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Gravitational Stresses in Anisotropic 
Rock Masses with Inclined Strata 
B. AMADED 
E. PAN~" 

This paper presents closed-form solutions for the stress field induced by gravity 
in generally anisotropic, orthotropic and transversely isotropic rock masses. 
These rocks are assumed to be homogeneous and linearly elastic continua with 
strata inclined with respect to a horizontal ground surface. It is found that the 
stress field is multiaxial. The vertical stress is always a principal stress and is 
equal to the weight of  the overlying material. The horizontal stresses are 
strongly correlated to the rock mass fabric. The expressions for the gravity- 
induced horizontal stresses are different for rock masses deforming under 
conditions of  no lateral strain and no lateral displacement (uniaxial strain). The 
gravity-induced horizontal stresses depend on several parameters such as the 
type, degree and orientation of the rock anisotropy with respect to the ground 
surface. It is found that depending on the value of  those parameters, and 
constrained by the thermodynamic requirement that the strain energy of  the 
rock must always be positive-definite, the gravity induced horizontal stresses 
can be larger, equal or less than the vertical stress. Furthermore, for a certain 
range of elastic properties of  a transversely isotropic rock mass with inclined 
strata only, it is thermodynamically admissible for the horizontal stress parallel 
to the dip direction of the strata to be tensile. 

INTRODUCTION 

In two recent papers [1,2], closed-form solutions 
were presented for the components of the stress field 
induced by gravitational loading of laterally restrained 
anisotropic rock masses with a horizontal ground sur- 
face. The rock masses were modelled as orthotropic or 
transversely isotropic linearly elastic materials that were 
either homogeneous or stratified with homogeneous 
layers. The solutions were limited to orthotropic and 
transversely isotropic rock masses with horizontal or 
vertical planes of symmetry. 

The analytical solutions of Amadei et al. [1, 2] showed 
that for anisotropic rock masses under gravity and a 
condition of no lateral displacements, the horizontal 
stresses could not be predicted by the classical isotropic 
solution of Terzaghi and Richart [3]. Recall that in the 
isotropic solution, the horizontal stresses are equal to 
v / ( 1 -  v) times the vertical stress where v is the rock 
Poisson's ratio. It was found that the magnitude of 
gravity-induced horizontal stresses greatly depends on 
the type, degree and orientation of rock anisotropy with 
respect to the ground surface. Also, it appeared that 
inclusion of anisotropy could broaden the range of 
permissible values of gravity-induced horizontal stresses 
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in rock masses. In fact, for some range of anisotropic 
rock properties, it was found that it is thermodynami- 
cally admissible for gravity-induced horizontal stresses 
to exceed the vertical stress component which is not 
possible with the isotropic solution. 

The purpose of this paper is to consider the nature of 
the gravity-induced stress field in homogeneous or- 
thotropic and transversely isotropic rock masses with 
strata which are now inclined with respect to a horizon- 
tal ground surface. At the outset, new closed-form 
solutions for the stresses derived by the second author 
are presented for gravitational loading of generally 
anisotropic, orthotropic and transversely isotropic rock 
masses under no lateral strain and no lateral displace- 
ment conditions. This is followed by a parametric study 
on the effect of rock anisotropic properties and rock 
strata inclination on gravity-induced stresses. Finally, it 
is shown how the domains of variation of gravity-in- 
duced horizontal stresses in anisotropic rocks are con- 
trolled by thermodynamic constraints on their elastic 
properties. 

ANALYTICAL SOLUTION 

General solution 

Consider the equilibrium of a fiat lying horizontal 
elastic half-space representing a rock mass of uniform 
density p under gravity alone. Let x, y, z be an arbitrary 
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Fig. 1. Three-dimensional problem geometry showing the orientation 
of one of the planes of symmetry P in the x, y, z coordinate system. 

coordinate system attached to the half-space such that 
the x- and y-axes are in the horizontal plane and the 
z-axis is positive downward (Fig. 1). The constitutive 
model for the rock mass is assumed to be described 
by Hooke's law which can be written in the x, y, z 
coordinate system as follows: 

or  

(Q = (A)(o') (1) 

( o )  = ( C ) ( e ) ,  ( 2 )  

rock mass are independent of the x- and y-coordinates, 
all the components of stress, strain and displacement 
induced by gravity can be assumed to be independent of 
x and y and to depend on z only. For this assumption, 
the horizontal strain components ¢~, ~y and ~ vanish, 
that is, the rock mass deforms under a condition of 
no lateral strain. The three non-vanishing strain 
components are equal to: 

Ou, 

~Y~ = ~ z  ' 

~u x 
?x" = -  c3--~-" (4) 

Since the stress components are independent of x and 
y, the equations of equilibrium [equation (3)] reduce 
to:  

~Txz 
= 0; 

Oz 

C3Zy= = 0; 
c~z 

where (o) and (~) are, respectively, (6 x 1) column 
matrix representations of the stress and strain tensors in 
the x , y ,  z-coordinate system. (A) is a (6 x 6) symmetric 
compliance matrix with 21 independent components a# 
( i , j  = 1- ,6)  and (C) is the corresponding matrix of 
elastic parameters with components c a (i, j = 1 ~ 6) and 
is such that (C) = (A)-  ~. The components a# and c# are 
assumed to be independent of x and y but are allowed 
to vary with the z-coordinate. 

