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Gravitational Stresses in Long Asymmetric 
Ridges and Valleys in Anisotropic Rock 
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INTRODUCTION 

When estimating the state of stress at any depth, z, in a 
rock mass due to gravity, it is commonly assumed that (1) 
the rock mass is an isotropic and linear elastic continuum, 
(2) the ground surface is horizontal, and (3) the state of 
stress is described by two principal stress components: a 
vertical component av due to the weight of overlying rock 
at that depth and equal to 3,z and a horizontal component 
a h equal to K times crv. The simplifying assumption that the 
principal stresses are vertical and horizontal with depth 
breaks down when the ground surface is not horizontal. At 
the ground surface, the principal stresses must be parallel 
and normal to the topography in the absence of surface 
loads. With depth, the principal stresses turn and approach 
the same directions as when the ground surface is 
horizontal. 

The effect of surface topography on gravitational 
stresses has been addressed in the past using two types of 
analytical methods. One is the exact conformal mapping 
method [1,2]. However, this approach is restricted to 
isotropic media, to a very few smooth topographic profiles 
for which conformal mapping functions can be found 
exactly, and to two dimensional problems. The other 
approach is to use the perturbation method [3-6]. The 
advantage of the perturbation method is that it can handle 
any smooth topographic features. However, the solutions 
derived with that method are restricted to topographies 
with small slopes less than 10%. All the solutions derived 
with the exact conformal mapping and perturbation 
methods show clearly that the topography can have a major 
effect on the magnitude and distribution of stresses in-situ. 

In a recent paper, Pan and Amadei [7] presented a new 
analytical method for determining the stress field in a 
homogeneous, general anisotropic and elastic half space 
limited by irregular (but smooth) outer boundaries. The 
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method is general enough in that the half space is subject 
to gravity and surface loads. Using the closed-form 
solutions of Amadei and Pan [8] and the analytical function 
method of Lekhnitskii [9], expressions for the stresses in 
an anisotropic half space with an irregular boundary were 
derived. The stresses were found to depend on three 
analytical functions that can be determined using a 
numerical conformal mapping method [10] and an integral 
equation method [11]. This solution was used more 
recently by the authors to determine gravity-induced 
stresses in long symmetric and transversely isotropic ridges 
and valleys with planes of anisotropy striking parallel to 
the ridge or valley axis [12]. A parametric study was 
presented on the effect of (1) topography shape and 
geometry, (2) orientation of anisotropy, and (3) degree of 
anisotropy on the magnitude and distribution of 
gravitational stresses. 

This paper is an extension of the paper by Pan e t  a l .  

[12]. A method is proposed to study the magnitude and 
distribution of gravitational stresses in transversely 
isotropic rock masses with asymmetric topographies. At 
the outset, it is shown how asymmetric topographies can 
be obtained by superposition of the topography of 
symmetric ridges and valleys. Then, the analytical 
formulation of Pan and Amadei [7] and Pan e t  a l .  [12] is 
modified to handle asymmetric topographies. Finally, 
numerical examples are presented showing how 
gravitational stresses in asymmetric ridges and valleys 
differ from those in symmetric and isolated topographies. 
Throughout this paper, it is assumed that the rock mass is 
transversely isotropic with planes of transverse isotropy 
parallel to the ridge or valley axis and deforms in plane 
strain. 

FORMULATION FOR ASYMMETRIC 
TOPOGRAPHIES 

Consider the equilibrium of a long asymmetric ridge 
with the geometry of Figure la. The half space represents 
a rock mass subject to gravity, g, only. The rock mass is 
linearly elastic, anisotropic, homogeneous and continuous 
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with a uniform density p. An x, y, z coordinate system is Mapping 1: 
attached to the half space such that the x and z axes are in 
the horizontal plane and the y axis is pointing upward. The 
half space geometry and the rock mass elastic properties 
are assumed to be independent of the z direction. The 
boundary curve of the ridge is defined by a smooth 
function y=  y(X) or in parametric form 

x(~) = t  (-®< t<+®) 
y (t) =3,1 (t) *y~ (~) 

(D 

with 

aab cad 
y,  ( t )  = ( t - x z )  =+a ~ ; y= (c)  = (c-x=)  =+c ~ 

(2) 

In equation (2), b and d represeat the heights of two ridges 
x(t), Yl(t) and x(t), yz(t) centered at xj and x 2 (xl~xz) , 
respectively. Parameters a and c control the locations of 
the inflection points of each ridge. If b and d are negative, 
equations (1) and (2) correspond to an asymmetric valley 
consisting of two symmetric valleys with depths I bl and 
Id[ and centered at x I and x z (Figure lb). Other 
asymmetric topographies can be obtained by combining 
ridges and valleys with different positive and negative 
values of a, b, c, d, x I and x z. 

