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Gravitational Stresses in Long Symmetric 
Ridges and Valleys in Anisotropic Rock 
ERNIAN PANt  
BERNARD A M A D E I t  
WILLIAM Z. SAVAGE:~ 

The effect of topography and rock mass anisotropy on gravitational stresses 
in long isolated symmetric ridges and valleys is modeled using an analytical 
method proposed earlier by the first two authors. The rock mass deforms under 
a condition of plane strain. A parametric" study is presented on the effect of (1) 
topography, (2) orientation of anisotropy and (3) degree of anisotropy on the 
magnitude and distribution of gravitational stresses in transversely isotropic 
rock masses with planes of anisotropy striking parallel to the ridge or valley 
axis. It is found that compressive stresses develop near ridge crests and that 
tensile stresses develop in valley bottoms and valley walls. The magnitude of 
the gravitational stresses is of the order of the characteristic stress pg Ibl where 
p is the rock density, g is the gravitational acceleration and Ib[ is the height 
of the ridge or depth of  the valley. 

• INTRODUCTION 

When estimating the state of stress at any depth, z, in a 
rock mass due to gravity, several assumptions are com- 
monly made. First, the rock mass is an isotropic and 
linearly elastic continuum. Second, the ground surface is 
horizontal. Third, the state of stress is described by two 
components: a vertical component tr~ due to the weight 
of overlying rock at that depth and equal to 7z, and a 
horizontal component cr h equal to K times try. Fourth, tr h 
is assumed to be uniform in the horizontal plane. 
Finally, try, and ah are assumed to be principal stresses. 
In general, these simplifying assumptions break down 
when the ground surface is not horizontal or when the 
rock mass is anisotropic. 

The effect of anisotropy on gravitational stresses in 
rock masses with a horizontal ground surface has been 
addressed by Amadei et al. [1, 2] and Amadei and Savage 
[3] for orthotropic and transversely isotropic rock 
masses with horizontal or vertical anisotropy under a 
condition of  no lateral displacement. Both homogeneous 
and stratified rock masses were considered. Amadei and 
Pan [4] proposed closed-form solutions for gravitational 
stresses in anisotropic rock masses with inclined planes 
of anisotropy under a condition of no lateral horizontal 
strains. These analytical solutions show that the vertical 
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and horizontal gravity-induced stresses are principal 
stresses with trv = yz and that the horizontal stress mag- 
nitude greatly depends on the type, degree, and orien- 
tation of rock anisotropy. More recently, the authors 
became aware of some early work done by Dolezalova 
[5] on gravitational stresses in cross-anisotropic soil 
deposits. She used a finite element analysis to show that 
for soil deposits with inclined layers and rigid lateral 
boundaries, the principal stresses are inclined with re- 
spect to the vertical and horizontal directions. The 
analyses of Dolezalova [5] and Amadei and Pan [4] 
illustrate the importance of boundary conditions on the 
type and magnitude of the gravitational in situ stress 
field. 

The simplifying assumption that principal stresses are 
vertical and horizontal with depth breaks down when the 
ground surface is not horizontal. At the ground surface, 
principal stresses are parallel and perpendicular to the 
topography in the absence of surface loads. With depth, 
the principal stresses turn and approach the same direc- 
tions as when the ground surface is horizontal. Knowing 
the effect of topography on stress distributions is of 
particular interest for the stability of underground exca- 
vations in mountainous regions near valley slopes. 
Phenomena such as rock bursts, spalling or fracturing 
may occur because of stress concentrations near valley 
walls [6, 7]. 

Analytically determining the stress distributions in a 
rock mass limited by a ground surface of complex 
topography by elastic theory is difficult. In the past, the 
effect of surface topography on gravitational stresses has 
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been addressed by using two types of analytical methods. 
One is the exact conformal mapping method, as studied 
by Akhpatelov and Ter-Martirosyan [8], Ter-Mar- 
tirosyan et aL [9], Ter-Martirosyan and Akhpatelov [10], 
Savage et al. [11] and Savage and Swolfs [12]. However, 
this approach is restricted to isotropic media, to a very 
few smooth topographic profiles for which conformal 
mapping functions can be found exactly, and to two- 
dimensional problems. The other approach for two- and 
three-dimensional problems in isotropic media is the 
perturbation method discussed by McTigue and Mei 
[13, 14] and Liu and Zoback [15]. Liao et al. [16] also 
used the perturbation method for two-dimensional prob- 
lems in anisotropic media. The advantage of the pertur- 
bation method is that it can handle any smooth 
topographic feature. However, the solutions derived 
with that method are restricted to topographies with 
small slopes not exceeding 10%. 

All the solutions derived with the exact conformal 
mapping and perturbation methods show clearly that the 
topography can have a major effect on the magnitude 
and distribution of stresses in situ. For instance, the 
expressions in Savage et al. [11] for gravitational stresses 
in long symmetric isotropic ridges and valleys clearly 
depend on the geometry of the topography as well as the 
rocks Poisson's ratio. It was found (1) that non-zero 
horizontal compressive stresses exceeding the vertical 
stress develop at and near ridge crests and (2) that 
horizontal tensile stresses develop under valleys. The 
horizontal compressive stresses in ridge crests decrease 
and the horizontal tensile stresses in valleys become 
more compressive with increasing Poisson's ratio. Mc- 
Tigue and Mei [13, 14] and Liao et al. [16] showed that 
topography affects gravitational stress distributions even 
in areas of low regional slopes. Liao et al. [16] also 
concluded that the magnitude of horizontal stresses in 
transversely isotropic and orthotropic ridges and valleys 
depends strongly on the rock's elastic properties and the 
orientation of the rock mass fabric with respect to the 
ground surface. For rock masses with horizontal planes 
of transverse anisotropy, the horizontal stress at a given 
depth below a ridge was found to increase with the ratio 
of horizontal to vertical Young's moduli, Eh/Ev, (or in 
other words as the rock mass deformability in the 
vertical direction increases). For the same ratio 
Eh/Ev > 1, horizontal stress is the greatest for ridges that 
have horizontal planes of transverse isotropy and the 
smallest for ridges with vertical planes of transverse 
isotropy. For valleys in rock masses with horizontal 
planes of transverse isotropy, the tensile region at the 
bottom of the valleys decreases as the ratio of horizontal 
to vertical moduli increases (again as the rock mass 
deformability in the vertical direction increases). 

In a recent paper, Pan and Amadei [17] presented a 
new analytical method for determining the stress field in 
a homogeneous, general anisotropic and elastic half 
space subject to gravity and surface loads under a 
condition of generalized plane strain and limited by 
irregular (but smooth) outer boundaries. Using the 
closed-form solutions of Amadei and Pan [4] and the 

analytical function method of Lekhnitskii [18], ex- 
pressions for the stresses in an anisotropic half space 
with an irregular outer boundary were derived. The 
stresses were found to depend on three analytical func- 
tions that can be determined using numerical conformal 
mapping [19] and an integral equation method [20]. 

