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ABSTRACT: This paper presents a new analytical method for determining the state 
of stress in a homogeneous, general anisotropic, and elastic half-space limited by 
an irregular and smooth outer boundary. The half-space represents a rock mass 
with an irregular and continuous topography. The rock mass is subject to gravity 
and surface tractions. The stresses are determined assuming a condition of gen- 
eralized plane strain, and are expressed in terms of three analytical functions fol- 
lowing Lekhnitskii's complex function method. These analytical functions are de- 
termined using a numerical conformal mapping method and an integral equation 
method. As an illustrative example, it is shown how the proposed method can be 
used to determine the state of stress in long isolated and symmetric ridges and 
valleys in orthotropic or transversely isotropic rock masses. It is found that the 
magnitude of the stresses is of the order of the characteristic stress pg bl, where 
p is the rock density, g is the gravitational acceleration, and I bl is the height of the 
ridge or depth of the valley. 

INTRODUCTION 

Determinat ion of  the stress field due to gravity in a half-space is of 
importance in many geoscience re la ted  fields, such as geophysics,  geome-  
chanics, and glaciology. For  rocks,  Terzaghi  and Richart  (1952) first pro-  
posed closed-form solutions for gravi tat ional  stresses in lateral ly res t ra ined 
horizontal rock masses with homogeneous ,  l inearly elastic, and isotropic 
properties.  Later  on,  A m a d e i  et al. (1987) modif ied  those closed-form so- 
lutions for or thotropic  and transversely isotropic rock masses with horizontal  
or vertical anisotropy.  Both  homogeneous  and stratified rock masses were 
considered, More  recently,  A m a d e i  and Pan (1992) p roposed  closed-form 
solutions for gravitat ional  stresses in general ly  anisotropic,  or thotropic ,  and 
transversely isotropic rock masses with inclined strata. 

All  the closed-form solutions just ment ioned  are l imited to rock masses 
with a horizontal  ground surface. The effect of surface topography on grav- 
itational stresses has been addressed in the past  using two types of  analytical 
methods. One is the exact conformal  mapping method ,  as s tudied by Perloff  
et al. (1967), Ter-Mart i rosyan et al. (1974), by Savage et al. (1985), and 
Savage and Swolfs (1986). However ,  this approach is restr icted to isotropic 
media,  to a very few topographic  features for which conformal  mapping 
functions can be found exactly, and to two-dimensional  problems.  The other  
approach for two- and three-dimensional  problems in isotropic media  is the 
perturbat ion method discussed by McTigue and Mei  (1981, 1987) and Liu 
and Zoback  (1992). Liao et al. (1992) also used the per turba t ion  method  
for two-dimensional  problems in anisotropic  media.  The advantage of the 
perturbat ion method is that  it can handle  any smooth topographic  feature.  
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However, the solutions derived with that method are restricted to topogra- 
phies with small slopes not exceeding 10%. 

In this paper, we present a new analytical method for determining the 
state of stress in a homogeneous, general anisotropic, and elastic half-space 
limited by an irregular and smooth outer boundary. The half-space repre- 
sents a rock mass with an irregular and continuous topography that is subject 
to gravity and surface loads. The stresses are determined assuming a con- 
dition of generalized plane strain. The solutions presented in this paper first 
make use of the closed-form solutions for the stresses in anisotropic rock 
masses with a horizontal ground surface proposed by Amadei and Pan 
(1992). Then, the analytical function method of Lekhnitskii (1963) is fol- 
lowed to obtain expressions for the stresses in an anisotropic half-space with 
an irregular boundary. The stresses depend on three analytical functions 
that are determined using a numerical conformal mapping method (Trum- 
mer 1986) and an integral equation method (Muskhelishvili 1972). The 
numerical conformal mapping method, to the writers' knowledge, has sel- 
dom been applied in the past to solve elasticity problems. Finally, numerical 
examples are presented for the stress distribution in a long isolated ridge 
consisting of transversely isotropic rock. 