z k -- w k k=l, 2 (3) 

x(e) +MkY(C) + iA k 

wk(C) = x ( t )  ÷PkY( C) ' - iAk -==< C<,= 

maps the lower half planes bounded by z, = x(t) + thy(t) 
onto irregular bounded domains w~. In equation 0) ,  #k are 
complex numbers with positive imaginary parts ~ are the 
roots of equation (11) in [12]. A~are complex constants 
chosen such that the mapping is conformed. As discussed 
in [12], the variable t in equation (3) can be replaced by a 
new p ~  0 that varies over a finite interval [- 
w/2jr/2] such.that t=tan0. Then, equation (3) takes the 
following form 

= (sin0+iAkcos0)/pk+p/(0) +ql (0) 

%: (e) . - (s inO_iAkcose ) / t t : p ~  (e) .q~ (o) 

k=1,2;-~2~ <Og 2 

with 

Pz (O) = a =bcOs?O 
(s inO-xzcosO) =+a=cos=O 

q'x (0) - cadcosaO 
(s in0-x2cos%) a .cacosaO 

(4) 

Y = Y l  + Y 2  t y 
- - -  Yl ~ (a) 
- ' -  Y2 

--..'-- ~ ~ j zl t -'~--- f" . . . . .  , 
I X l  i 0 , x 2 i 

x1-a/4"3 x l+a /43  x 2 -c l43  x 2 + c/4"3 

I 
Y (b)  

z O  
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> 

Figure 1. Asymmetric topographies obtained by superposition of 
two separate symmetrio ridges and valleys (a) b/ldJ =0.5 and 
d/Id[=l, Co) b/ldl=-0.5 and d/Idl=-l. In (a) and (b) 
a/ld[--1, o/Idl--1, xdld[=-l, and x2/ldl---1. 

As discussed previously by Pan and Amadei [7] and 
Pan et aL [12], determination of the gravitational stresses 
below a given smooth topography cam be done by ~ i n g  
out three successive conformal mappings. For the 
geometries of Figures la  and lb, the mappings are: 

Mapping 2: 

Wk"* F k k=l,2 
(5) 

fk=Ek(w~) 

maps the irregular bounded domains w~ onto unit discs F~, 
As discussed by Pan and Amadei, this is done using a 
numerical integral method [7,10]. 

Mapping 3: 

F, "*  ~'k k=l,2 

Fk(w ,) *i 
G=i F~ (wk)-z 

(6) 

maps the unit discs Fk onto lower fiat half-planes ~'k. 
For the topographies of F ~  l a a n d  lb, the 

functions t,(9 and t%( 9 defmed i-equation (22)of [12] 
can be written as follows 

Z I 

~P- 1-2pjr(t) ; t~'S' ,, , ~ (7) [ l -2p/0)]zgo 

with 
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r(t)= + 
[(t-xt)~ +a~] ~ [(t-xg2 +c=] 2 

In equation (7), Z~'(t~) are determined by the numerical 
conformal mapping method [7]. 

Analytical expressions for the gravitational stresses in 
the ridges and valleys with the geometry of Figures la and 
lb can be obtained by substituting equations (1)-(7) for 
equations (24)-(29) in [12]. All the other equations in Pan 
et al. [12] remain the same. 

NUMERICAL EXAMPLES 

The rock mass in Figures la and lb is assumed to be 
transversely isotropic with planes of transverse isotropy 
parallel to the z axis and dipping at an angle ~b toward the 
+x axis. For that special orientation, it was shown by Pan 
et al. [12] that the rock mass deforms under a condition 
of plane strain in the x,y plane. Furthermore, at each point 
in the rock mass two of the three principal gravitational 
stresses are located in the x,y plane and the longitudinal 
stress a~z is the third principal stress. At each point in the 
rock mass, the dimensionless stress ratios ~rUpgldl, 
o, /pgldl, axy/pgldl and  Jpgldl depend on four ratios 
of elastic constants: E/E', G/G', ~, and ~,' where (i) E and 
E' are Young's moduli in the plane of transverse isotropy 
and in direction normal to it, respectively, (ii) ~, and ~,' are 
Poisson's ratios characterizing the lateral strain response in 
the plane of transverse isotropy to a stress acting parallel 
or normal to it, respectively, (iii) G' is the shear modulus 
in planes normal to the plane of transverse isotropy, and 
(iv) G=0.5  E/(1 +u) is the shear modulus in the plane of 
transverse isotropy. The stress ratios also depend on the 
dip angle, ~b, of the planes of transverse isotropy, the 
coordinates (x/I d I, y/ldl) of the points at which the 
stresses are calculated and the ratios a/Idl ,  b/Idl ,  c/Idl ,  
d / Id l ,  x,/Idl and x=/Idt describing the geometry of the 
asymmetric ridge or valley. 

In the following numerical examples, the stress results 
are presented using trajectories and contours of 
dimensionless principal stresses a~/pgl d I and trE/pg [ d I 
where tr~ and a 2 are the maximum and minimum in-plane 
principal stresses in the x,y plane normal to the ridge or 
valley axis. The variations of those two stress components 
along the ground surface is also discussed. 