In this paper the nature of the stress field in long 
anisotropic and symmetric ridges and valleys under 
gravity is considered. The rock mass is modeled as a 
linearly elastic, transversely isotropic and homogeneous 
continuum which deforms under a condition of plane 
strain. At the outset, the new analytical method of Pan 
and Amadei [17] is reviewed. Then, the method is used 
to determine gravity induced stresses in ridges and 
valleys in orthotropic and transversely istropic rock 
masses. Finally, a parametric study is presented on the 
effect of (1) topography, (2) orientation of anisotropy 
and (3) degree of anisotropy on the magnitude and 
distribution of gravitational stresses in transversely 
isotropic rock masses with planes of anisotropy striking 
parallel to the ridge or valley axis. 

STATEMENT OF THE PROBLEM 

Consider the equilibrium of an anisotropic half space 
with the geometry of Fig. 1. The half space represents a 
rock mass with an irregular topography which is subject 
to gravity only. The medium in the half space is assumed 
to be linearly elastic, homogeneous, anisotropic and 
continuous with a uniform density p. An x, y, z coordi- 
nate system is attached to the half space such that the x 
and z axes are in the horizontal plane and the y axis is 
pointing upward. The half space geometry and the 
medium's elastic properties are assumed to be indepen- 
dent of the z direction. The boundary curve of the half 
space is defined by an analytic function y = y ( x )  or in 
parametric form x = x( t ) ,  y = y( t ) .  

The problem is to find the magnitude and distribution 
of the stresses induced by gravitational loading of the 
half space. Since the geometry of the problem is indepen- 
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Fig. !. Half space limited by a boundary curve y = y ( x )  and subject 
to gravity g. 
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dent of the z coordinate and the medium is homo- 
geneous, the stresses can be determined assuming a 
condition of generalized plane strain, e.g. all planes 
normal to the z axis are assumed to warp identically with 
G = 0 [18]. As x - - . _  0% the lateral horizontal strains G 
and ~ approach zero. The stresses and strains induced 
by gravity must satisfy the following equations: 

(i) Equations o f  equilibrium 

~ax~ ~axy 
OX +--~-y = 0 

Oa. Oa. 
0x +-~-y  + O g =  O" (1) 

dOxz OOYZ = 0 
Ox + Oy " 

(ii) Constitutive relations 

o r  

where 

[e] = [a][,r] (2)  

[* ]  = M M  (3)  

[el = [G. ey. q .  ~y~. ~ .  ? , ] r  (4) 

are the strain c o m p o n e n t s ,  and 

[e]  = [ a ~ ,  o . ,  ~ = ,  ~ . ,  ~x~, , r . y  (5)  

are the stress components, [a] is a 6 x 6 symmetric 
compliance matrix with 21 independent components a u 
(i,j  = 1-6) and [el is the corresponding stiffness matrix 
with components c o ( i , j =  1-6) and is such that 
[a] = [e]-L In equations (4) and (5), the superscript T 
indicates the transpose of the matrix. In this paper, the 
rock mechanics sign convention that compressive 
stresses are positive is adopted. 

(iii) Compatibility conditions 

37 x: ~?y:=O 
dy dx 

C~2~:x ~2~:y ~ 2)y.ry (6) 
dy 2 ~ cox 2 - cox dy" 

(iv) Boundary conditions on y = y(x) 

ax.. cos(n, x) + G:. cos(n, y) = 0 

G.,, cos(n, x) + a..  cos(n, y) = 0 (7) 

a,.: cos(n, x) + a,.. cos(n, y) = 0 

where cos(n, x) and cos(n,y) are the direction cosines 
of the outward normal, n. of the boundary curve 
y = y(x). 

ANALYTICAL SOLUTION OF THE PROBLEM 

Using the closed-form solutions of Amadei and Pan 
[4] for the gravitational stresses in anisotropic rock 
masses with a horizontal ground surface and the 
analytical function method of Lekhnitskii [18], Pan and 
Amadei [17] proposed the following expressions for the 

stresses in an anisotropic half space with an irregular 
boundary 

a~ = 2 Re[g~O~(z,) + .~O~(z2) + .~23 O](z3)] + c, pgy 

% = 2 R e [ ¢ ; ( z t )  + ¢ ~ ( z 2 )  + ,h ¢~ (z3 ) ]  + p g y  

trxy = - 2  Re~t ~ (zt ) + .2~'2(z2) + .3230~(z3)] 

o= = 2 Re[/h At ~(z t )+.222~(z2)+.3~ '3(z3)]+c2pgy 

try~ = - 2  Re[At ~ ( z t  ) + 220~(z2) + O](z3)] 

2 2 
Ozz = - -  Re{ [a t3 ,1  + a23 --  a3421 + a35,1.~q 

a33 

-- a36.1 ] ~  (zl) + [al3.22 + a:3 -- a~22 + a35.2,;.2 

--  a36.2]O~(z2)  --{- [al3.~.3,] --I- a2323 - a34 + a35,3 

--  a36 ,3 .~3]~(z3)}  --I- c3pgy .  (8) 

In equation (8): 

(i) cm, c2 and c3 are related to the coefficients c u of 
matrix [e] in equation (3) with 

c, = - [ c , d c , , c ~  - c ~ )  - c , , ( c 2 , c ~  - c2 ,c ,~ )  

+ c16(c24c46 - c26c44)]/D 

c~ = - [c~ (c,4 c ~  - c ~ )  - c.~ (c2. c ~  - c2, c,~) 

+ C56(C24C46 --  c 2 6 c . ) ] / D  

c~ = - M3 (c , .  c ~  - c ~ )  - c~. (c2. c~, - c2, c46) 

+ C36(C24C46 --  c26c44)]/D (9) 

and 

D = c ~ ( c ~ c ~  - c ~ )  - c24 (c42c~  - c62c~)  

"~- C26(C24C46 --  C26C44 ) (10) 

(ii) .1, .2 and .3 are complex numbers with positive 
imaginary parts. These numbers and their respect- 
ive conjugates are the roots of the following 
equation 

l ~ ( , ) 6 ( , )  - l~ ( . )  = 0 (l l)  

with 

6 ( , )  = / / 5 5 ,  2 - 2 f l . 5 ,  + #~ 

l , ( . )  = f l , 5 . '  - (f l , ,  + f l , O .  = + ( f t .  + & ) .  - / h .  