Since the upper surface of the rock mass is free of any 
loads, the three stress components oz, ¢~ and zy, must 
vanish at z = 0. In addition, under gravitational loading 
in the z-direction, at any point in the rock mass, the six 
stress components must satisfy the following three 
equations of equilibrium: 

aOx C3"Cxy C~¢x: 
o-;- =o, 

~'rxy Ooy c~'ry z =0, 

01:x: ¢~'Cy: 00" z 
0x - ° s  =°" (3) 

~0" z 
o-7 = s,z. ( 5 )  

Using the stress-free boundary condition at the ground 
surface, integration of equation (5) gives that the shear 
stresses T~ and Ty~ always vanish at any depth z and that 
~r~ is always equal to the weight pgz  of the material above 
z. The other three stress components o~, oy and ~y can 
be obtained by substituting the conditions %~ =Ty: = 0 
and o: = pgz  into equation (2). This results in the 
following system of three equations: 

c33~z + c 3 4 7 j , ~  + c3s~z = pgz,  

c ~ z  + c .~yz  + c45~'x~ = O, 

c35~z + c4s~y, + Css~'= = 0, (6) 

that can be solved for the three unknown strains ~:, ~yz 
and ~=, e . g .  

pgz  . 
~" = " - K "  tc .cs5  - c ~ ) ,  

pgz  
7yz = -- A " ( c ~ c .  -- c3sc, s), 

In this paper, compressive stresses and contractile strains 
are taken as positive and the negative direction of the 
gravitational body force pg  is in the positive z direction 
(e.g. downward) where g is the acceleration due to 
gravity. 

Because the body force of gravity, the ground surface 
boundary conditions and the elastic properties of the 

pgz  . 
~,,~ = --~-" ~c3,c,s - c35c~), 

where 

A = c33 ( c .  cs5 - c~s)  - c ~  ( c ~  c .  - c3~ c,5 ) 

+ c35 ( c ~  c4s - c35 c . ) .  

(7) 
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Substituting those three strain components into equation 
(2), gives the expression for the stress components ox, o~ 
and %y: 

pgz 2 
o~ =-T ' [c ,~ (c . c .  - c.~) 

- c ,(c~cs~ - c~c~ )  + c , ( c ~ c ~  - c3~ c,)], 

pgz 
o~ = - Z - ' [ c ~ ( c " c "  - c2,,) 

- c~  (c~  c .  - c .  c45) + c2s ( c~  c,s - c3s c . ) ] ,  

~ = E_~. [c~,(c,,c, - c~) 

- c~(c~,c55 - c35c45) + c~(c~c45 - c3sc~)]. (8) 

In addition, 

o ,=pgz ,  ~ = 0 ,  x~=0 .  (9) 

Equations (8) and (9) show that for a general anisotropic 
rock mass with 21 elastic parameters under gravity and 
a no lateral strain condition, the vertical stress is always 
a principal stress and its magnitude is independent of the 
rock mass elastic properties. The two horizontal princi- 
pal stresses are not equal and their magnitude and 
orientation in the x, y plane depend on the type and 
degree of  rock mass anisotropy. 

Consider now the special case when the rock mass is 
orthotropic in a local n, s, t coordinate system attached to 
three orthogonal planes of symmetry. The orientation of 
that coordinate system with respect to the global x, y, z 
coordinate system is shown in Fig. 1. It is such that the 
t- and y-axes are parallel. Therefore, one of the three 
planes of symmetry (defined as P in Fig. 1) strikes 
parallel to the y-axis. Let ~ be the dip angle of that 
plane. The constitutive equation for the orthotropic rock 
mass in the n, s, t coordinate system is given by the 
following equation: 

. ° 

E t  

7= 

1 v= vm 0 0 0 
E. E. E, 

v= __1 vu 0 0 0 
E, E, E, 
v,t v:~ 1 

0 0 0 
E. E. E, 

1 
0 0 0 - -  0 0 % 

1 
0 0 0 0 - -  0 

Gm 
1 

0 0 0 0 0 

II o', (10) x T~ ' 

Jl# 

or in a more compact matrix form: 

(E)., = (H)(o) . ,  (11) 

Nine independent elastic parameters are needed to de- 
scribe the deformability of the rock in the n, s, t coordi- 
nate system. E,, E, and E, are the Young's moduli in 
the n, s and t directions, respectively. G=, G,, and Gs, are 
the shear moduli in planes parallel to the ns, nt and st 

planes, respectively. Finally, v u (i, j = n, s, t) are the 
Poisson's ratios that characterize the normal strains in 
the symmetry directions j when a stress is applied in the 
symmetry directions i. Became of symmetry of the 
compliance matrix (H), Poisson's ratios vu and vii are 
such that v¢lEi = v~ l~ .  