STATEMENT OF PROBLEM 

Consider the equilibrium of an anisotropic half-space with the geometry 
of Fig. 1. The half-space represents a rock mass with an irregular topog- 
raphy. The medium in the half-space is assumed to be linearly elastic, 
homogeneous, anisotropic, and continuous, with a uniform density p. It is 
subjected to gravity, g, and surface tractions, with components tx, ty, and 
t~ in a x,  y,  z coordinate system attached to the half-space such that the x 
and z axes are in the horizontal plane and the y axis is pointing upward. 
The half-space geometry, the surface tractions, and the medium's elastic 
properties are assumed to be independent of the z direction. The boundary 

Z 

ty 

y = y(x) 

FIG. 1. Geometry of Problem; Half Space Limited by Boundary Curve y = y(x) 
and Subject to Gravity, g, and Surface Tractions t~, ty and t~ 
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curve of the half-space is defined by an analytic function y = y ( x )  or ira 
parametric form x = x(t), y = y ( t ) .  

The problem is to find the magnitude and distribution of the stresses 
induced by gravity and surface loading of  the half-space. Since the geometry 
of the problem is independent of the z coordinate and the medium is ho- 
mogeneous, the stresses can be determined assuming a condition of  gen- 
eralized plane strain, e.g., all planes normal to the z axis are assumed to 
warp identically. The stresses and strains induced by gravity and the surface 
loads must satisfy the following equations: 

Equations of Equilibrium 

r . . . .  + %y,y = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( la)  

(~xy,x "J- {~yy,y --  0 9  : 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (lb) 

~r=,x + %z,y = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( l c )  

where the derivative with respect to the coordinate variable is expressed by 
a subscript prime followed by the variable. 

Constitutive Relations 

e = a ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 2 )  

or  

- -  e e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 3 )  

where 

e = (ex,,  eyy, ezz, 2eyz, 2exz, 2 e x y f f  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (4) 

are the strain components,  and 

O" = ((~xx, {~yy, (rzz ,  (Tyz, (rxz ,  tSxy) T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (5)  

are the stress components;  a = 6 • 6 symmetric compliance matrix with 
21 independent components aij(i ,  j -- 1-6) ;  and e = corresponding stiffness 
matrix with components ci/(i ,  j = 1-6) ,  such that a = c -1, the inverse of  
c. In (4) and (5), the superscript T indicates the transpose of the matrix. In 
this paper, tensile normal stresses are taken to be positive. 

Compatibility Conditions 

exz.y - eyz. x = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6a) 

exx,yy ~- eyy,x x = 2exy , xy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 6 b )  

Boundary Conditions on y = y ( x )  

%x  cos(n, x) + %y cos(n, y) = tx . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7a) 

(~xy COS(F/, X)  ~- (ryy Cos(n,  y )  = ty . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7b) 

~r= cos(n, x) + %z cos(n, y) = tz . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7c) 

where cos(n, x) and cos(n, y) = direction cosines of the outward normal, 
n, of the boundary curve y = y(x); and tx, ty and tz = given boundary 
tractions. 
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FORMULATION 

Following the approach used by Savage et al. (1985), the stress field is 
expressed as the sum of two parts: 

= + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 8 )  

where o-~ satisfies the equations of equilibrium (1) without gravity, and 
(~. = particular solution of those equations. Obviously, the total stress field 
(~ij is also required to satisfy the constitutive relations [(2) or (3)], the 
compatibility conditions (6), and the boundary conditions (7). 

As shown in a recent paper by Amadei and Pan (1992), the stress com- 
ponents cr~ can be expressed as 

cr~  = c199y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (9a) 

o'Py = pgy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 9b )  

0% -- c2pgy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (9c)  

o'~z = c3pgy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 9 d )  

cre y = r z = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (9e) 

where 

1 
C 1 : --~ [C12(C44C66 - -  C26) - -  C14(C24C66 - -  C26C46 ) + C16(C24C46 - -  C26C44)]  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (lOo) 

1 
02  ~" - ~  [C25(C44C66 - -  C26) --  C45(C24C66 - -  C26C46 ) -~- C56(C24C46 - -  C26C44)] 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (lOb) 

1 
C 3 = --O [ c 2 3 ( c 4 4 c 6 6  - c26)  - c 3 4 ( c 2 4 c 6 6  - c26c46 ) "Ji- C36(C24C46 - -  c26c44)1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( l O c )  

and 

D = c 2 2 ( c 4 4 c 6 6  - c26)  - c 2 4 ( c 4 2 c 6 6  - c62c46 ) -~- c 2 6 ( c 2 4 c 4 6  - c26c44 ) , . .  (11) 

