= V24. (26) 

Substituting Eqs. (26) into (23), and relaxing a Laplacian leads to a diffusion equation 

for 4,  

c~qb/~t - -  c V 2 ~  = 91 ~- g~ -7 98 4- ~ . (27) 

in which, 

= - -  V g~ = --k/~,i, (28) Vegl {kB(1 -7 v,)/[3(1 v,)]} FGi,  2 

V293 = ~2, IY2~b = 0. 

The above results suggest that  the solid displacement field can be decomposed into 
an "undrained" part ,  "ui ~, satisfying an elasticity equation with undrained coefficient, 
and an irrotational par t  derivable from a potential, q~, tha t  is governed by  a diffusion 
equation. This decomposition technique was originally proposed by  Biot [9], and recently 
used by  Cheng and Predeleanu [19] and Detournay and Cheng [8] for the derivation of 
the solutions of a point force and of a two-dimensional solid point dislocation, respectively. 

Since the second par t  of the solid displacement is of a potential field, we can find the 
potential by  an integral of the irrotational par t  once the total  solid displacement field 
is known. Then the variation of fluid content can be obtained from Eq. (26). A direct 
relation between the variation of fluid content and the second part  of the solid displacement 

is therefore found to be 

= {3(1 - -  v,,)/[B(1 + v,~)]} Au,.i. (29) 
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The formula needed to derive the relative fluid displacement can be obtained by  sub- 
stituting Eq. (29) into (8) 

v i , i  = Q - {3(1 - vu)/[B(1 + r~)]} A u i , i .  ( 3 0 )  

Again we have assumed ~0 = 0. 
With the above preparation, we can proceed to derive the Green's functions of a fluid 

and solid dislocation. Because in the antiplane strain ease there exists only the elastic 
field, discussion on it can be neglected in poroelastieity. In  the following, therefore, we 
use the term "two dimensional" exclusively for "plane strain", and superscripts and 
subscripts in two and three dimensions vary from 1 to 2 and 1 to 3, respectively. 

4 . 1  F l u i d  p o i n t  d i s l o c a t i o n  

The pore pressure due to an instantaneous point force of unit impulse has been derived 
in two and three dimensions by  Cheng and Predeleanu [19]. The solid displacement in 
the /-direction at  (y, v) due to an instantaneous fluid point dislocation of unit impulse 

g 

at  (x, t) is thus obtained from the representation relation (20) 

au~(y ,  7; x, t) = {B(1 4-  v~) r~/[37~(2r) m - 1  (1 --  v~)]} [~(v - -  t) - - / m z E ( z ) / ( 7  - -  t)] (31) 

where m ~ 2 and 3 correspond to the two- and three-dimensional deformations, respec- 
tively: 

r - -  ]y - -  x ] ,  ri  = r , i  = ~ r / ~ y i  = (y~ - -  x~) / r ;  z = rr/[4c(T --  t )] ,  E ( z )  = exp(--z);  

/~ = 1 ,  /~ = r / [ = c ( ~  - t)] ~/~. 

I t  is apparent  that  the first (proportional to b(v  - -  t)) and second terms on the right-hand 
side of Eq. (31) correspond to the elastic and potential displacements, respectively. The 
variation of fluid content is therefore obtained by  substituting the above potential dis- 
placement into Eq. (29): 

a$(y ,  7;  x ,  t) = - - ~ m E ( z )  ( m  - -  2 z ) / [ 8 = ( r r )  m - 2  c(7 - -  t) 2] (32) 

and the pore pressure from the constitutive Eq. (4): 

a p ( y ,  7;  x ,  t) = - - l i n E ( z )  ( m  - -  2 z ) / [ 8 = ( r r )  m - ~  k ( 7  - -  t)2]. (33) 

The normal component of the relative fluid displacement vil~ is derived from Eq. (30) 

d v ( y ,  3;  X ,  t) = r n / m z E ( z ) / [ = ( r r )  m - 1  (3 - - / ) ]  (34) 

where r n - =  ~ r / ~ l  = r~l~ is the normal differentiation. 
Finally, we obtain the total  stress from Eq~ (3): 

d a i t ( y  , 3; X, t) = {GB(1 + v ~ ) / [ a = ( 2 r )  m - 2  (1 - -  ~)  rr]} {(~ij --  m r i r j )  ~(7 - -  t) 

+ / r a z E ( z )  [(m --  1) (~ij - -  2z(ci l i  - -  r i r i ) ] / (7  - -  t)}. (35) 

Notice that,  except for the expression of v, the present Green's functions of a fluid 
point dislocation are the same as those of a fluid dilation derived in [19]. However, the 
expressions of v would be also identical if the term proportional to G ( 7 -  t) were not 
included by  mistake in the expression of v in [19]. The identity of these two Green's func- 
tions implies an equivalence of a fluid point dislocation with a fluid dilation. 
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4.2 So l id  po in t  dislocation 

The tota l  stress caused b y  all ins tantaneous  point  force of uni t  impulse is also avai lable  
[19], we therefore have  the  solid displacement  in the /-direct.ion a t  (y, v) due to  an  in- 
s tan taneous  solid poin t  dislocation (/c, l) of uni t  impulse a t  (x, t), f rom the  representa t ion  
relation (21): 

~u~kt(y, 3; x ,  t) := {1/[4~(2r) "~-2 (1 - -  ~,~) r]} [(1 - -  2v~) (--~k~ri + 6i~.rl + 6urk) 

+ m w ' ~ d  ~(~ - t) + { c ( ~  - v ) / ~ / [ ~ ( 2 r )  m - ~  (~ - -  %)  (1 - ~)]} 