Using the coordinate transformation rules for 
Cartesian tensors, the components a o and c u of matrices 
(A) and (C) in equations (l) and (2) can be expressed in 
terms of the nine elastic parameters of the rock in the 
n,s, t, coordinate system and the dip angle ~ (see 
Appendix). For the geometry of Fig. I, it is shown in the 
Appendix that several components of matrices (A) and 
(C) vanish, e.g. a4s , a~, c45, c~ and a~, a~, c, ,  c~ for 
i ffi 1, 2, 3. Substituting these conditions into equation 
(8), the shear stress %y vanishes and o-x and oy have the 
following expressions: 

c~3 c55 - c~5 c35 
ax = pgz 

C33 C55 - -  C ~5 

o~ = pgz cz3c55 -- c25c35 (12) 
¢33 C55 - -  C~5 

Equations (9) and (12) show that i f  one plane of 
symmetry of the orthotropic rock mass strikes parallel to 
the y-axis, the three stress components in the x, y, z 
coordinate system o-~, oy and o, are always principal 
stresses. Because of the linear relations existing between 
coeffidents a u and h u of matrices and (A) and (H) in 
equations (1) and (11), respectively, it can be shown that 
the stress ratios o~/pgz and oy/pgz defined in equation 
(12) depend on the dip angle ~ and eight dimensionless 
quantities: 

E,. E, E,. e , .  E, (13) 
V.' ~,; v~; , . ;  , . ;  G.,' G.,' G=" 

Equations (10-13) still apply i f  the rock mass is trans- 
versely isotropic in one of the three ns-, nt- or st-planes. 

In that case, only five independent elastic parameters are 
needed to describe the deformability of the medium in 
the n, s, t coordinate system. In this paper, these par- 
ameters are called E, E', v, v' and G' with the following 
definitions: 

(i) E and E'  are Young's moduli in the plane of 
transverse isotropy and in direction normal to it, 
respectively; 

(ii) v and v' are Poisson's ratios characterizing the 
lateral strain response in the plane of transverse 
isotropy to a stress acting parallel or normal to 
it, respectively; and 

(iii) G" is the shear modulus in planes normal to the 
plane of transverse isotropy. 
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Relations exist between E, E', v, v', G and G' and the 
coefficients of matrix (H) in equation (1 1). For instance, 
for transverse isotropy in the st-plane: 

1 1 1 1 1 1 1 1 
E, -~; E, E, E' C~ ~, ~"  

rns Vnt Y" 

E , E ~ E "  

Vs: Vzs V 

F.~F. ,E'  
1 1 2(1 + v) 

(14) 
G,, G E 

The stress ratios o x / p g z  and O y / p g z  defined in equation 
(12) now depend on the dip angle ~ and the following 
four dimensionless quantities: 

E G 
E "  v; v ,  G' (15) 

N o  l a t e r a l  d i s p l a c e m e n t  s o l u t i o n  

Equations (8), (9) and (1 2) were derived assuming that 
the components of stress, strain and displacement 
induced by gravity are independent of the x- and 
y-coordinates. This assumption results in a no lateral 
strain condition G = Ey = ~xy = 0. Since y .  and T= and ~ 
do not vanish, this no lateral strain condition is not as 
restrictive as the classical uniaxial strain condition where 
all strain components except ¢~ vanish. Furthermore, 
combining equations (4) and (7), the displacement com- 
ponents ux, uy and u~ are quadratic functions of the depth 
z whereas u~ and uy vanish for the uniaxial strain 
condition. 

Consider now the case where, in addition to the 
assumptions associated with the no lateral strain con- 
dition, the anisotropic rock mass is not allowed to 
deform in the horizontal plane under gravitational load- 
ing, i.e. u~ ffi uy = 0. Then, the strain components Ty~ and 
T~: vanish along with G, ey and )'xy and the vertical strain 
E~ is the only non-vanishing strain component (uniaxial 
strain condition). Substituting the condition T, = ~x~ = 0 
into equation (6) results in E~ = pgz / c33  and c~ and Ca5 
vanishing. Then, substituting c~ = c35 = 0 into equation 
(8), the stress components ax ,  % and %y can be expressed 
as follows: 

C13 
a,, = p g z  " - - ,  

¢33 

c23 
ay = p g z ' - - ,  

¢33 

c~ (16) Xxy = p g x  " - - .  
C33 

Unlike the stress components in equation (8), the stress 
components in equation (16) cannot be used for all rock 
mass anisotropy types and orientations. They can only 
be used for rock masses with planes of symmetry 
oriented such that c34 and c35 vanish. For such rock 
masses, the no lateral strain condition reduces to the 

uniaxial strain condition. An example of rock mass 
anisotropy for which the two conditions coincide is 
presented below. 