The stress field defined in (9) was derived for a flat-lying horizontal half- 
space under gravity alone, assuming that the displacement components are 
uniform in the horizontal x z  plane (no lateral strain condition). The stress 
field was obtained from the displacements and therefore satisfies the con- 
stitutive relations and the compatibility conditions. Also, it is easy to show 
that this stress field is a solution of the inhomogeneous (1), 

The homogeneous solution cr~ must satisfy the homogeneous part of the 
equations of equilibrium (1), the constitutive relations (2) or (3), the com- 
patibility conditions (6), and be such that when combined with the particular 
solution (9), the total stresses (rij satisfy the imposed traction boundary 
conditions (7) on the curve y = y ( x ) .  To find such a homogeneous solution, 
the complex function method developed by Lekhnitskii (1963) was applied 
first. The stress components (r~ are assumed to take the following form: 

O'hxx = F yy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12o) 
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Oryyh = F xx, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12b) 

~rnxy = - F x y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12c) 

o'~ = XIty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12d) 

h = _ q t x  (12e) (~yz  , �9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 
cr~ - (a13~rhx + a23%,hy + a34crnyz + a35Crhxz + a360"hy) . . . . . . .  (12f) 

a33 

where the two stress functions F ( x ,  y )  and ~ ( x ,  y )  must be determined.  In 
Of f ) ,  the stress component  cruz is calculated assuming no strain in the z 
direction (generalized plane-strain condition). Substituting (12) into the 
constitutive relation (2) and then into the compatibility conditions (6) results 
in the following two coupled equations: 

L 4 F  + L3xI * = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (13a) 

L 3 F  + L2Xt t = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (13b) 

where L2, L3, and L4 = differential operators  given by 

L 2 = ~440xx - 213450xy + ~550yy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14a) 

L3 = - ~ 2 4 0 x x x  '1- (~25 -[- ~ 4 6 ) O x x y  - ([~14 "}- ~ 5 6 ) O x y y  -}- ~ l S O y y y  . . . . .  ( 1 4 b )  

L4 = f3=O . . . .  - 2~260xxxy "~- (21~12 q- ~66)Oxxyy --  2~160xyyy q- ~l lOvyyy 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14c) 

and 13ij is related to a o- as follows 

f3q = % - a~3aj---23 i, j = 1, 2, 4, 5, 6 . . . . . . . . . . . . . . . . . . . . . . . .  (15) 
a33 

The general solution to (13) was proposed by Lekhnitskii (1963) and can 
be expressed using three analytical functions Fk(zk )  (k = 1, 2, 3), such that 

F = 2 Re[Fl(zl)  + F2(zz) + F3(z3)] . . . . . . . . . . . . . . . . . . . . . . . . . .  (16a) 

qt = 2 Re h ~ F ; ( z  0 + h2F~(z2) + ~ F;(z3) . . . . . . . . . . . . . . . . .  (16b) 

where 

Z k = X + I,l, ky  

and 

k = 1 , 2 , 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (17) 

h 1 

~k 2 

with 

1,(~1) 
6(~1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18a)  

t~ (~)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18b) 

14( ~,1,3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18C) 
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12([z) = 1~55p~ 2 -- 21345b~ + 1344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (19a) 

13(1*) = 13~sl x3 -- (13~4 + 1356)t* 2 + (1325 + 1346)~ -- 1324 . . . . . . . . . . .  (19b) 

14(1~) = [311D a -- 21316P~ 3 + (21312 + [366)[.L 2 - -  21326P. + [322 . . . . . . . .  (19C) 

IX. (k = 1, 2, 3) are the three complex roots  with positive imaginary parts 
of the following equat ion:  

/4(iX)/z(iX) - l~(i x) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (20) 

Finally, F'k(z~) denote  the derivatives of  Fk(zk )  with respect  to the complex  
variables zk for k = 1, 2, and  3. 