• [(~,~, + ~ + ~.r~ - ( ~  + 2) r , ~ , )  g~ 

where 

g~ = ~[1  - E ( z )  . -  z E ( z ) ] / r  3 

r 

0 

Proceeding the same way  as for the  fluid poin t  dislocation case, we have  found other  

field quant i t ies  needed in bounda ry  integral formulat ion:  

d~kl(y ,  "C; X ,  t) ~--- {3(v~ - -  v)/mE(z)/[8~rBc(2r)m-2(1 + v~) (1 - -  v) t~}} 

• [ - - ( m  - -  1) ~/r + 2Z(6kl - -  rl:rl)] (37) 

dpk,(y, v; X, t) = {GB(1 + v,,)/[37~(1 - -  v,,)]} {[1/(re(2r)m-2)] 

• ( - ~ ,  + row.,) ~(~ - t) + [ / ~ E ( ~ ) / ( ~ c ( ~ ) " - ~ ( ~  - t)~)] 

• [ - ( m  - 1) ~ l  + 2 z ( ~  - ~'k~)]} (38) 

dvk l (y ,  3;  X ,  t) -~- { - - k G B (1  + ~ )  /,~/[3~z(2r) ~ -2  (1 - -  vu)]} 

x [(~,,-,, + z~,-, + ~,,-,, - (m + ~),..,.,~r,) ~,,,, 

- ~ E ( ~ )  ,.,,(,~,~, - -  r , , , - , ) / ( ~4~  - -  t ) )  I ( ~ 9 )  

i i 'Y '  ~; X '  t) = {G/[2~z(2r) m-'~ (1 - -  u.) r~]} [ - - m ( m  + 2) rir~r~rt 

+ (1 - -  2v~) (6u~i~ + ~ 0 ~ )  - -  (1 - -  4v~) 6~i~ ] ~(* - -  t) 

+ {c.G(v~ - -  v ) /~ / [~(1  - -  v) (1 - -  ~,,) (2r)"-~]} {[O~r + O#trlr i + 6i~rirt 

+ c51~rir ~ + 6itrir~ + 6itrir ~ + (m - -  2) (5ii(5~z - -  (m + 4) ririr~rl 

- -  2z(60 - -  r~r~) (3,~ - -  r~r,)] E(z)/[4c~(v - -  t) ~] 

- -  [(m + 2) (5iir~rt -+- 6~trir i -[- c~i~rirt + cS~rlr~ + (Sitr~rk + ~itrir~) 

- -  bq~,t - -  5~,6~t - -  5~.(~, - -  (m  + 2) (m + 4) r~rir~r~ ] gin~r}. (40) 

I t  is noted  t h a t  the  first  pa r t  of the displ&cement and  stress expressions above,  pro- 
port ional  to 6(~ - -  t), is identical to the  elastic Green 's  {unction of a poin t  dislocation 
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with undrained Poisson's ratio [3], [4], [6]. Also we note that  for the two-dimensionM 
fundamental solution (m = 2), if we let 1 =- 2, i.e. fix the normal of the dislocation surface, 
the present result is then reduced to that  obtained in [8], with a sign difference caused 
by the different definitions for the positive dislocation [8]. 

5 Boundary integral equation 

The fundamental solutions obtained in the preceding section of an instantaneous fluid 
and solid dislocation can be distributed on the locus of a fracture (crack) to generate a 
desirable solution field. In particular, the following integral equations can be exploited 
for the numerical solution of a boundary value problem: 

t 

~.(y, ~) --  f f  d~(~) d~(t~] (x, ~) ~47(Y, t; ~, ~)~q(X) -~- [V] (X, T) dO'ij(~], t; X, "[)} 
0 Z  

(41) 

t 

p(y, t) = f f d~(x) d~lt~] (~, ~) ~p~q(y, t; ~, ~) lq(X) -V- Iv] (X, T) dp(y, t; X, T)}, 
O Z  

(42) 

Equations (41) and (42) can be discretized, integrated numerically in both time and 
spatial coordinates, and collocated for the known stress and pressure boundary conditions 
along the crack surface. These operations result in the formulation of a linear system 
of algebraic equations that  need to be solved for the fluid and solid displacement jumps 
at each time step. Once these dislocations along the crack surface are known, displacement, 
stress, etc. in the poroelastie medium can be evaluated by using equations similar to (41) 
and (42). 

6 Conclusion 

The fundamental solutions of fluid and solid point dislocations in two- and three-dimen- 
sional poroelastic media have been derived. A generalized Volterra relation that  provides 
the relation between the Green's functions of a point dislocation and those of a point 
force is first obtained from a reciprocal theorem. The variable decomposition technique 
suggested by Blot [9] is then employed to find the entire Green's functions in two and 
three dimensions. 

As it has been shown that,  in the two dimensional ease, the Green's functions provided 
here will be reduced to those given in [8] if we let one superscript be 2. A direct examination 
shows that  the presen t result is more general and yet convenient, since the direction 
of displacement discontinuity and that  of the dislocation (crack) surface can be arbitrary. 
When it is applied to the DD1K, no transformation is required between the local (crack) 
and the global coordinate system [8]. I t  is therefore convenient for us to handle cracks 
of any shape. 

Since many problems in applied mechanics are not necessarily confined to two-dimen- 
sional space, the three-dimensional Green's functions given herein are thus much-needed 
in the DI)M. They can be used in a boundary element procedure to solve general boundary 
value problems governed by poroelasticity. This numerical technique is particularly 
appealing for solving problems involving fractures and discontinuities [8], [10]. 
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