S p e c i a l  c a s e  w h e n  ~ - -  0 o r  9 0  ° 

When the dip angle ~ in Fig. 1 is equal to 0 or 90 °, 
the orthotropic or transversely isotropic rock mass has 
planes of symmetry normal to the x-, y- and z-axes. For 
these anisotropy orientations, the rock mass has nine or 
five independent elastic properties in the x, y, z coordi- 
nate system and many components of matrices (A) and 
(C) vanish, e.g. a45, a~, as~, c45, c4~, c56 and a~,, ais, a~, 
c~, c~5, c~ for i = 1, 2, 3. In particular, since c34 and c35 
vanish and c3~ also vanishes, equation (16) gives the 
following expressions for the principal horizontal 
stresses ox and oy: 

C13 
0 x = p g Z  " - - ,  

C33 

C23 
oy ffi p g z  . - - .  (17) 

¢33 

Substituting the relations existing between the c u and a,j 
components of matrices (C) and (A) and the nine or five 
elastic properties of the rock mass into equation (17), 
gives the expressions for the gravity-induced stresses 
proposed by Amadei e t  al.  [l] for orthotropic and 
transversely isotropic rock masses. For an orthotropic 
rock mass, the stress ratios O x / p g z  and o ~ / p g z  are 
equal to: 

Ox _~ a12a23 - -  a22a13 ..~ Vx: ..[- Vyz Vxy 
p g z  at2a22 -- a~2 1 -- Vxy Vy x ' 

oy ffi al2at3 - -  alia23 = vyz + VyxVxz (18) 
p g z  a l 2 a  ~ - -  a~2 1 - -  vxy vy x 

For a horizontally transversely isotropic rock mass, 
equation (17) gives: 

o~ = oy = v ' E  1 (19) 
p g z  p g z  E "  1 - v " 

If the transverse isotropy is vertical and parallel to 
the y-axis of Fig. l, equation (19) is replaced by the 
following: 

V d-V '2--E 
ox -- v'(l + v) ," o, _ E'  (20) 

p g z  1 - v "2 E___. p g z  1 - v "2 E "  
E '  E"  

Finally, for isotropic rock masses, equation (l 7) reduces 
to:  

0 x Oy -- V 
(21) 

f l g z  p g z  1 - -  v 

Note that in equations (18--21), the stress components 
are all independent of the shear moduli of the rock. This 
is because the planes of symmetry of the rock coincide 



with the x, y, z coordinate system when ~ is equal to 0 
or 90 ° . o.so =- 

PARAMETRIC STUDY 0.70 

0.20 
0.50 

In order to illustrate the analytical solution presented 
above, a parametric study was carried out to assess the 0.60 
effect of the elastic properties of rock strata and their N 
orientation on gravitational stresses induced in trans- ~ 0.50 
versely isotropic rock masses. In the parametric study, 
the geometry of Fig. 1 was adopted with planes of 
transverse isotropy parallel to the st-plane. The domains o.4o 
of variation selected for E/E', G/G', v and v' were based 
on literature surveys on elastic properties of intact 0.30 
anisotropic rocks conducted by Gerrard [4] and Amadei 
et al. [1]. 

As a numerical example, Figs 2a--c show, respectively, 
the variations of Ox/pgz, o,/pgz and o~/% computed 
from equation (12) for several degrees of rock anisotropy 
with E/E" and G/G" ranging between 1 and 3, 
v = v ' = 0 . 2 5  and for a dip angle 0 equal to 30 ° . 1.00 
Compared to the isotropic solution, e.g. ¢x/plrz ffi 
oy/pgz ffi 0.333 which is represented by point I in Figs 
2a--c, both Ox and oy increase with E/E" and G/G'. For 0.80 
a fixed value of G/G', the stresses increase as E/E" 
increases, that is as the rock mass becomes more deform- 
able in directions normal to the planes of transverse 

0.60 
isotropy. Note that for a fixed value of E/E', the stress N w 
o, parallel to the dip direction of the planes of transverse 
isotropy depends strongly on the value of G/G'. On the °>'0.40 
other hand, the stress oy parallel to the strike of the 
planes of transverse isotropy is not much affected by the 
value of G/G'. An increase of G/G" indicates that the 0.20 
rock mass becomes more deformable in shear in planes 
normal to the planes of transverse isotropy. For a fixed 
value of G/G', the stress ratio o~/oy decreases as E/E" 
increases. 

