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Abstract. The propagator  matrix method is used in this paper to study the vibration of a 
transversely isotropic, simply supported and layered rectangular plate. A new system of  vector 
functions is constructed to deal with general surface loading, and general solutions and layer 
matrices of  exact closed form are obtained in this system. The particular solution for forced 
vibration, and the characteristic equations for free vibration of various surface conditions are 
then obtained by simple multiplication of  layer matrices. These results are presented in such a way 
that  the dilatational and distortional modes of  vibration are separated. As a special case of  the 
layered plate, results for the corresponding homogeneous  thick plate are also derived. They are 
presented in a very simple form, and contain the previous results for the static transversely 
isotropic and the dynamic isotropic plates. 

AMS subject classification (1980): 73C99. 

List of  symbols 

h k = z~ - zk _ 1 = thickness of  layer k 
zk_ 1, zk = coordinates of  upper and lower interfaces of  layer k 

x, y, z = Cartesian coordinates 
a, b, H =  length, width and thickness of  the layered rectangular plate, 

respectively 
e) = harmonic  oscillation frequency as in exp( - i~ot) 
p = mass  density 
ui = displacements 

a~ = stress components  
S(x, y; m, n), Sl(x,  y; m, n) = scalar functions 

m, n = integers 
Pxz(m, n), Pea(m, n), P~z(m, n) = loading coefficients 

ix, it, i Z = unit  vectors 
L, M, N = vector functions 

UL(z), U~t(z), UN(Z ) = expansion coefficients of  displacement vector u 
TL(z), TM(z), TN(Z ) = expansion coefficients of  traction vector T 

All , AI3 , A33 , A44 , A66 = elastic constants 
2 2 = ~2 + 132, o~ = mTz /a, Iff = n~ /b 

[A(z)], [A Z(z)], [Z(z)], [ZZ(z)] = matrix functions 
[C], [C L] = column matrices 
[ _  _ ]  -1 = inverse of  matrix [ - - ]  
[a~], [a~] = propagator  matrices of  layer k 

[A~(z)], [A~(z)] = column matrices of  layer k 
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[FI, [F L] = matrices 
A = F31F42 - -  F3:~F41 

F/j, F/~ = elements of matrices [F] and [FZ], respectively 
% = elements of matrices [a] 

ch, sh = hyperbolic cosine and sine, respectively 
a(xl), c(xl), d(xl)= functions defined in Appendix A 

X l ,  X2, X 3 = c h a r a c t e r i s t i c  r o o t s  

g = normal spring constant 
G = shear modulus 

1. Introduction 

There are many examples in various branches of engineering in which the 
structure appears as a stack of parallel layers. One of the commonly studied 
problems related to this type of structure is wave propagation in layered 
elastic media of infinite extent. This is a subject applicable to many areas, such 
as seismology [1 4], composite materials [5, 6], etc. 

The response problem of a layered elastic structure of finite extent subject 
to static or dynamic loading conditions is also an interesting topic in the area 
of composite materials, in particular, of thick plate and laminated plate 
theories. Although several approximate plate theories have been proposed in 
this field, only a few exact three dimensional solutions have been obtained, to 
the author's knowledge, within the linear theory of elasticity. In the static 
aspect, Levinson [7] obtained an exact closed form solution for an isotropic 
and simply supported rectangular plate, and recently, by constructing a 
system of vector functions and introducing the propagator matrix method, the 
author [8] extended Levinson's solution to the corresponding transversely 
isotropic and layered case. In the dynamic aspect, Lee and Reismann [9] and 
Srinivas et al. [10] presented exact solutions for the dynamic response of an 
isotropic and simply supported rectangular plate and for the vibration of the 
corresponding laminated plates, respectively. Srinivas and Rao [11] then 
derived the exact solution for the bending, vibration and buckling of simply 
supported orthotropic rectangular plates and laminates. Although these dy- 
namic analyses are of interest to various plate theories, they require one to 
solve a system of simultaneous linear equations with order proportional to the 
number of layers, which is a troublesome procedure when handling multilay- 
ered plates. Further, no explicit expression of the characteristic equation has 
ever been obtained for the vibration of homogeneous thick plate except 
perhaps for the isotropic medium. Recently, Bottega [ 12] obtained an axisym- 
metric solution for the transient problem of a finite multilayered isotropic 
elastic disk or cylinder. The result was presented in terms of layer matrix and 
in the form of an eigenfunction expansion. He then discussed the orthogonal- 
ity of the normal modes for multilayered elastic solids [ 13]. 