/4 (/.~) : # 1 1 .  4 - -  2f l l6 .  3 q- (2fit 2 + fl66). 2 

--  2#26"  + fl22 (12) 

[3 u (i,j = !-6) are related to the coefficients a u of 
matrix [a] in equation (2) as follows 

flu=au-ai3ai3/a33 ( i , j = 1 , 2 , 4 , 5 . 6 ) .  (13) 

(iii) 2~. 2. and 23 are such that 

13(#,). 13(/1_.). 
21 -  2 . -  

/_.(/~. ) ' I_~ (/1,) ' 

6 (F~3) 23 = - - - -  (14) 
14 (It3)" 
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(iv) ~ ( z k )  (k = 1, 2, 3) denote the derivatives of three 
analytical stress functions ~k(Zk) of the variable 
zg = x +/~kY where x and y are the coordinates of  
the point in the anisotropic medium at which the 
stresses are calculated. The three functions ¢,(zk) 
must satisfy the traction free boundary conditions 
along the boundary curve y = y ( x ) .  These con- 
ditions can be expressed as follows 

2 R e [ ~  (z~) + (J~2 (Z2) + 2 3 ~3 (Z3)] 

= - - p g  yx ' ( s )ds  (15) 
0 

2 Re[#, ~l (zl) + #2 ~2 (z2) + #s 23 4~s (z3)] 

= - c l o g  yy ' (s )ds  (16) 
0 

2 Re[2~ ~ (z~) + 2~ ~ (z~) + 4~3 (z3)] 

= -c~pg yy ' (s )ds  (17) 
o 

where s is the arc-length along the curve y = y(x).  x'(s) 
and y'(s) are the total derivatives o f x  and y with respect 
to s, respectively. 

The determination of  the three functions ~(z~)  and 
their derivatives depends mainly upon the geometry of  
the boundary curve y = y ( x ) .  As shown by Pan and 
Amadei [17], these functions can be determined using a 
numerical conformal mapping method [19] and an inte- 
gral equation method [20]. Three new analytical func- 
tions ~Vk (k = 1, 2, 3) are introduced such that 

~'k((k) = O'k(Zk)Z'~((,) (k = 1, 2, 3) (18) 

where z~ = Zk((~) (k = 1, 2, 3) are three conformal map- 
ping functions that map the lower half planes bounded 
by Zk = X ( t ) + # k y ( t )  onto the lower flat half planes 
Im(~ ~<0 (k = 1, 2,3). This is done in three steps [17]. 
First, the lower half planes bounded by 
z, = x ( t ) +  #~y(t) are mapped onto irregular bounded 
domains w~. Then, the domains w~ are mapped onto unit 
disks Fk. Finally, the unit disks Fk are mapped onto the 
flat half planes (~. In equation (18), ~ , ( (k)  and Z~,((k) 
are the total derivatives of  ~g and Z~ with respect to (k" 
AS shown by Pan and Amadei [17], if t, is the value of  
~ on the boundary curve, the boundary conditions 
(15)--(17) lead to the following system of three singular 
integral equations that can be solved for the three 
functions ~v;, (t~) 

b,, ~ (Zl) + - ~  ~'2('c2)t~(z, ) + ~-~ ~;(z3)t;(z, ) 

b,2 f - ~ ( t 2 ) t ' ~ ( t , )  dt, b l s f +  ~ 
+ + + 

~ ~(t3)t'3(h ) dt~ 
X 

A (~)t '(~, ) 
- 2 (19) 

1 f - ~ f l ( t ) t ' ( h ) d t ,  
+ j t-, - 7 ,  

b22 f . . . .  t r f l ~ ( t l ) t i ( t 2 ) d t  2 b23 f ~: 

~(t3)t'3(t2) dt2 
X 

t 2 --/:2 

-- 1 I .... f2(t)t '(t2)dt 2 f2(z)/'(r2) + (20) 
2 ~ J+ ~ t2 - r2 

b31 ~3(T3) + ~-~ 

b32 f + ~  +~i 

~ ( z ,  )t~(z3) + ~ ~(z2)t~(z3) 

~(t l) t~(ts)dt3 b33 [" 

t 3 -- -C 3 ]- ~ / J +  J= 

~(t2)t~(t3)dt3 
X 

t 3 - -  z 3 

1 ~ -~f3(t)t'(t3)dt3 f 3 ( z ) t ' ( Z 3 )  q- I (21) 
2 ~ J+~ t3 - zs 

where the coefficients bij (i,j = 1, 2, 3) and the functions 
f ( t )  (i = 1, 2, 3) are given by equations (A1) and (A2) in 
the Appendix. In equations (19)-(21), r is a fixed point 
on the t [ - ~ ,  + ~ ]  axis and Zk (k = 1, 2, 3) are fixed 
points on the tk (Im(k=O) axes. t'(tj) and t'k(tj) 
(k , j  = 1, 2, 3) are respectively the total derivatives of  t 
and tk with respect to the variable tj [ -  ~ ,  + ~ ]  and are 
equal to 

Z ; ( l j )  
t'(tj) x '( t)  + #jy '( t ) '  

Z;(tj) x ' ( t)+lZky'( t)  
t'k(tj) = Z'k(tk) X'(t) + ltjy'(t) ' (22) 

In equation (22), x'(t)  and y ' ( t )  are the total derivatives 
of  x(t)  and y(t)  with respect to t, respectively. 

The three integral equations (19)-(21) can be dis- 
cretized and solved for the boundary values of  the three 
analytical functions ~e'k(tk) by the method proposed by 
Sarkar et al. [21]. Then, the interior values of  these 
analytical functions are calculated using the Cauchy 
integral theorem [22]. Finally, the stress function ~'k(Zk) 
are obtained using equation (18) and the six stress 
components are determined using equation (8). The 
infinite integrals appearing in equations (19)-(21) are 
determined using an inverse mapping from the boundary 
of the (, planes to the circumference of unit discs [17]. 
It is noteworthy that for these integrals to converge, the 
boundary curve x = x(t), y = y ( t )  must be asymptotic 
to the x-axis of  Fig. 1 at x = ___ ~ and the following 
conditions must be satisfied 

lim 
ly(t)x'(t)[ = a, < oo; 

t---~ + oo 

lim 
[y(t)y'(t)[ = a2 < ~ (23) 

l ---', -F to 

where a~ and a2 are two constants. 
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STRESSES IN AN ISOLATED RIDGE OR VALLEY 

Generalized plane strain solution 

Consider a long isolated symmetric ridge with the 
geometry of  Fig. 2(a). The topography of  the ridge is 
expressed in parametric form as follows 

x ( t ) = t  ( - o o  < t < +oo)  

y ( t )  = a2b/(t 2 + a 2) (24) 

where b is the ridge height and is assumed to be positive. 
If  b is negative, equation (24) corresponds to a long 
isolated symmetric valley where [b[ is the depth of  the 
valley [Fig. 2(b)]. The inflection points of  the boundary 
curve are located at x = +a/x/r~_ and y = 0.75b at which 
the slopes are equal to -+(3bv/3)/(8a). Figures 3(a) and 
(b) show the geometry (in dimensionless form) of  three 
ridges and valleys for a/Ibl = 0.5, 1 and 2. The respective 
slopes at the inflection points of  the ridges and valleys 
are equal to _+ 1.30 (52.4°), _+0.65 (33.0 °) and _+0.32 
(18o). 