Substituting (16) into (12) gives the following expressions for  the stresses 
~r~: 

Crxh. = 2 Re[tx~r + Ix~q~(z2) + txzx3r . . . . . . . . . . . . . . . .  (21a) 

%~y = 2 Re[4P'~(zl) + qb~(z2) + X3qb~(z3)] . . . . . . . . . . . . . . . . . . . . . .  (21b) 

tr~y = - 2  Re[~lq~{(zl) + ~2eb~(z2) + ~3X3~(z3)] . . . . . . . . . . . . . .  (21c) 

~r~z = 2 Re[iXlXl~b;(za) + 1~2Xzqb~(z2) + Ix3~(zs)  ] . . . . . . . . . . . . . .  (21d) 

h = - 2  Re[hlqb{(zl) + ~.2(~2(z2) -}- (~3(z3) ] (21e) r . . . . . . . . . . . . . . . . . .  

1 
- (al3  x + + + + . . . . . . .  ( 2 1 f )  

a33 

where 

�9 . ( z~ )  = F ' ( z . )  ~ = 1, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (22a) 

F~(zs)  
~3(z3) - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (22b) 

h3 

are three new analytical funct ions that will be de te rmined  f rom the b o u n d a r y  
conditions (7) as discussed in the following section. 

First, substituting (9) and (12) into (8), the total stress componen t s  are 
equal to 

fYxx = F yy 4- t i P S Y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (23a) 

[~yy = F ,  xx 4- PgY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (23b) 

c% = - F ~ y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (23c) 

O'xz = ~I ty  4- C2pgy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (23d) 

%z = -q~,~ �9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (23e) 

1 
Orz~ = - - - -  (a~3Orhxx + a23crhy 4- a34~rhyz 4- a3sO'xh~ 4- a360"hy) 4- CsPgY ..  (23f)  

a33 

Second, substituting these stress componen t s  into (7) and using the relations 

cos(n, y) = x ' ( s )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (24a) 

cos(n, x) = - y ' ( s )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (24b) 
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the boundary conditions take the following form when evaluated at the 
surface: 

(F.yy + clpgy)y ' (s)  + F xyx'(s) = 

F,yy'(s) + (F, xx + pgy)x ' ( s )  = ty 

( ~ ,  + c2pgy)y'(s)  + ~ x x ' ( s )  = 

- g  . . . . . . . . . . . . . . . . . . . . . . . .  (25a) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  (25b) 

- t z  . . . . . . . . . . . . . . . . . . . . . . . . .  (25c) 

where s = arc length along the boundary curve y = y(x); and x ' ( s )  and 
y'(s)  = total derivatives of x and y with respect to s, respectively. 

Finally, integrating (25) with respect to s, and using (16) and (22), the 
three unknown analytical functions ~k(zg) (k = 1, 2, 3) appearing in (21) 
must satisfy the following system of three equations: 

2 ge[qbl(Z1) 4- qb2(z2) + 2k3dP3(z3) ] = - p g  y x ' ( s )  ds  4- ty ds . . .  (26a) 

2 Re[tlq~l(Zl) 4- ~2d~b2(z2) + ~3X31~3(Z3)] = - - C l p  ~ yy ' ( s )  ds 

- f~ tx ds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (26b) 

f: 2 Re[hlqbl(za) + hzdP2(z2) 4- (I)3(Z3) ] : - c2pg yy ' ( s )  ds - tz ds 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (26c) 

Note that in deriving (26a)-(26c), the three constants of integration were 
set equal to zero because only simply connected contours are considered 
here (Lekhnitskii 1963). 

In summary, the stresses in an anisotropic half-space bounded by a curve 
with equation y = y(x)  are obtained by adding (9) and (21). The three 
analytical functions qb~,(zk) (k = 1, 2, 3) appearing in (21) can be determined 
from the boundary conditions (26a)-(26c). It is obvious that the determi- 
nation of these analytical functions depends mainly upon the geometry of 
the boundary curve y = y(x)  and the applied loads acting on the boundary 
of the half-space. Our next task is therefore to discuss the problem related 
to the determination of these three analytical functions. 

CONFORMAL MAPPING AND INTEGRAL EQUATION METHODS 

Eqs. (26a)-(26c) actually represent a representative problem, which is 
to find three functions that are analytical in a region and have given values 
on the boundary of that region. One of the common representative theorems 
for two-dimensional regions is the Cauchy integral theorem (Muskhelishvili 
1953). The latter states that if f (z) is an analytical function of the complex 
variable z = x + iy in the lower half-plane y -< 0 with f (~ )  = 0, then 

1 f i +~ f ( t )  dt = - f ( z )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (27a) 
27ria-~ t -  z 

_L f ( t )  | dt = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (27b) 
2wi ~-~ t -  z 
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where an overbar  is used to denote the corresponding conjugate complex 
value. 