Figures 3a-c show, respectively, the variations of  
o~/pgz, o,/pgz and o~/oy with E/E" for v'ffi 0.15, 0.25 
and 0.35, G/G" ffi 1, v = 0.25 and for a dip angle ~# equal 
to 30 °. Compared to the isotropic solution represented 
by point I in Figs 3a-c, the horizontal stresses depend 1 .$0 
strongly on the value of the Poisson's ratio v'. For a 
fixed value of EIE', the stresses and the stress ratio 1.S0 
o~/0, increase with v'. Recall that Poisson's ratio v' 
controls the lateral straining in the planes of transverse 
isotropy resulting from a stress acting normal to those 
planes. 

Figures 4a--c show, respectively, the variations of 
o~/pgz, %/pgz and Crx/Oy with the dip angle t# for 
E/E'= 1, 2 and 3, v = v'ffi 0.25 and G/G'ffi 1. These 
figures indicate that values of o~ and o, larger than those 
predicted with the isotropic solution can be induced in 
rock masses with shallow dipping strata. As the dip 
angle of  the strata increases, the difference between the 
stresses calculated with the isotropic and anisotropic 
solutions decreases. A similar trend can be seen in 
Figs 5a--c for which G/G' is now equal to 3. Note that 
the values of the stress ratio o~/% in Figs 4c and and 5c 
strongly depend on the dip angle of the rock strata. 

G/G' 
3 

GIG' 
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0.40 
0.S0 1.00 1.$0 2.00 2.$0 3.00 3.50 

E/E' 
FiS. 2. variafio,,., of: (-) o.A~r':; ,Co)_ o , / , ~ ;  and (c) a.l~. with E/E" 

for diffemat values of  GIG,  v - v - 0.25 and ¢~ - 30 °. 
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FiB. 3. Variations of.. (a) o~/pgz; (b) cr,/p&z; and (c) ox/a~ with E/E'  
for  v = 0 . 1 5 ,  0.25 a n d  0.35, G/G'= I, v = 0 . 2 5  an d  ~k = 3 0  °. 

O 

1.20 

1.00 

0.60 

o x 0.60 

0.40 

E/E' 
I 

0.20 1 (c) 
0 I I I I I l l l J l l l l l l  I I I  J t l l l l l l l  I J l l t l l l l  i l l  l l l l l l l l l  J 
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FiB. 4. Variations of: (a) a=/pSz; (b) oy/pt, z; and (c) o=/ay with Ik for 
E/E' = I, 2 and  3, v = v '  = 0.25 and  G/G : I. T h e  isotropic solut ion 

is shown  as  a dashed  line. 
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TYPES OF GRAvrrY-INDUCED STRESS 
FIELDS IN ANISOTROPIC ROCK MASSES 

Domains o f  variation for the stresses 

Figures 2-5 show that for transversely isotropic rock 
masses, the ratios ~x/pgz, ~,/pgz and ~x/% can be less 
than, equal or greater than unity depending on the 
values of  E/E ' ,  G/G', v and v' and the dip angle ~ of  
the rock strata. In other words, the type of  gravity- 
induced stress field and the ordering of  the principal 
stresses /n situ depend greatly on the fabric of  rock 
masses and their anisotropic character. 

The five and nine elastic properties of  transversely 
isotropic and orthotropic rock masses, respectively, can- 
not be randomly selected. Indeed, some inequalities 
associated with the thermodynamic constraints that the 
rock strain energy remains positive-definite, must be 
satisfied [5, 6]. These inequalities, in turn, induce con- 
straints on the possible domains of  variation for the 
gravitational stress components as shown by Amadei 
et al. [1] for orthotropic and transversely isotropic rock 
masses with horizontal or vertical planes of  symmetry. 
In this section, the constraints are further discussed for 
transversely isotropic rock masses with inclined strata 
and the geometry of  Fig. 1. 

Recall that if a rock mass were to be modelled as a 
linearly elastic isotropic material, the combination of  
equation (21) with the thermodynamic constraint 
- 1  < v  <0 .5  implies that the possible domain of  
variation for the horizontal stress ¢x--o'y = ch induced 
by gravitational loading is limited. Indeed, the ratio 
¢h/pgz can only vary between 0 and 1 as the Poisson's 
ratio varies between 0 and 0.5 (negative Poisson's 
ratios although thermodynamically admissible have 
not been measured in rocks). In other words, the hori- 
zontal stress can never exceed the vertical stress at 
any depth z unless v > 0.5 which is thermodynamically 
inadmissible. 
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If a rock mass is now modellext as transversely 
isotropic, its five elastic properties E, E', v, v' and G' 
must satisfy the following thermodynamic constraints 
[ 1 1 :  

E, E', G' > 0, (22a) 

- 1 < v < 1, (22b) 

N/E' (1 - V ) E _  - - T  - -  < v' < J ~ '  ( 1 -  V ) E  2 (22c) 

Considering only the positive part of the domains of 
variations for the Poisson's ratios v and v', the con- 
straints in inequalities (22) can be substituted into 

• equation (12) to determine the types of stress fields that 
are admissible in transversely isotropic rock masses. 