For the geometry of  Figs 2(a) and (b), the mappings 
zk = Zk((,)  (k = 1, 2, 3) which map the lower half planes 
bounded by Zk = x ( t ) +  ~tky(t ) onto the flat lower half 
planes Im {k ~< 0 (k = l, 2, 3) consist of  three successive 
conformal mappings (Fig. 4): 

Mapping 1: 

Zk=~Wk k = 1,2,3 

a2bl.tk 
t + ~ +  iAk 

Wk(t) = a2b# k -- oo < t < ~ (25) 

t -~ t2 + a2 iAk 

maps the lower half planes bounded by 
z,  = x ( t ) +  l~ky(t) onto irregular bounded domains w,. 
In equation (25), Ak (k = 1, 2, 3) are complex constants 

-a/'~ o 

,y 

x) 

I 
a/~l-3 {a) X 

-a / '~  

i 0 I 

y ' {b) 

X 

Fig. 2. (a) Symmetric ridge of height b; (b) symmetric valley of depth 
Ibl. 

' y / b  

(a) 
x/b 

'Y/lb[ 

(b) 

x/Ibl 

Fig. 3. Geometry of  the ridge and valley for values of a/}bl of 0.5, 1 
and 2. 

chosen such that the mapping is conformal. In equation 
(25), the variable t can be replaced by a new parameter 
0 that varies over a finite interval [ -7t /2,  n/2] such that 
t = a .  tan 0. Then equation (25) takes the following 
form 

a • sin 0 + b#k cos 3 0 + iAk COS 0 
w,(O) = 

a .  sin 0 + b/~k cos 3 0 -- iAk cos 0 

/t /t 
k = 1 , 2 , 3 ;  - ~ < 0 < ~  (26) 

Mapping 2: 

w k ~ F ,  k = 1,2,3 

F, = Fk(wk) (27) 

maps the irregular bounded domains w, onto unit discs 
F,.  This is done using a numerical conformal mapping 

Trummer [19] and Pan and method as discussed in 
Amadei [17]. 

Mapping 3: 

Fk=~(k k = 1 , 2 , 3  

.Fk(Wk) + 1 
(k = X ~ - -  l (28) 

maps the unit discs Fk onto the flat half-planes ~k. 
For the geometry of  Figs 2(a) and (b), t'(tj) and t'k(tj) 

defined in equation (22) take the following form 

t ' ( t j )  ----- Z ; ( t j )  
1 2a~btl~J 

(a 2 + t2) 2 

t'k(tj) = Z~(tj) . (a 2 + t2) 2 - 2a2btpk (29) 
Z',(tk) (a 2 + t2) 2 -- 2a2btpj " 

RHHS 31:4-C 
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1.0 

0 1.0 2.0 

1.0 

0 1.0 2.0 

oJ . . . .  

0 1.0 2.0 

1 

fl 
1.0 

lO 

.0 1,5 

Fig. 4. Example of mappings 1, 2 and 3 for k = 1 and the following parameters: a/b = 1, E/E' = G/G" = 3, v = 0.25, v' = 0.15, 
and ¢ = 45 °. 

The rock mass in the ridge or valley is assumed to be 
orthotropic in an n, s, t cartesian coordinate system. 
That  coordinate system is attached to a plane of  sym- 
metry in the medium and its orientation with respect to 
the x, y, z coordinate system and therefore the ridge, is 
defined by a dip azimuth fl and a dip angle @ as shown 
in Fig. 5. The t-axis is located in the xz plane. The 
constitutive equation for the rock in the n, s, t coordinate 
system is given by the following equation [18] 

coordinate system. E,, Es and E, are the Young's  moduli 
in the n, s, and t directions, respectively and G,,,  Gnt and 
G,, are the shear moduli in planes parallel to the ns, nt 

and st planes, respectively. Finally, vq ( i , j  = n, s, t)  are 
the Poisson's ratios that characterize the normal strains 
in the symmetry directions j when a stress is applied in 
the symmetry directions i. Because of  symmetry of  the 
compliance matrix [h], Poisson's ratios v u and v~i are such 
that vu/E~ = vj~/Ej. 

l 
£. 

£s 

Y., I 

1 Vsn V,n 0 

E,, Es Et 

v ,, s 1 v t~ 0 

E ,  E~ E, 

v,t v~, _1 0 

E. E~ E, 

0 0 0 

0 0 0 

0 0 0 

0 0 

0 0 

0 0 

1 
- -  0 0 

1 
0 - -  0 

Grit  

1 
0 0 

ar t s  

f nn 

f ss 

f t t  

f is t  ] 
f nt 

_ f n s  .J 

(30) 

or in a more complex matrix form as 

[e],~., = [!1] [~r],s,. (31) 

Nine independent elastic constants are needed to 
describe the deformability of  the rock in the n, s, t 

Equations (30) and (31) still apply if the medium is 
transversely isotropic in one of the three ns, nt  or st 
planes. In that case, only five independent elastic con- 
stants are needed to describe the deformability of  the 
medium in the n, s, t coordinate system. Let's call these 
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/ PLANE OF 
s ~ Y :/ SYMMETRY 

\ n 

x 

z 

RIDGE OR 
VALLEY 
AXIS 

Fig. 5. Orientation of a plane of symmetry with respect to the x, y, z 
coordinate system attached to the ridge or valley. 

constants E, E' ,  v, v' and G' with the following defi- 
nitions: 

(i) E and E'  are, respectively, Young's moduli in the 
plane of transverse istropy and in the direction 
normal to it, 

(ii) v and v' are Poisson's ratios characterizing the 
lateral strain response in the plane of transverse 
isotropy to a stress acting parallel and normal to it, 
respectively, and, 

(iii) G' is the shear modulus in planes normal to the 
plane of transverse isotropy. 

Relationship exist between E, E',  v, and v' and G' and 
the coefficients of matrix [h] in equation (31). For 
instance, for transverse isotropy in the st plane 

1 1 I 1 1 1 1 1 

E,, E" E, E, E' G,, G,, G' 

V ns Y nt V" "llst V ts V 1 1 
E, E, E "  E, E, E '  G,, G 

2(1 + v) 

E 

(32) 
For known orientations of the planes of anisotropy 

with respect to the x, y and z axes, the constitutive 
relation of the medium in the x, y, z coordinate system 
defined in equation (2) or (3) can be obtained by using 
second order tensor coordinate transformation rules. 
Because of the linear relationships existing between 
coefficients a~j and h~j of matrices [a] and [h] in equations 
(2) and (31), respectively, it can be shown that the ratios 
between the stresses ai: defined in (8) and a characteristic 
stress pglbl depend on the following eight dimensionless 
quantities 

E , .  E , .  E, (33) 
E, . E, . 'l:sn ; "l) ,n ; v ,, ; G ,, G,, G,--~ " 
Eo' E,' ' ' 

If  the medium is transversely isotropic with, for instance, 
transverse isotropy in the st plane, and using equation 
(32), the stress ratios are found to depend only on four 
dimensionless terms 

E G 
. . . . .  . ( 3 4 )  E "  v; v , G' 

The stress ratios a~jpglbl also depend on (1) the orien- 
tation angles fl and ~k of the planes of transverse isotropy 
with respect to the x, y and z axes attached to the ridge 
or valley, (2) the coordinates (x/Ib I, y/Ibl) of the points 

at which the stresses are calculated and (3) the ratios 
a/Ibl and b/Ibl describing the geometry of the ridge or 
valley. Equation (8) shows that, in general, at each point 
in the half space the stress field is three-dimensional and 
the principal stress components are inclined with respect 
to the x, y and z axes attached to the ridge or valley. 