Vibration of  a layered plate 169 

A new system of  vector functions is constructed in this paper to solve the 
vibration of a transversely isotropic, simply supported and layered rectangular 
plate. The solution for the forced vibration under general surface loading is 
presented in an exact closed form in this new system by multiplication of layer 
matrices. The characteristic equations for some cases of free vibration are also 
obtained and several reduced results of the present solution are discussed and 
compared with the previous ones. 

2. Problem statement 

We consider a simply supported and layered rectangular plate (Fig. 1), which 
contains p layers of parallel, homogeneous and transversely isotropic elastic 
material. The kth layer is of thickness h k and is bounded by the interfaces 
z = zk _ 1, z~, and the layer interfaces are assumed to be in welded contact for 
simplicity. The z-axis has been taken to be the axis of symmetry of this 
medium and is drawn into the plate. 

In the absence of body force, the equation of motion for a body executing 
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Fig. 1. Geometry of a layered plate occupying region 0 ~< x ~< a, 0 ~< y ~< b and 0 ~< z ~< H. 
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simple harmonic oscillations with frequency 09 is [in this context, the har- 
monic factor e x p ( -  icot) has been omitted for brevity] 

~ij,j -b pOj2Ui = 0,  (2.1) 

where the summation convention is implied, ~rij and ui are the components of 
stress tensor and displacement vector, respectively; The subscript " , j "  denotes 
the partial derivative with respect to x, y or z as appropriate. It is noted that 
the static problem discussed in [8] is a special case of the present work with 
0 9 = 0 .  

Other basic equations are the generalized Hooke's law and the well-known 
strain-displacement relations, cf., e.g., [8]. For a complete treatment, we need 
the simply-supported condition at "edges", the continuity conditions at the 
layer interfaces and the boundary condition at the surface. These conditions 
have been presented in [8]. For the third type of condition, however, we will 
assume a general loading, i.e., at the lowermost surface, we still have 

~xz(X, Y, H)  = aye(X, y, H)  = ~rzz(X, y, H)  = O, 

but at the uppermost surface, we have 

(2.2) 

~rxz(X, y, O) = Px~(m, n) OS/8x, 

ayz(x, y, O) = P~,~(m, n) 8S/Sy, 

~rzz(x, y, O) = Pzz(m, n)S, 

(2.3) 

where the scalar function S is defined by 

S(x, y; m, n) = sin(m~zx/a) sin(tory/b). (2.4) 

It is assumed that whenever the function S occurs, summation with respect to 
rn and n is implied, and the same convention applies to the following function 
$1. In addition, the loading coefficients Pxz, Pyz and P= may be frequency 
dependent. 

3. Particular solution for forced vibration 

3.1. ~Iultilayered thick plates 

As we have pointed out in [8], the method of systems of vector functions can 
be used to handle the general loading problem. For the present "boundary" 
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case, we construct the new system 

L(x, y; m, n) = iz S(x, y; m, n), 

M(x, y; m, n) = grad S = ix dS/~x ÷ iy OS/Oy, (3.1) 

N(x, y; m, n) = curl(izS1 ) = i,, ~S1/~y - i r OS1/Ox, 

where the scalar function $1 is defined by 

S~ (x, y; m, n) = cos(mnx /a) cos(nrcy /b). (3.2) 

It can be verified that this system is still mutually orthogonal and has the 
normalization factors given in [8]. Further, the solutions related to vector 
function N and to L and M are associated with the so-called distortional and 
dilatational modes, respectively. 

For any layer k, we seek the solution in the form [8] 

u(x, y, z) = UL(z)L(x, y) + UM(z)M(x, y) + UN(Z)N(x , y), 

T(x, y, z) =- axzix + ~Tyziy q- a=iz (3.3) 

= TL(z)L(x, y) + TM(z)M(x, y) + ZN(z)S(x  , y). 