Without loss of generality, it is assumed that the boundary curve of the 
half-space can always be expressed as follows: 

y = y ( x )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (28) 

or in parametric form as 

x = x ( t )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (29a) 

y = y ( t )  =- y[x ( t ) ]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (29b) 

Again, without loss of generality, the pa ramete r  t is assumed to vary f rom 
- o o  to + oo. In parametr ic  form, the complex expression for the boundary  
curve will be 

z ( t )  = x ( t )  + iy ( t )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (30) 

Similarly, the complex variables z~ (k = 1, 2, 3) appearing in (26) will have 
the following values on the boundary  curve: 

Zk(t) = x ( t )  + ~ k y ( t )  k = 1, 2, 3 . . . . . . . . . . . . . . . . . . . . . . . . . .  (31) 

If, for the boundary curve defined in (29), we can find a set of conformal 
mappings 

z~ = Zk(~k) k = 1, 2, 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (32) 

that map the lower half-planes bounded by (31) onto the lower flat half- 
planes Im ~k <- 0 (k = 1, 2, 3), then (26) can be reduced to a system of 
integral equations for three new analytical functions ~k(~k) (k = 1, 2, 3). 
Actually, by mapping onto the ~k planes, the three stress functions q~k are 
replaced by the new analytical functions ~k  such that  

dPk(Zk) = ~k[Zk(~k)]  ~ ~ ( ~ k )  k = 1, 2, 3 . . . . . . . . . . . . . . . . . . .  (33) 

Also, the derivative of ~ with respect to ~g is 

~F'k(~) = ~'~(zk)Z'k(~k)  k = 1, 2, 3 . . . . . . . . . . . . . . . . . . . . . . . . .  (34) 

Let tk be the value of ~ on the boundary  curve ( Im ~k = 0), then (34) 
reduces to 

~'k(tk) = ~'~(z~)Z'~(tk) k =- 1, 2, 3 . . . . . . . . . . . . . . . . . . . . . . . . . .  (35) 

where zk is defined in (31). 
Differentiating both sides of  (26) with respect to the paramete r  t, the 

boundary conditions are now equal to 

�9 ~(tl)t~(t) + W~(t2)t~(t) + h3~F~(t3)t;(t) + xl2"~(tl)t~(t) + q/~(t~)t~(t)  

+ h3qr;( t3)t;( t )  = - p g y ( t ) x ' ( t )  + t y ( t ) s ' ( t )  . . . . . . . . . . . . . . . . . . . .  (36a) 

I x l ~ ( t l ) t ~ ( t )  + t x2~ ( t2 ) t~ ( t )  + tx3)~3W~(t3)t~(t) + IxlW~(tl)t '~(t) 

+ i x2~( t2 ) t~ ( t  ) + ~3X3xP~(t3)t~(t) = - q p g y ( t ) y ' ( t )  - t~( t )s ' ( t )  . . .  (36b) 

Xl~' t ( t l ) t~( t  ) + h 2 ~ ( t 2 ) t ~ ( t )  + q~( t3) t~( t )  + h l ~ ( t l ) t ' l ( t )  + h 2 ~ ( t 2 ) t ~ ( t )  
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+ ~;(t3)t;(t) = -cepgy(t)y'(t) - tz(t)s'(t) . . . . . . . . . . . . . . . . . . . .  (36c) 

where x'(t), y'(t), s'(t), t'l(t), t;(t), and t;(t) = total derivatives of the real 
functions x, y, s, tl, t2, and t3 (with respect to t), respectively. 

Because analytical functions remain analytical after conformal mapping, 
the three functions ~ ; (k  = 1, 2, 3) in (36) are analytical in the lower half- 
planes Im ~k -< 0. By applying the Cauchy integrals similar to the formulas 
(27), after some manipulations we obtain the following system of three 
integral equations: 

bl2 f-+~ xIt~(tz)t~(ta) dtl b13 ~+~ qt~(t3)t;(tl) dq 

= 1 f-+~ f~(t)_t'(t~) dtl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (37a) 
2xri q - ~1 

b22 f+~ qq(tl)t~(t2) dt2 b23 f+~ ~(t3)t~(t2) dt2 
b2,~(~2) + ~ 72-- ~- + ~ t~--- ~--7 

= 1 f+] f2(t)t'(t2) dt2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (37b) 
2~ri t2 - ~2 

b32 f+== aJ2"'l(tl)t;(t3) dr3 b33 ~+~ ~;(t2)t~(t3) dt3 

= 1__ f+ff3(t)_t'(t3)dt3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (37c) 
2~ri t3 -- ~3 

where the coefficients bit (i, j = 1, 2, 3) and the functions f/(t) (i = 1, 2, 
3) are given by (69) and (70) in Appendix I. 