Plane strain solution 

The solution presented above takes a simpler form for 
orthotropic and transversely isotropic rock masses 
with planes of elastic symmetry normal to the z axis of 
Figs 2(a) and (b). This takes place (1) when the dip 
azimuth fl in Fig. 5 is zero and the dip angle ~b varies 
between 0 and 90 ° or (2) when fl and ~b are equal to 90 °. 
For those cases the generalized plane strain solution 
reduces to a plane strain solution with 

c46=c56=c4i=c5i=0 f o r i = l , 2 , 3  

f146=f156=f14~=fls~=0 f o r i = l , 2 , 3  

/3(#) = 21 = 22 = 23 = 0 (35) 

Substituting these relations into the general solution, it 
is found that c2 in the expression of trxz and the function 
¢~(z3) in equation (8) always vanish. The stress com- 
ponents are then equal to 

trxx = 2 ReLut2 ¢'1 (zl) + #~ q~(z2)] + cl pgy 

tryy = 2 Re[~/,', (z,) + ¢~(z2)] + pgy 

trxy = - 2 Re[#l ¢'1 (zl) + ~2 ¢ ~ (z2)] 

trxz = t~?z = 0 

2 
o= = - - -  Re{[alzp~ + a23 -- a36#1 ] ~  (zl) 

a33 

-]- [a13/222 d- a23 - -  a36 / .12]~(z2)}  -~- c3pgy (36)  

where #t and P2 are the roots of 14(p) = 0 in equation (12) 
and 

¢~(z) = ~'t((~)/Z~((~); ¢~(z : )=  ~'2(~2)/Z~(~2). (37) 

The boundary values of the two functions T~ and ~ ,  
e.g. ~'1(tl) and 7t~(t2), are obtained by solving the two 
integral equations (19) and (20) with bij a n d f ( t )  defined 
in equations (A3) and (A4) in the Appendix. Equation 
(36) shows that at each point in the ridge or valley, two 
of the three principal stresses induced by gravity are 
located in the x, y plane normal to the ridge or valley axis 
and that the longitudinal stress a= is the third principal 
stress. 

PARAMETRIC STUDY 

In order to illustrate the analytical method presented 
above, a parametric study was carried out to assess the 
combined effect of rock anisotropy and topography on 
the magnitude and distribution of gravitational stresses 
below long and symmetric ridges or valleys under a plane 
strain condition. In the parametric study, the geometry 
of Figs 2(a), 2(b) and 5 is adopted with planes of 
transverse isotropy parallel to the ridge or valley axis 
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(fl = 0°). The following parameters are varied: the ge- 
ometry of the ridges or valleys defined by the ratio a/fb J, 
the dip angle @ of the planes of transverse isotropy, and 
the degree of rock anisotropy defined by the values of 
E/E', G/G', v and v'. The topographic ratio a/IbJ is 
taken equal to 0.5, 1 or 2 corresponding to ridges and 
valleys with slopes at their inflection points equal to 
+ 1.30 (52.4°), +0.65 (33.0 °) and +0.32 (18°), respect- 
ively. The dip angle ~b varies between 0 ° (horizontal 
planes of transverse isotropy) and 90 ° (vertical planes of 
transverse isotropy). Finally, E/E' and GIG' vary be- 
tween 1 and 3, the Poisson's ratio v' varies between 0.15 
and 0.35 and v = 0.25. In selecting the elastic constants 
of the transversely isotropic rock, the following 
equations must always be satisfied [1, 23] 

E,E ' ,G ,G '>O 

0 ~< v < 1 (38) 

,2 E l - v - 2 v  ~--; > 0. 

Note that the anisotropic solution presented in this 
paper becomes singular if the rock mass is isotropic with 
E/E '=  G/G'= 1 and v = v' [17]. This is because the 
formulation for isotropic elasticity is different from that 
for anisotropic media as discussed by Lekhnitskii [18]. 
The isotropic case can however, be approached asymp- 
totically by considering a near isotropic rock with 
E/E '=  G/G'= 1, v =0.25 and v '=0 .24  and ~k = 0 °. 

The results of the parametric study are presented 
below using trajectories and contours of dimensionless 
stresses a~/pglbl and a2/pglbJ where at and a2 are the 
maximum and minimum in-plane principal stresses in 
the x, y plane normal to the ridge or valley axis. The 
variation of  the dimensionless horizontal stress axx/pglbl 
with y/JbJ along the ridge or valley centerline ( x / lb l  = O) 
is also used in the parametric study. Note that when 
~O = 0 ° and 90 ° and for the nearly isotropic case, only the 
right halves of the plots of stress trajectories and con- 
tours are presented because of symmetry. 

Figures 6(a)-(h) show the gravitational stress regime 
for a ridge and a valley with a/IbJ = 1 in a nearly 
isotropic rock mass. As expected, the principal stresses 
in Figs 6(a) and (b) are no longer horizontal and vertical 
as in flat ground but are oriented parallel and normal to 
the ground surface along the boundary of the ridge and 
valley and gradually turn to become horizontal and 
vertical with depth. Figure 6(c) indicates that the largest 
value of the maximum compressive principal stress 
at/tgJbl is reached on the sides of the ridge (0.647 at 
x/Ibl = +0.925). For the ridge, the contours of the 
minimum compressive stress a2/pg Jbl tend to follow the 
ridge shape [Fig. 6(d)]. For the valley, Figures 6(e) and 
(0 indicate that there is a concentration of  tensile stress 
az/pglbJ at the valley bottom ( -0 .98  at x/lbl = 0) and 
that the maximum stress at/pgJbJ is compressive with 
contours that follow the valley shape. The depth of the 
tensile region below the valley bottom is about 0.4 times 
the valley depth [Fig. 6(b)]. Figures 6(g) and (h) show the 
variation of the vertical stress a, /pg  Ibl and the horizon- 

tal stresses a,x/pgJbj and a.:/pglb[ with y/jbt along the 
ridge and valley centerline (x/lb[ = 0). The short dashed 
lines in those two figures represent the variation of the 
standard vertical and horizontal stresses for the case 
when b = 0; i.e. when the ground surface is flat [4]. The 
topographically induced stresses in the ridge and valley 
become, with increasing depth, asymptotic to the stan- 
dard stresses. The horizontal stresses axx and a._. are 
slightly different and are both less than the vertical stress 
a,. except near the ridge crest where axx is larger than ay,. 
and a=. The stress variations shown in Figs 6(g) and (h) 
are virtually identical to those given by Savage et al. 
(Figs 9 and 10 in Ref. [11]) for the isotropic case when 
the Poisson's ratio is 0.25. 