Following the same procedure as in [8], we obtain two sets of simultaneous 
linear differential equations for determining the expansion coefficients UL, 
U~t, UN, TL, T~ and TN. They are, for type I, 

dUL/dz = 22UMA13/A33 -I-- Tz./A33, 

dUm/dz = - U t .  + TM/A44, (3.4) 

dTz/dz  = -pco2U~ + )~2T~, 

dT~r/dz = U~t[22(A11A33 - A~3)/A33 - p~o ~] - A~3 Tz/A33, 

and for type II, 

dU~v /dz = T~v /A44, (3.5) 

dTN/dZ = (2~A66 - -  pfo2)UN, 
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where All  , AI3 , A33, A44 and A66 are the five elastic constants [8], and 
22 = 0~2 + f12, O~ = m ~ / a ,  fl = mc/b .  

The general solutions of equations (3.4) and (3.5) are derived as 

[A(z)] : [Z(z)][C] (3.6) 

[A ffz)] = [z'~(z)][c'q. (3.7) 

In equations (3.6) and (3.7), the elements of the solution matrices [Z(z)] and 
[ZZ(z)] are given in Appendix A, and the superscript L is attached to denote 
that a quantity belongs to type II. The definitions of the column matrices 
[A(z)], [AL(z)], [C] and [C z] are the same as in [8]. 

From (3.6) and (3.7), we can derive the following propagating relations 

[A(z~, 1)] ~ "  [a~,][A(zk)], (3.8) 

[A C(z k_l)] = [a~][A L(Zk)], (3.9) 

where 

[ak] = [Z(z~ _ 1 )][Z(z~)] --1 (3.10) 

and 

[a~] = [ZL(zk  _ 1 )][ZL(zk)] -1 (3.11) 

are the propagator matrices of the kth layer. Their elements are obtained by 
utilizing the symmetry of equations (3.4) and (3.5) [14, 15] and are given in 
Appendix B. 

Proceeding as in [8], we find the following relations: 

[A~ (0)] = [al][az] - - [ap][Ap(H)],  (3.12) 

[At(0)] [a~][a~] L c = - - [ap ][Ap (H)], (3.13) 

where subscript p is attached to the column matrices [A] and [AZ] to denote 
that they are in the p th  layer. Employing the boundary conditions (2.2) and 
(2.3), which are equivalent to 

TL ( H )  = TM ( H )  = TN ( H )  = O, (3.14) 

TL(0) = C~, (3.15) 
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(3.16) 

(3.17) 

we then obtain the expressions for the unknown quantities on both sides of 

(3.12) and (3.13) 

U L (H) = [F42 T L (0)/). - F~ TM (0)]/A, 

,,~UM(H ) = - [ F 4 1  TL(O)/2 - F31 TM(O)I/A, ( 3 . 1 8 )  

UN (H) = TN (0)/(2FL~ ); 

UL ( O ) = [ (F~1F42 - -  FI2F4, ) TL ( O) /A. q- (F12F31 - Fl~ F32) TM( O)]/A, 

,~u~,(o) = [ (F , ,F , ,  - F, ,F~I)T~.(O)/a + (F , ,F , I  - F , ,F~, )T~, (O)] /A,  ( 3 . 1 9 )  

UN( O ) = FZfl T~v( O) /( 2F~ ), 

where 

IF] = [al][a2] - - [ap], 

[F L] = [a~][a~] - -- [ap~], 

A = F31 F42 - -  F32F41 . 

(3.20) 

(3.21) 

(3.22) 

[ A g  ( z ) ]  - -  [ak (Zk - -  z ) ] [ a x  + 1 ] - -  - -  

[ A ~ ( z ) ]  : L [ a ~  ( z ~  - -  z ) ] [ a ~ +  1] - -  - -  

[ % ] [ A p ( ~ ) ] .  ( 3 . 2 3 )  

L L [ap ][A p (H)], (3.24) 

where [ak(ze - z ) ]  and L __ [ak(z~ z)] are obtained from Appendix B by replacing 
h~ with z ~ -  z. 