Figure 6 shows the variation of the horizontal stress 
ratio (Th/pgZ = (Tx/pgZ = ~y/pgZ with v'E/E" and v for a 
horizontally transverse isotropic rock mass (~ ffi 0°). As 
shown by Amadei et al. [1], the horizontal stress can vary 
over a large region compared to the isotropic solution 
since the domains of variation for v and v' in inequalities 
(22) are not as restrictive as the domain of variation for 
v in the isotropic model, The region is bounded by a 
curve that depends on the value of E/E" and whose 
equation is obtained by combining the positive part of 
inequality (22c) with equation (19). Figure 6 shows that 
horizontal stresses larger than the vertical stress are 
admissible for horizontally layerext rock masses. 

Figures 7 and 8 show the domain of variation of 
Gx/pgz and %/pgz with E/E" and v' for transversely 
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isotropic rock masses with inclined strata (0 < ~ ~< 90 °) 
and for G/G" equal to 1 and 3, respectively. E / E '  varies 
between 1 and 4, v -- 0.25 and v" varies between 0.1 and 
0.4. In Figs 7 and 8, the constraint associated with the 
positive part of  inequality (22c) is indicated as dotted 
dashed lines. 

Figures 7a-d show the admissible stress fields when 
G/G" -- 1 and for strata dipping at angles ~ o f  30, 45, 60 
and 90 ° , respectively. It appears that the stress com- 
ponent ~y acting parallel to the strata is in general larger 
than ¢x. However, as ~ increases, values of  ¢x larger than 
% becomes possible for values of  E/E" between 1 and 2 
and for Poisson's ratios v' larger than 0.3. Compared to 
the isotropic solution respresented by point I, horizontal 
stresses larger than the vertical stress pgz are thermody- 
namically admissible. However, this becomes less admis- 
sible as q/ increases, that is, as the rock strata become 
steeper. Note also that for low values of  v' and large 
values of  E/E', tensile stresses can develop in the 
x-direction. This phenomenon will be discussed further 
in the next section. 

The trends observed in Figs 7a-c can also be found in 
Figs 8a-c where G/G" is now equal to 3. Comparison of  
Figs 7 and 8 shows that the likelihood for having tensile 
stresses in the x-direction when E/E" ranges between 1 
and 4 vanishes as G/G" increases from 1 to 3. Another 
parametric study not presented here has shown that 
for values ranging between 0.15 and 0.35, the Poisson's 
ratio v has little effect on the stress variations shown in 
Figs 7 and 8. 

Tensile stresses under gravitational loading 
Figure 7 shows that for a transversely isotropic rock 

mass, the x-component  of  the stress field induced by 
gravity could be tensile. This only takes place for rock 
masses with inclined strata and for certain values of  the 
rock elastic properties, in particular v" and E/E'. 
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Because of its importance, the potential for developing 
tensile stresses under gravity alone was investigated 
further for transversely isotropic rock masses with E/E" 
ranging between 1 and 10 and v' ranging between 0 and 
1.0. Figure 9 shows in a v', E/E" space, the range of 
elastic properties for which ax is tensile when G/G" ffi 1, 
v ffi 0.25 and for dip angles ranging between 15 and 75 °. 
The curve corresponding to the positive part of inequal- 
ity (22c) also appears in Fig. 9 as a dotted line. It appears 
that the range of elastic properties for which ax is tensile 
is maximum when the dip angle ¢, is equal to 45 °. Tensile 
stresses can occur for values of E/E" as low as 2 and 
values of v" as large as 0.2. 

Figure 10 is similar to Fig. 9 but G/G" is now equal 
to 3. Comparison of Figs 9 and 10 indicates that as G/G" 
increases, tensile stresses can only occur for anisotropic 
rock masses with larger values of E/E' and smaller 
values of v'. Another parametric study not presented 
here has shown that for values ranging between 0.15 and 
0.35, the Poisson's ratio v has little effect on the extent 
of the domains in Figs 9 and 10 where ax is tensile. 

CONCLUSION 

The closed-form solutions proposed in this paper can 
be used to predict the in situ stress field induced 
by gravitational loading of generally anisotropic, 
orthotropic and transversely isotropic homogeneous 
rock masses with strata that are inclined with respect to 
a horizontal ground surface. The stress field is multiaxial 
and is strongly correlated to the rock mass structure. 