Figures 7(a)-(h) show the gravitational stress regime 
for a ridge and a valley with a/[b[ = 1 in a transversely 
isotropic rock mass with E/E' = G/G' = 3, v = 0.25 and 
v ' =  0.15 with vertical planes of transverse isotropy 
(~k = 90°). This represents a strongly anisotropic rock 
[1]. In general, the trends observed in Figs 6(a)-(h) can 
also be found in Figs 7(a)-(h), in particular compression 
in the ridge crest and concentration of at/pglbJ on the 
sides of the ridge (0.33 at x/IbJ = + 0.94). Tensile stresses 
develop at the valley bottom with a2/pgJbJ = -0.51 at 
x/Ibl = 0. Comparison of Figs 7(g) and (h) with Figs 6(g) 
and (h) shows that the variations of the vertical stress 
a,./pglb[ and the horizontal stress axx/pglbl and 
a=/pg[b[ with depth along the ridge and valley center- 
lines for the transversely isotropic case differ from those 
in the nearly isotropic case. For the ridge and the valley 
with vertical planes of transverse isotropy, the stress 
regime is a~.~ < a:. < a,.,. except near the ridge crest. Also, 
the horizontal stress a~ is always less compressive than 
the horizontal stress in the nearly isotropic case except 
near the valley bottom. On the other hand, the isotropic 
and anisotropic values of the longitudinal and vertical 
stresses a.. and a,.,. for the anisotropic and nearly 
isotropic cases differ only slightly. 

Effect of dip angle and degree of rock anisotropy 
Figures 8 and 9 show respectively the stress regimes 

for a ridge and a valley with a/tbJ = 1 in transversely 
isotropic rock with E/E' = G/G" = 3, v = 0.25, v' = 0.15 
and planes of transverse isotropy dipping at angles 

= 0, 45 and 90 °. Figures 8(d) and 9(d) show that at a 
given depth, the horizontal stress axx/pglbl decreases as 
the dip angle increases. This stress is the greatest for 
ridges and valleys with horizontal planes of transverse 
isotropy (~b = 0 °) and the smallest for ridges and valleys 
with vertical planes of transverse isotropy (~k = 90°). The 
effect of the dip angle on axx/pglbl becomes dominant 
for values ofy/Ibj less than 0.0 for ridges and -1 .5  for 
valleys. Figures 8(a), 8(c), 9(a) and 9(c) show that the 
principal stresses adjust to the horizontal and vertical 
directions more rapidly with depth when ~, = 90 ° than 
when ~ = 0 °. Note that in Figs 8(b) and 9(b) because of 
the inclined anisotropy (~O = 45°), the principal stress 
trajectories and the tensile region are no longer symmet- 
ric with respect to the vertical axial planes of the ridge 
and valley. For the valley, the largest tensile stress 
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extent of the tensile region at the valley bottom. 
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a2/pgJbl is at the valley bot tom and is equal to - 1.4 and 
- 0 . 5 2  for ~b = 0 and 90 "~, respectively. For ~, = 45 '~, it is 
on the valley left hand side (x/Ib[ = -0 .27)  and is equal 
to -0 .71 .  

Figures 10 and 11 give the variation of axx/pgJb I with 
y/Jbl along the centerline of  a transversely isotropic ridge 
and valley for a/IbJ= 1 with v =0.25,  v ' = 0 . 1 5  and 
values of  E/E' and G/G' of  1 and 3. The planes of  
transverse isotropy dip at an angle ~ = 0, 45 and 90 °. 
For  a fixed value of  E/E', Fig. 10 and 11 show that the 
value of  the ratio G/G" has no effect on the variation of 
axx/pglbl with depth for rock masses with horizontal and 

vertical planes of  transverse isotropy. On the other hand, 
for planes of  transverse isotropy dipping at 45, the ratio 
G/G" has a strong effect where an increase in GIG' (as 
the rock mass becomes more deformable in shear in 
planes normal to the planes of  transverse isotropy) 
results in an increase in ~r~,./pglb I and a decrease of  the 
tensile region at the valley bottom. For a fixed value of  
GIG', Figs 10 and I 1 show that E/E" affects the value 
of a,.x/pglbl the most for horizontal anisotropy where 
a~x/pg[bl increases with E/E' (or in other words as the 
rock mass becomes more deformable in the vertical 
direction). For vertical anisotropy, the effect of E/E' on 
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Fig. 7. Gravitat ional stress regime for a ridge and a valley with a/Ibl = I in a strongly transversely isotropic rock mass 
(E/E '= G/G'= 3, v = 0.25, v '=  0.15 and ~ = 90°). Stress trajectories for the ridge in (a) and the valley in (b), o I /pg lb l and  
oz/pglb I stress contours for the ridge in (c) and (d) and for the valley in (e) and (f). Variation ofoxx/pglbl, o=/pglbl and an,/pglbl 
with y/JbJ along the ridge and valley centerline (x/Ibl = 0) in (g) and (h). The short dashed lines in (g) and (h) represent the 
variation of the standard stresses in the absence of  topography for this case of anisotropy [4]. The shaded region in (b) represents 

the extent of the tensile region at the valley bottom. 

the magnitude of trxJpglb I is small. For planes of 
anisotropy dipping at 45 °, an increase in E/E' results ir, 
a decrease in trxJpglbl. 

Figures 12 and 13 show the variation of trxx/pg Ib I with 
y/Ibl along the centerline of a transversely isotropic ridge 
and valley for a/Ibl=l  with v=0 .25 ,  E/E '=3 ,  
G/G" = 1 and for v' = 0.15, 0.25 and 0.35. The planes of 
transverse isotropy dip at an angle ~k = 0, 45 and 90 °. At 
a given depth less than y/Ibl =0 ,  the stress ratio 
tr=/pglbl increases with the Poisson's ratio v'. For the 
valleys, the tensile region at the valley bottoms decreases 
as v' increases and completely vanishes for v' = 0.35 for 
all dip angles. 

Effect of ridge and valley geometry 
Figures 14(a), (b) and (c) show the principal stress 

trajectories in transversely isotropic ridges with the 
topographic ratio a/lbl equal to 0.5, 1 and 2, respect- 
ively. The ridges have horizontal planes of transverse 
isotropy (~b = 0 °) and are such that E/E '=  G/G'= 3, 
v - 0.25 and v' = 0.15. The variation of the stress ratio 
trJpglb I along the ground surface for the three ridges is 
shown in Fig. 15. We note from this figure that the 
maximum value of a~/pglb[ increases with a/lb[ (0.747 
for a/JbJ=0.5, 0.824 for a/JbJ=l and 0.861 for 
a/Ibl = 2) and that the location where the stress maxi- 
mum is reached on the sides of the ridge moves further 
away from the ridge axis as a/lbJ increases or in other 
words as the ridge broadens. Also, the variation of 
a~/pglbl along the ground surface becomes gentler as 
a/JbJ increases. Figure 16 shows the variation of 
oxx/pgJbl with y/lbl along the centerline of the ridges for 
the three values of a/IbJ. In this figure, an increase in 
axx/pgJbl with a/Ibl can be observed. 