So far we have derived the displacement and traction vectors at any point 
of the medium. They are given by (3.3) with coefficients being determined by 
(3.23) and (3.24). The remaining stress components for the present general 

It is noted that equations (3.18) and (3.19) are extensions of equations 
(4.5) and (4.6) in [8], respectively. The coefficients of the displacement and 
traction vectors at any level of the media, say zk_ 1 ~< z ~< zk, can then be 
expressed by 
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case are found to be 

axx(X, y, z) = [TL A13/A33 --}- (,~ 2A ~3/A33 - ~2All -- f l2A12)UM ]S 

q- 2A66 UN ~2S1/ (~x  Oy), 

axy(x, y, z) = 2A66 U~t ~2S/(Ox Oy) + A66(~z 2 - flz)u~vs~, (3.25) 

ayy(X, y, z) = [TLAI3/A33 + (2eA~3/A33 - e2A~  - fl2A~I)U~t]S 

- 2A66 UN ~2S1/(~x Oy). 

Again, this equation is an extension of equation (4.9) in [8]. 

3.2. Homogeneous thick plate 

For a homogeneous plate with arbitrary thickness H, equations (3.20)-(3.22) 
reduce to 

[r] = [a(H)], (3.26) 

IF L] = [aL(H)], (3.27) 

A = a31 a42 -- a32a41 . (3.28) 

In this case, all results become very simple. For example, from equation 
(3.19), the normal displacement or deflection at the surface caused by normal 
surface loading only can be reduced to 

uz(x, y, O) = TL(O)(alla42 - a~za4,)S/()~A ). (3.29) 

Substituting equation (3.15) and the elements of the matrix [a] in Appendix r3 
into equation (3.29), and after performing some algebraic manipulations, we 
finally find that 

Uz(X , y ,  O) = Pzz); 1S{[d(Xl)a(x2)  

-- d ( x2 )a (x  1)][d(x2)c(x 1 ) c h ( x  1 H )  sh(x2 H )  

- d(Xl)C(X2) ch(x2H) sh(x~ H)] } 

/ {2c(xl )c(x2)d(xl )d(xz)[  1 - ch(x~ H) ch(x2H)] 

+ [c2(Xl)d2(x2) + c2(x~)d2(x~)] sh(x~H) sh(x2H)}, (3.30) 
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where the definitions of functions a(xl ), c(xl) and d(Xl) are given in Appendix 
A; ch and sh stand for hyperbolic cosine and sine, respectively. 

4. Free vibration with stress-free surfaces 

If the uppermost surface is also free of traction, we see that equations (3.12) 
and (3.13) then reduce to 

[UL(0), 2U~t(0), 0, 0] 7"= [F][UL(H), 2U~t (H), 0, 0] ~, (4.1) 

[UN(0), 0] T= [FL][UN(H), 0] T, (4.2) 

where [ -  - ]  T denotes the transpose of matrix [ -  - ] .  These two systems have 
nontrivial solutions provided that 

F31F42 - F32F41 -= 0, (4.3) 

F~I = 0, (4.4) 

which are just the denominators in expressions (3.18) and (3.19). 
Equations (4.3) and (4.4) are the characteristic equations for determining 

the eigenfrequencies of the free vibration of a transvesely isotropic and layered 
rectangular plate with stress-free surfaces, and their eigenvalues correspond to 
the dilatational and distortional modes, respectively. As these expressions are 
given in exact closed form, they may be used to measure various thick and 
laminated plate theories. 

For a homogeneous thick plate, equations (4.3) and (4.4) can be expressed 
explicitly in very simple forms 

2c(xl)e(xz)d(x~)d(x2)[1 - ch(x~H) ch(xzH)] 

+ [¢2(X 1)d2(x~) + c~(x2)d2(x~)] sh(xlH) sh(x~H) = 0, (4.5) 

sh(x3H ) = 0. (4.6) 

Further, by using equation (2.3) in [8], it is found that these two equations 
can be reduced to the characteristic equation obtained by Srinivas et al. [ 10] 
for an isotropic plate. As pointed out in [10], the solution of this transcenden- 
tal equation for each combination of m and n yields an infinite sequence of 
eigenvalues, instead of only one family by thin plate theory [16] or three by 
Mindlin's thick plate theory [17]. 
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The displacement and stress components for the free vibration problem may 
be easily obtained by using the formulae in Section 3, and, as is well-known, 
can be determined in relative magnitude only. 