For all anisotropic rock masses, the vertical stress is 
always a principal stress and is equal to the weight of the 
overlying rock. Its magnitude is independent of 
anisotropy. The two horizontal principal stress com- 
ponents are not equal and their magnitude and often- 
tation in the horizontal plane depend on the anisotropic 

character of the rock mass. In particular, for orthotropic 
and transversely isotropic rock masses with dipping 
strata, the horizontal stresses parallel to the strike and 
dip direction of the strata are always principal stresses 
and are not equal. They depend on the value of the dip 
angle and the nine or five elastic properties of 
orthotropic or transversely isotropic rock masses, 
respectively. These properties appear in the form of eight 
or four dimensionless quantities. 

The expressions for the gravity-induced horizontal 
stresses differ if the horizontal displacements in an 
anisotropic rock mass are allowed or not. Using the 
assumption that the components of stress, strain and 

• • 
displacements, the ground surface boundary conditions 
and the rock mass deformability properties do not vary 
in the horizontal plane results in general expressions for 
gravity-induced stresses that can be used for all rock 
mass anisotropy types and orientations. This assumption 
makes the rock mass deform under a condition of no 
lateral strain but the horizontal displacements do not 
vanish and vary with depth only. Using the additional 
assumption that the two horizontal displacements must 
also vanish results in a uniaxial strain condition and 
creates constraints on the type of rock mass anisotropy 
for which gravity-induced stresses can be determined. 
The no lateral strain condition presented in this paper is 
not as restrictive as the uniaxial strain condition. For 
isotropic, transversely isotropic and orthotropic rock 
masses, the no lateral strain condition reduces to the 
uniaxial strain condition when the planes of anisotropy 
are either horizontal or vertical. 

For anisotropic rock masses, the gravity-induced 
stress field is three-dimensional. Depending on the rock 
mass anisotropic properties and the orientation of the 
rock strata with respect to the ground surface, different 
stress states are thermodynamically admissible for which 
the strain energy of the rock always remains positive- 
definite, The horizontal stress components can be larger, 
equal or less than the vertical stress. For transversely 
isotropic rock masses, it was found in this paper that 
tensile horizontal stresses could develop in the dip 
direction of the rock strata for v' < 0.2, E/E" > 2, G/G' 
close to 1 and strata that are neither horizontal nor 
vertical. Such domains of variations for the elastic 
properties are not uncommon for intact anisotropic 
rocks. For larger values of G/G', tensile stresses were 
found to develop for larger values of E/E'. For instance, 
when G/G'= 3, E/E" must be at least equal to 7 for 
tensile stresses to appear. These conditions could 
probably be found near the surface or regularly jointed 
rock masses for which confinement is small and the 
anisotropy created by systems of joint surfaces is high. 
The possibility of generating tensile stresses under 
gravity alone opens new hypotheses for the formation of 
fractures in rock masses. This should be corroborated 
with field observations. 

For orthotropic rock masses, the induced stress field 
is again multiaxial. However, the domains of variations 
for the stress components have not been investigated 
in detail in this paper due to the complex nature of 
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the the rmodynamic  constraints  on the rock elastic 
parameters  [1]. 

Gravi ty- induced stress fields in anisotropic rock 
masses depend on  the type, degree and orientat ion o f  the 
rock aniso t ropy with respect to the g round  surface. They  
also depend on how the rock mass properties and the 
degree o f  aniso t ropy vary with depth. The effect o f  such 
variations on gravity-induced stresses has already been 
discussed by Amadei  and Savage [7] and Amadei  et al. 

[2] for  horizontal ly regularly jointed and layered rock 
masses. The solution presented in this paper  can also be 
used to predict stresses in rock masses for  which the 
deformabil i ty properties vary with depth only. This can 
take place if one or  several o f  the five or  nine elastic 
properties o f  transversely isotropic and or thot ropic  rock 
masses and /or  the dip angle o f  the rock strata vary with 
depth. I f  the rock mass density p also varies with depth, 
then 9gz  must  be replaced by g .[ p dz in the expressions 
for the gravity stresses proposed  in this paper.  The effect 
o f  variations o f  rock mass density and deformabil i ty 
with depth on the in si tu stress field is a subject o f  current  
research by the authors.  

REFERENCES 

1. Amadei B., Savage W. Z. and Swolfs H. S. Gravitational stresses 
in anisotropic rock masses. Int. J. Rock Mech. Min. Sci. & 
Geomech. Abstr. 24, 5-14 (1987). 

2. Amadei B., Swolfs H. S. and Savage W. Z. Gravity induced 
stresses in stratified rock masses. Rock Mech. 21, 1-20 (1988). 