Figures 14 and 16 are replaced by Figs 17 and 18 for 
valleys in rock masses with horizontal planes of trans- 
verse isotropy, a/Ibl = 0.5, 1 and 2, E/E '=  G/G'= 3, 
v = 0.25 and v ' =  0.15. Figures 17(a)-(c) show that the 
tensile region at the valley bottom increases as the valley 

broadens. More tension develops at the valley bottom as 
a/lbl increases; (tr2/pglbl = 0 for a/lbl = 0.5, -0 .79  for 
a/lb[= 1 and -1 .33 for a/lbl=2). In Fig. 18, the 
variation of axx/pg[bl with y/lbl along the centerline of 
the valleys for the three values of a/JbJ shows a decrease 
in the horizontal stress with an increase in alibi. 

As the ridges and valleys broaden, the ridge height or 
valley depth Ibl becomes zero, corresponding to a hori- 
zontal ground surface. Since the stresses are pro- 
portional to Jbl they approach the zero values predicted 
for a horizontal ground surface. 

Depth of influence of topography 
As shown above, the principal stress trajectories are 

oriented parallel and normal to the ground surface along 
the boundary of the ridge and valley and gradually turn 
to become horizontal and vertical with depth. In other 
words, the vertical stress component %y and the horizon- 
tal stress components axx and tr= tend to become princi- 
pal stresses with depth and approach the values that they 
would have if the ground surface were horizontal. These 
latter stresses are defined as tr .... ayyo and a=o. The depth 
of influence of topography can be determined by calcu- 
lating the ratios Ri~ = ( % -  %0)/%0 for i = x, y and z. 
As an example, Tables 1 and 2 give the values of 
Rxx = (axx - axxo)/axxo at y/Jbl = - 4 . 0  and x/Jbl = 0 and 
3 for ridges and valleys in a near isotropic rock mass and 
a strongly anisotropic rock mass with E/E' = GIG' = 3, 
v = 0.25, v ' =  0.15 and ~b = 0, 45 and 90 °. Three ridge 
and valley geometries are considered with a/Jb[ = 0.5, 1 
and 2. 

Tables 1 and 2 indicate that broader ridges and valleys 
affect the stress field to a greater depth and to a wider 
area as expected. For a given ridge geometry, the effect 
of the topography on the stresses at depth is strongest for 
ridges and valleys in rock masses with vertical planes of 
transverse isotropy. The horizontal stress oxx approaches 
the standard stress tr ..... more rapidly along the center- 
lines (x/Jbl =0)  of the ridges and valleys than at 
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an i so t ropy  [4]. 

x/Ibl = 3. At y/Ibl = - 4  and for given values of a/lbl 
and the dip angle ~k, the effect of  the valley on the stresses 
is larger than the effect of the ridge. 

Tensile region at valley bottoms 
As shown in the numerical examples presented above, 

the extent of the tensile region at the valley bottom and 
the magnitude of the tensile stresses depend on par- 
ameters such as the ridge and valley geometry, the 
orientation of the anisotropy with respect to the ridge 
and valley axis and the degree of rock anisotropy. The 
following trends can be drawn: 

• For a given set of rock elastic properties and a given 
valley geometry, the extent of the tensile region de- 

pends strongly on the dip angle ~b. This is shown in 
Figs 19(a) and (b) for a valley in a rock mass with 
E / E ' = G / G ' = 3 ,  v =0.25, v '=0 .15  and a/Ib[= 1. 
The nearly isotropic case is shown for comparison. 
For dip angles different from 0 or 90 °, the tensile 
region is no longer symmetric with respect to the 
valley's vertical axial plane and extends farther on the 
left wall of the valley than on the right. 
For a given valley geometry and a given value of the 
dip angle ~b, the extent of the tensile region depends 
on the value of the elastic properties. This is shown in 
Fig. 20 for valleys in a rock mass with horizontal 
planes of transverse isotropy (¢ =0°),  v = 0.25, 
v' = 0.15 and a/IbJ = 1. The ratios E/E' and G/G' are 



PAN et al.: GRAVITATIONAL STRESSES 309 

1.o ,x o/pgb l I (a) 

0 

-0.5 

-1.0 

2.0 

a / b  = 2 

. . . .  a / b  = 1 
1.5 - 

- - - -  a / b  = 0 . 5  

o. 1 . 0 -  

0.5 
~ .---~'~ "'-R~.. 

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 
x/b 
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Fig. 14. Principal stress trajectories in transversely isotropic ridges 
with a/Ibl equal to 0.5, I or 2 in (a)-(c), respectively. Rock mass with 
horizontal planes of transverse isotropy and E/E'=G/G'=3, 

v =0.25, and v' =0.15. 

1 or 3. For  a fixed value of GIG', the size of  the tensile 
region decreases as E/E" increases. It also decreases as 
GIG' increases for a fixed value of  E/E' .  The extent 
of  the tensile region is very sensitive to the value of  the 
Poisson's ratio v'. For  instance it was found that for 
a valley in a rock mass with horizontal planes of  

transverse isotropy with E/E" = 3, G/G" = 1, v = 0.25 
and a/Ibl = 1, the size of  the tensile region decreases 
significantly as v '  increases from 0.15 to 0.25 and 
vanishes for v ' =  0.35. 
For  given values of  the rock elastic properties and the 
dip angle of  the planes of  transverse isotropy, the 
extent o f  the tensile region decreases as the topogra- 
phy ratio a/Ibl decreases, that is as the valley becomes 
narrower. An example is shown in Figs 17(a)-(c). 

CONCLUSIONS 

The analytical method proposed by Pan and Amadei 
[17] can be used to predict gravitational stresses in long 
isolated ridges and valleys deforming under a condition 
of  generalized plane strain, e.g. all planes normal to the 
ridge or valley axis are assumed to warp identically. The 
method applies to ridges and valleys in generally an- 
isotropic, orthotropic, transversely isotropic and near 
isotropic rock masses. The magnitude of  the predicted 
stresses is of  the order of  the characteristic stress pglbl 
where p is the rock density, g is the gravitational 
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Fig. 16. Variation of the horizontal stress axx/Pglbl with y/Ibl along 
the centerline of the ridges in Figs 14(a)-(c). The short dashed line 
represents the variation of the standard horizontal stress ~r.~x/pglbl in 

the absence of topography for this case of anisotropy [4]. 
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acceleration and ]bl is the height of the ridge or depth of 
the valley. 

The magnitude and distribution of gravitational 
stresses in ridges and valleys depend on (1) the ridge and 
valley geometry defined by the topography ratio a/Ibl, 
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Fig. 18. Variation of  the horizontal stress a.Jpglbl  with y/]bl along 
the centerline of  the valleys in Figs 17(a)-(c). The short dashed line 
represents the variation of  the standard horizontal stress a.Jpglbl in 

the absence of  topography for this case of  anisotropy [4]. 