5. Free vibration with other surface conditions 

For a complete analysis, we provide here the exact closed form characteristic 
equations for some other surface conditions frequently discussed in the 
literatures, cf., e.g., [10]. 

5.1. Layered  plates  with smooth rigid surfaces 

The surface conditions on both surfaces in this case are 

z = O, H: uz = axz = ay~ 

or, equivalently, 

= 0  (5.1) 

z =0 ,  H: U L = T ~ t - - - T N = O .  (5.2) 

The characteristic equations for dilatational and distortional modes are, 
respectively, 

FieF43 - F4~F,3 = 0, (5 .3 )  

F~I = 0. (5 .4)  

It is noted that the second type of modes in this case is the same as that for 
the case of stress-free surfaces. For a homogeneous thick plate, equations 
(5.3) and (5.4) can be reduced to 

sh(x 1 H) sh(x2 H) = 0, (5.5) 

sh(x3H ) = 0, (5.6) 

which can be further reduced to the corresponding isotropic result as given in 
[10]. 
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5.2. Layered plates with rigid surfaces 

In this case, we have 

z = 0 ,  H: Ux=Uy=Uz=O (5.7) 

or, equivalently, 

z = 0 ,  H :  UL=UM=UN=O. (5,8) 

The characteristic equations are 

F13F24 -- F14F23 = 0, (5,9) 

r~2 = 0. (5.10) 

Notice that the equation for the distortional modes in this case is different 
from that of the two types discussed above. But for a homogeneous thick 
plate, they are not distinguishable, since in this special case, we have 

2a(x~)a(x2)[ 1 -- ch(x 1H) ch(x2H)] 

q- [a2(Xl) q- a2(x2)] sh(x~ H) sh(x2H) = O, 

sh(x 3 H) = 0. 

(5.11) 

(5.12) 

Again, in the isotropic case, these results will reduce to those given in [10]. 

5.3. Layered plates on elastic foundation 

The boundary conditions on both surfaces are assumed to be [10] 

z = 0 :  ~r~z-guz=O, o-xz=o'y z = 0 ,  (5.13) 

z =/-/:  ~rz~ = o-xz = ~yz = 0, (5.14) 

where g is the normal spring constant. On expressing equations (5.13) and 
(5.14) in terms of the coefficients of the displacement and traction vectors, 
they are seen to be equivalent to 

z=O: ~L--gUL=0, T~ ,=Tu=0,  (5.15) 

z = H :  T L - - T ~ t = T u = 0 .  (5.16) 
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The characteristic equations in this case are 

F41 (2F32 -- gFl2) - f42()~f31 - gFll) = 0, (5.17) 

F~a = 0. (5.18) 

For the corresponding homogeneous case, they are reduced to 

g2 - l [d(x l )a(x2)  - d(x2)a()¢l )][d(xl )c(x2) ch(x2H) sh(Xl H) 

- d ( x2 )c (x l )  ch(x~ H) sh(x~H)] 

+ 2c(x 1)c(x2)d(x ~)d(x2) [ 1 - ch(x~ H) ch(x2H)] 

-t- [c2(Xl)d2(x2)  -I- c2(x2)d~(Xl)] sh(xlH ) sh(x2g) = 0, (5.19) 

sh(x3 H) = 0. (5.20) 

It should be pointed out that, in the isotropic case, (5.19) will be reduced to 
the result given by Srinivas et al. [10] with g being replaced by g /G;  this may 
be caused by misprint. 

6. Discussion and conclusions 

The propagator matrix method has been used to solve the vibration problem 
of a transversely isotropic, simply supported and layered rectangular plate. 
For dealing with the general surface loading case, a new system of vector 
functions has been constructed. While the expressions for displacements and 
stresses for forced vibration are derived in terms of this new system by 
multiplication of layer matrices, those of the characteristic equations for 
several types of free vibration are obtained by multiplication of layer matrices 
only. As these expressions are very simple, they are particularly suitable for 
laminate plates. Further, it is shown that the present result contains results of 
some previous studies as special cases. 