3. Terzaghi K. and Richart F. E. Stresses in rocks about cavities. 
Geotechnique 3, 57-90 (1952). 

4. Gerrard C. M. Background to mathematical modelling in geome- 
chanics: the role of fabric and stress history. Proc. Int. Syrup. on 
Numerical Methods, Karlsruhe, pp. 33-120 (1975). 

5• Lempriere B. M. Poisson's ratios in orthotropic materials. J. Am. 
Inst. Aeronaut. Astronaut. 6, 2226-2227 (1968). 

6. Picketing D. J. Anisotropic elastic parameters for soils. Geotech- 
nique 20, 271-276 (1970). 

7. Amadei B. and Savage W. Z. Gravitational stresses in regularly 
jointed rock masses. Proc. Int. Syrup. on Fundamentals of Rock 
Joints, Bjorkliden, Sweden, pp. 463-473 (1985). 

8. Amadei B. Rock Anisotropy and The Theory of Stress Measure- 
ments, Lecture Notes in Engineering Series. Springer, New York 
(1983). 

9. Goodman R. E. Introduction to Rock Mechanics• Wiley, New York 
(1980). 

Acknowledgement--The authors would like to thank Dr W. Z. Savage 
for discussing ideas presented in this paper. 

Accepted for publication 18 December 1991. 

A P P E N D I X  

Matrices (A) and (H) in equations (1) and (I!), respectively, are 
related as follows [8]: 

(A ) = (T,)'(H)(T,), (AI) 

where (T,) is a (6 x 6) coordinate transformation matrix for stress (see 
Goodman [9], p. 404). Using equation (10) for matrix (H), the 
components a u of (,4) are equal to: 

a,,  = sm ~,~. ~. ~, / 

{ v .  2 -  c ° s 2 #  \ sin ~ 2 #  
x -- : -s in q / + T | - t "  

~, ~, ] 4( ; .  ' 

a,~ = -- ~, sin ~ # -- ~, cos ~ #, 

• 2 . fcos= ~ v__. sinZ 

v,, . s in  =#~ sin 22# 

V m V/8 , o,, = - ~, ~ ~ - ~ s , n ~ ,  

2 . fcos2 # v. sin2 ~ )  + sin2 # a . f c o s  E, 

x ( _ v , . c o s 2 ¢  s m 2 h \  sin220 

2 {I v , , \  
a | s = - - s i n 2 #  sin # t ~ + - ~ . ) +  sin2# COS2@ 

{I v . ' ~  sin 2# c o s 2 ~  

[I v , \  . • 2 a.-sin2  # 

x + + 2G, ' 

sin 2 # cos 2 ~, 
a44 ffi G,-~ "+ G., ' 

cos 2 # sin 2 # 

~ = - - ~ - . ~  + G.~ ' 
1 1 

a.:,n# \a= a.,/ 
2 [I 1 2v'\ cos  2 2 #  

, 

• [ v ,  v ~ \  
a u ffi sm 2 # 1 - -  - - - / ,  \E. E,/ 

1 
a22 zffi ~ ,  

a,4 ffi ale = a ~  = a ~  ffi a ~  ffi a ~  = a45 == a ~  ---- 0 .  ( A 2 )  

When # is equal to 0 or 90 °, the following coefficients also vanish: al~, 
a~,  a3~ and a,~. 

For the geometry of Fig. 1, the components of matrices (A) and (C) 
are related as follows. Let D be equal to: 

Then, 

all a12 
a21 a. 

D= 
a31 a32 

asl a52 

al 3 a15 

a7.3 a7.5 
a33 a3s 

a53 a55 

I a22 a23 a25 l 

ell ~ a23 a33 a3s , 

a2s a35 a55 

l al2 a °  als] 
Cl2 ~ - - ~  a23 a33 a35 , 

a~ a3~ as5 

1 a~2 al3 als[ 
Cl3 ~ D a22 a23 a25 

a25 a35 o$$ 

1 a12 a13 al$ I 

(A3) 

l all a13 a .  I 
C22 = -~ a31 a33 a35 , 

al$ a35 ass 

l a l l  a13 a. I 

aS1 a53 
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1 air at3 al51 and 
C25=~ a2, a23 ;~ ' 

a13 a33 

1 all a12 al~l 

asl a52 

I aH a12 a~51 

¢35----D a2,a13 a32a22 ;~ ' 

1 aH a12 a13[ Also, 
css = ~ a2, a22 023. (A4) 

a31 a32 a33 
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c~= 
a~ 

a 2 - - a ~ a ~  ' 

a44 

c~ = a 2  _ a~ass ,  

a46 
c46 ~ a246 - a~ la66"  

Ci4 ----" Ci6 ~ C24 "--- C26 ~ C34 ~ C36 ~ C45 ~ C~6 ~ O. 

(A5) 

(A6) 