(2) the orientation of the anisotropy with respect to the 
ridge and valley axis (defined by the strike and dip angles 
of the planes of rock anisotropy) and (3) the degree of 
rock anisotropy (defined by ratios of elastic constants 
such as E/E', G/G', v and v' for transversely isotropic 
rocks). At each point in generally anisotropic, or- 
thotropic and transversely isotropic rock masses where 
the planes of anisotropy are inclined with respect to a 
ridge or valley axis, the stress field is three-dimensional 
and the principal stresses are inclined with respect to the 
plane normal to the ridge or valley axis. For rock masses 
with planes of transverse isotropy parallel to or normal 
to a valley or ridge axis, two of the three principal 
stresses are in the plane normal to that axis and the third 
principal stress is parallel to that axis. 

In the examples presented in this paper, it is shown 
that when the ground surface is not horizontal the 
principal stresses are no longer horizontal or vertical. 

Table 1. Values of  Rx< = (a~,. - crx.,.o)ta.~x o (in percent) at Ytlbl = - 4 . 0  
and xllbl = 0 for ridges and valleys in a nearly isotropic (NI) rock mass  
and a strongly anisotropic rock mass  with E/E" = G/G" = 3, v = 0.25, 

v ' = 0 . 1 5  and ~b = 0 ,  45 and 90 °. a/Ibl=0.5, 1 and 2 

Ridges Valleys 

¢ a/Ibl = 2  a/Ibl= I a/Ibl =0 .5  a/Ibl=2 a/Ibl = 1 a/Ibt=0.5 

0 5.0 1.7 0.8 - 6 . 7  - 2 . 5  - 1 . 3  
45 5.2 2.1 1.0 - 7 . 2  -3 .1  - 1 . 5  
90 10.0 5.0 2.5 - 1 2 . 5  - 5 . 0  - 2 . 5  
NI 7.4 2.9 1.0 - 1 1 . 5  - 4 . 4  - 1 . 5  

Table 2. Values of  R,.,. = In,., - #x,.o)/a,.~o (in percent) at y/lb I = - 4 . 0  
and x/IbJ = 3 for ridges and valleys in a nearly isotropic (NI) rock mass 
and a strongly anisotropic rock mass  with E/E" = G/G" = 3, v = 0.25, 

v ' = 0 . 1 5  and ~ = 0 ,  45 and 90 ° . a/Ibl=0.5, 1 and 2 

Ridges Valleys 

~b a l ib i=2 a/Ibl= l a/Ibl=0.5 a/Ibl= 2 a/Ibl= l a/Ibl=0.5 

0 6.7 3.3 2.5 - 9 . 2  - 5 . 2  - 2 . 5  
45 8.2 5.2 3. l - 1 2 . 7  - 8 . 3  - 4 . 9  

12.5 7.5 5.0 - 1 4 . 4  - 8 . 7  - 6 . 3  
NI 10.4 6.2 3.7 -16 .1  - 9 . 3  - 5 . 2  
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Fig. 19. Extent of the tensile region for values of the dip angle 
ranging between 0 and 45 ° in (a) and between 45 and 90 ° in (b). 
E / E ' = G / G ' = 3 ,  v=0.25, v'=0.15 and a/ Ib l=l .  The nearly 

isotropic case (NI) is also shown for comparison. 

Instead,  the principal  stresses at the g round  surface are 
parallel and  perpendicular  to the topography (in the 

absence of  surface loads), gradual ly tu rn ing  to become 
hor izontal  and  vertical with depth. The topographic  
induced stresses become, with increasing depth, asymp- 
totic to the stresses when the g round  surface is horizon-  
tal. It  is found  that  broader  ridges and  valleys affect the 

stress field to a greater depth and  to a wider area. These 
results are the same as those shown by Savage et  al. [11] 
for the isotropic case. 

As in the isotropic case [11], compression is found  to 
take place in ridge crests and  tension in valley bo t toms  
and  valley walls. Fo r  ridges, the m a x i m u m  compressive 

stress is reached on the sides of  the ridges. Fo r  valleys, 
the m a x i m u m  tensile stress is at the valley bo t tom for 
hor izontal  (~, = 0 °) and  vertical (~b = 90 °) planes of  
anisot ropy and  on the left wall of  the valleys for values 
of  the dip angle ~b between 0 and  90 °. 

x / I b l  
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Fig. 20. Extent of the tensile region for horizontal transverse isotropy 
with E/E" and G/G" equal to I or 3. v = 0.25, v' = 0.15 and a/lbl = 1. 

The nearly isotropic case (NI) is also shown for comparison. 

The method  of  Pan  and  Amadei  [17] helps to over- 

come the small slope topography l imitat ion associated 

with the per tu rba t ion  method  and  the isotropic limi- 
ta t ion associated with the exact conformal  mapp ing  
methods.  Al though the examples presented in this paper  
are for symmetric ridges or valleys, the method of  Pan  
and  Amadei  [17] can also be used for asymmetric  and  
more general topographies.  The combined  effect of  

gravi ta t ional  and surface loadings can also be addressed. 
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APPENDIX 

Coefficients bq and functions f ( t )  in equations (19)-(21): 

b,2 --- ~-~ - /z2)  (2~-~3 - 1) - (,u2 -~=-~3)~  (~2 - 22) 

b,3 --- (#-2 - / . ~ , ) 3 , , ( ~  - I) - # 2 ( # ~ ) g O ~ 2 2 ,  - 1) 

b2, = ( ~  - 1 ) (~  - #2) - ~ - 22)~ #~(~-~- #3) 

t,2~ = ( : ~ - ~ q -  O,h(u-~ - u , )  - C,,13 - 1 ) ~ O ~ : ~ )  

b,,  = ( Y i - - - ~ ) , h  ~ ,  - u3)  - ~ , h  - l )  , ~ - ( : ~ )  

6~2 = ~ ) ~  - u , )  - ~ - ~ , ) ( u ,  - - U : ~ )  

b33 = (~- - '~2)  (~ll -- U2) -- ( ~  -- 22) t~Z-~--  #2) (AI) 

where 

f,  ( t)  = [u2 0 : J ,  - I) - ( g  -5~q)~-f~lu(t) 

+ ( ~ ,  - l)vCt) - (u2 - - ( = ~ ) ~  w(t)  

f2(t)  = [,u~ (2~Z~ - 1) - ( ~ ) 2 ~ 3 ] u ( t )  

A ( t )  = [ u ~ ( , ~ - - ~ )  - ~-, O- ,  - - ~ ) ] u ( t )  

+ (2 -~ -~ )v ( t )  - ~ ,  - - = ~ 2 ) w ( t )  (A2) 

u(t)  = - p g y ( t ) x ' ( t )  

v(t) = c I pgy(t)y ' ( t )  

w( t ) = c2pgy(t )y'(t ). 

If  there is a plane of  symmetry normal to the z axis, equations (A l) 
and (A2) reduce to 

bll =Ill --~22, 

b2~ = # z - ~ ,  

b31 =/zl - #2, 

and 

b 1 2 = # 2 - # ~ ,  b t 3 = 0  

b 2 2 = g l - ~ ,  b23=0 

b32=0, b33---0 (A3) 

f ~ ( t )  = - ~ u ( t )  - v ( t )  

A ( t )  = - ~ u ( t ) -  v ( t )  

A ( t )  = - ~ ) w ( t )  = O. (A4) 