Let ~ approach the boundary from the lower half-planes, and let's make 
use of the Plemelj formulae (Muskhelishvili 1972). Eqs. (37a)-(37c) then 
reduce to a system of three singular integral equations with Cauchy kernels 

~ b12 f+~ a-Ir~(t2)t~(tlOdt 1 
bnXI*[('q) + xlt2(T2)t2('rl) + xlt;('r3)t;(a'l) + ~ h - Xl 

~- 2-'~b13 f+~ *;(t3)t;(tl)t~l=e~ dtl - f l ( ~ l ' ) t  / ( ' 1 ) 2  ~- ~2'T['i + ~f-~ fl(t)~tt(tl!tl - -  "r 1 " dtl (38a) 9 I 

~-~ b22 f+== xlf~(tl)l'l(t2)dt2 
b21xlt2(T2) + xlr;('rl)/[('r2) q- xlt;(T3)t;('r2) + ~ t7 7 r 

+ ~b23 f+]  qr~(t3)t;(t2)~2 7 .r7 dt2 - fz(T)t'(a'2)2 + 2~r---~l J+=(-~ f2(t)_t'(t2)t2 __ Tadt2 . (38b) m ~ 

~-~ ~ b3-""~2 f+--~ ~!~(tlDt~---(t3)dt 3 
b31alr3(T3) q- alt;(q'l)t;(~'3) + alt2('r2)t2(q'3) + 2wi t 3 -- 3" 3 

b33 ;+~ ~ff2(t2)t2(t3) dt 3 f3(T)t'('r3) -[- 1 t -~ f3(t)_)t'(t31 dt 3 
+ , 7 - 7 3  - 2 " 

(38c) 

In (38a)-(38c), -r is a fixed point on the t ( - %  +~)  axis and % (k = 1, 
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2, 3) are fixed points on the tk ( Im ~k = 0) axes. The  variables t '(tj) and 
t'k(tj) (k, j = 1, 2, 3) are, respectively, the total derivatives of t and tk with 
respect to the variable tj ( -  ~,  + ~)  and are equal to 

z;(o 
t'(tj) = x '( t)  + p~y'(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (39a) 

Z;(tj)  x ' ( t )  + IXky'(t ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (39b) 
t'k(tj) = Z'k(tk) x ' ( t )  + Ixjy'(t) 

The three integral (38a)-  (38c) can be discretized and solved for the boundary 
values of the three analytical functions ~'k(tk) by the method proposed by 
Sarkar et al. (1988). The infinite integrals appearing in (38a)-(38c)  are 
transformed to the circumference of unit discs by the inversion of mapping 
(51). Then, the interior values of the analytical functions, ~;,, are calculated 
using the Cauchy integral theorem (27). Finally, the stress functions 
~'k(Zk) are obtained using (34). 

Substituting the stress functions qJ'k(Zk) into (21) and adding (21) to (9), 
the six stress components  are equal to 

2 t ~r~x = 2 Re[l~qb~(zl) + ix2qb~(z2) + ix3h3~3(z3) ] + clpgy . . . . . . . . .  (40a) 

(Tyy  ~--" 2 R e [ ( I ) ~ ( Z l )  -[- (I)2(z2) -~- •3(I ) ; (z3)]  --~ pgy . . . . . . . . . . . . . . . .  (40b) 

O-xy = - 2  Re[[,lqdP~(Zl) + ~2~.~(z2) + la,3h3dP~(z3)] . . . . . . . . . . . . . .  (40c) 

0"~ = 2 Re[l~aX~;(z~) + Ix2h2qb~(z2) + Ix3qb~(z3)] + c2pgy . . . . . . .  (40d) 