Although we have discussed the vibration problem only, the solution for the 
general dynamic problem may be obtained by employing the eigenfunction 
expression technique proposed by Bottega [12], because the present case 
satisfies the orthogonality condition discussed in [ 13]. Finally, we point out 
that the present general solution and the layer matrix may be employed to 
extend Bottega's recent work [12] to the corresponding transversely isotropic 
case, which is currently under investigation. 
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Appendix A 

The elements of the solution matrix [Z(z)] in (3.6) are 

Zll = a(xl) exp(x~z) Z12 = - a ( x x )  e x p ( - x l z ) ,  

Z:I = exp(xlz) Z22 = e x p ( - x l z ) ,  (A1) 

Z3~ = c(x~) exp(x~z) Z32 = c(xl )  exp(-x~z) ,  

Z4~ = d(Xl) exp(x~z) Z42 = -d (Xl )  exp( -x~z) ;  

Zi3 and Zi4 are obtained from Zi~ and Z;z, respectively, by replacing xl with 
x: (i = 1, 2, 3, 4); x~ and x~ are two distinct roots of the equation 

X 4 q- [p(0~(A33 q- A44) + ~2(2A13144  q- A123 - A11133)]x2/(A33144) 

-~ (~ 2144 - -  pgo 2)()~ 2A11 _ p(_o 2)/(/ t33 144)  = 0. 

Functions a(x), c(x) and d(x) are defined by 

a ( x )  = ,~(113 -t- A44)x /A(x ) ,  

c(x) = [A33A44x 2 - A13(po3 2 - 2 2A44)]/A(x), 

d(x)  = (pco 2 + 22A13 + xZA33)A44x/[2A(x)], 

where 

A(X) = po)  2 - -  ~,2A44 -t- x 2 1 3 3 .  

The elements of the solution matrix [ZL(z)] in (3.7) are 

Z~I = exp(x3 z) Z~2 = exp(--x3z), 

Z2~ = g exp(x3z) Z~2 = - g  exp(--x3z), 

where 

g = A44x  3/,,~, 

X~ = 22166/144 -- p(D2/A44 . 

(A2) 

(A3) 

(14)  

(15)  

(A6) 

(A7) 

(A8) 

(A9) 
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Appendix B 

The elements of  the layer matrix [ak] in (3.10) are (dropping the subscript k) 

a~ = a33 = g(x  1 ) a ( x  1 ) c ( x  I ) ch Yl q- g(x2)a(xz )c(x2)  ch yz, 

a12 = - -  a43 = g(2cl ) a ( x l  )d (Xl  ) sh Yl qt_ g(x2)a(x2)d(x2)  sh Y2, 

a~3 = - g ( x ~ ) a Z ( x ~ )  sh Yl - g(x2)a2(xz)  sh y2, 

a~4 = - az3 = - g ( x l ) a ( x ~  ) ch Yl - g(x2)a(x2)  ch y2, 

a2~ = - a34 = - g ( x l ) c ( x ~ )  sh y~ - g (xz )c (xz )  sh y2, 
(B1) 

a22 = a44 -- - g ( X l  )d(x~ ) ch y~ - g(x~)d(x2)  ch Y2, 

a24 .= g (x  1 ) sh Yl q- g(x2)  sh Y2, 

a31 = - - g ( x  l)C2(xl) sh Yl - -  g(X2)C2(Xz) s h  Y2, 

a32 = --a41 = - - g ( x  I ) d ( x  I ) c ( x  1 ) ch Yl - -  g(x2)d(x2)¢(x2)  ch Y2, 

a4z = g(xl)dZ(x~ ) sh Yl + g(x2)d:(x2)  sh Y2, 

where 

y~ = Xlh,  (B2) 

y2 = xzh ,  (B3) 

g(x)  = 1/[a(x)c(x) - d(x)]. (B4) 

The elements of  the layer matrix [a~] in (3.11) are (dropping the subscript 
~,) 

a~ l=Chy3 a ~ z = _ g - l s h y 3 ,  (B5) 

a f l  = - -  ~ sh Y3 a2L2 = ch Y3, 

where 

Y3 = xah. (B6) 
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