Figures 2a and 2b show the principal stress trajectories 
for the asymmetric ridge and valley of Figures la and lb, 
respectively. The rock mass elastic constants are fixed with 
E / E ' = G / G ' = 3 ,  e=0.25, and ~,'=0.15. The dip angle, ~b, 
of the planes of transverse isotropy is equal to 0 °. The 
principal stresses are oriented parallel and normal to the 
ground surface along the boundary of the ridge and valley 
and gradually turn to become horizontal and vertical with 
depth. Compression is dominant in the ridge of Figure 2a 
and tensile stresses aE/pgld I develop near the surface of 
the valley of Figure 2b. Finally, Figures 2a and 2b indicate 

that compared to the isolated and symmetric ridges and 
valleys discussed in Pan et aL [12], the gravitational stress 
field is no longer symmetric when ~b is equal to 0 °. Other 
analysis conducted with the geometry of Figures la and lb 
has shown that the magnitudes of a~/pg]d I along the 
boundary of the ridge and tr:/pg I d l along the boundary of 
the valley decrease with increasing dip angle, ~b, and that 
the extent of the tensile region depends on the value of the 
dip angle. Also, it was found that the principal stresses 
adjust to the horizontal and vertical directions more rapidly 
with depth for vertically anisotropic rock masses (~b=90 °) 
than for rock masses with horizontal anisotropy (~b=0°). 
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Figure 2. Trajectories of principal stresses at/pg I d [ and o2/pgid I 
for the asymmetric ridge (a) and valley (b) of Figures la and lb. 
Rock mass has horizontal planes of transverse isotropy with 
E/E'=G/G'=3, v= 0.25, u'=0.15. The shaded region in (b) 
represents the tensile zone near the valley surface. 

Figure 3a shows the contours of maximum principal 
stress al/pgld I for the ridge of Figure la and for a rock 
mass with E / E ' = I ,  G/G'=3,  u=0.25, v'=O. 15 and ~b= 
90 °. Figure 3b shows the variation of al/pgldl  along the 
ground surface for E/E '=  1, 2 and 3. We note from Figure 
3a that near the ground surface, the distribution of 
al/pgIdl is complicated with local maxima and minima. 
As shown in Figure 3b, the location of those extrema is 
controlled by the surface topography and their magnitude 
decreases as E/E' increases. 

Figures 4a shows the contours of minimum principal 
stress tr2/pgId I for the valley of Figure lb and for a rock 
mass with E/E' =G/G' =3, u=0.25, v' =0.15 and g,=45 °. 
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Figure 4b shows the variation of ~2/pgldl along the 
ground surface for u' equal to 0.15, 0.25 and 0.35. It 
appears that less tension develops in the valleys walls as P' 
increases. 

~ 0.5~ ~ 

-3 -2 -1 0 1 2 

x / I d l  

2 ~ _ _  E / E ' . I  I 

- I :  • E I E ' . 2  ( b )  I 
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-3 -1 1 3 
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stresses in ridges and valleys depend on several parameters 
such as (1) the ridge and valley geometry, (2) the 
orientation of the anisotropy with ~ to the ridge and 
valley axis and (3) the degree of rock ~ s o t r o p y  defined 
by ratios of elastic constants such as E/E',  G/G',  J, and v' 
for transversely isotropic rocks. For rock masses with 
planes of anisotropy that are parallel to the valley or ridge 
axis, two of the three principal stresses are in the plane 
normal to the~valley or ridge axis and the longitudinal 
stress is the third principal stress. 

In the examples presented in this paper, it is s h o w n  

that when the ground surface is not horizontal, the 
principal stresses are no longer horizontal and vertical. At 
the ground surface, they are parallel and perpendicular to 
the topography (in the absence of surface loads). Then, 
they gradually turn to become horizontal and vertical with 
depth. As shown in this paper, there can be several 
maxima and minima of compressive stresses near the 
surface of asymmetric ridges and tensile stresses near the 
surface of asymmetric valleys. 
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Figure 3. (a) Contours of al/pgldl for the ridge of Figure la 
with ~b=90 o, E/E'=I,  GIG'=3, u=0.25 and f=0.15. Co) 
Variation of atlpg ] d I along the ground surface. 
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Figure 4. (a) Contours of a21pg]d] for the valley of Figure lb 
with ¢=45 o, E/E'ffiG/G'=3, v=0.25 and f=0.15. (b) 
Variation of oz/pgld[ along the ground surface. 

CONCLUSION 

The method proposed by Pan and Amadei [7] can be 
used to predict analytically the distribution and magnitude 
of gravitational stresses in long asymmetric ridges and 
valleys with complex topography. The latter is obtained by 
superlmsition of  the topographies of  symmetric ridges and 
valleys. The magnitude and distribution of gravitational 
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