Cry~ = - 2  Re[haq~(z~) + hz~(z2)  + ':I)~(z3)] . . . . . . . . . . . . . . . . . .  (40e) 

2 
~r~ = - - - R e { [ a 1 3 p ~  + a23 - a34h1 + a35~kl  - a36~1]qb~(z1) 

a33 

+ [a~31x 2 + a23 - -  a34h2 + a35~2h2  - -  a3611,2](I)2(z2) -I- [ a 1 3 h 3 ~  2 

q- a23}k 3 - a34 -I- a351J,3 - a36[,L3~k3](I);(z3)} --]- c3pgy . . . . . . . . . . . . . .  ( 4 0 f )  

Eqs. (40a)-(40f)  indicate that, in general,  at each point in the half-space 
the stress state is three-dimensional  and the principal stress components  are 
inclined with respect to the x, y,  and z axes. 

When determining the stress components ,  the three integrals on the right- 
hand side of (38a)-(38c) must be determined.  It is noteworthy that for these 
integrals to converge, the boundary curve (29) must be such that  

lim ]y(t)x'(t)l = a~ < ~; lim ]y(t)y'(t)[ = a2 < ~ . . . . . . . . . .  (41) 

where al and a2 = two constants. Also, similar restrictions must be exerted 
on tx, ty, and tz. Under these conditions, the system of singular integral (38) 
can be solved for the analytical functions involved. The  remaining task is 
to determine the conformal mapping functions Z'k(G) appearing in (34) and 
(35). 

NUMERICAL CONFORMAL MAPPING 

Several methods have been proposed in the literature for the numerical 
conformal mapping of a bounded, simply connected domain onto a unit 
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disc. Generally, these methods can be divided into two types: expansion 
and integral equation methods (Papamichael et al. 1986). Common expan- 
sion methods include the Bergman kernel method and the closely related 
Ritz variational method, which have been discussed in detail by Papamichael 
and Kokkinos (1981). However, because expansion methods are numerically 
unstable, integral equation methods are more effective for numerical con- 
formal mapping. Among these methods, the one based on the Szeg6 kernel 
has been found to be more effective, stable, and accurate (Trummer 1986; 
Kerzman and Trummer 1986; O'Donnell and Rokhlin 1989). The Szeg6 
kernel method is summarized in the following section, and a detailed de- 
scription of the method can be found in Trummer (1986). 

We assume that f~ is a bounded simply connected domain in the complex 
z-plane, and that F = R ( z )  is the function that maps ~ conformally onto 
the unit disc [IFU < 1, subject to the normalization R(c)  = O, R ' (c )  > O, 
where c E f~ is an arbitrary point. We also assume that 012, the boundary 
of 1~, EC 2, has the parametric expression z( t ) ,  0 <- t <- ~ with z ' ( t )  =- dz/  
dt ~ O. Then the mapping function and its derivative can be expressed by 
the Szeg6 kernel as 

z'(t) R'(~) 
R(z)  = - i  Iz'(t)l IR ' (z) l  z E OD. . . . . . . . . . . . . . . . . . . . . . . . . .  (42a) 

2~r 
R' ( z )  - s2(z,  c) z ~ ~) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (42b) 

s(c, c) 

where ~ = ~ + a~ = closure of s The Szeg6 kernel s(z,  c) is the unique 
solution to the integral equation 

s(z, c) + f A ( z ,  w)s(w,  c) d~w = H ( c ,  z)  z E dO . . . . . . . . .  (43) 
3 w  Ga12 

with 

A ( w ,  z)  = H ( z ,  w) - H ( w ,  z) w, z E O~, w 4= z . . . . . . . . . . .  (44a) 

A ( w ,  z) = 0 w = z E 0~1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (44b) 

l-l(w, z) 1 z'(t) 1 - w ~ , z ~ 0 f L w  ~ z . . . . . . . .  (44c) 
2~,i Iz'(t)T z - 

Using a parametric form z( t )  for the boundary, the integral (43) becomes 

+(t) + f~ k(t,  ~)+('r) d,r = @(t) 0 <- t <- [3 . . . . . . . . . . . . . . . . . .  (45) 
d O  

where 

qb(t) = X / ~ l s [ z ( t ) ,  c] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (46a) 

+(t) = ~ l H [ c ,  z(t)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (46b) 

k(t, ~) = X / I z ' ( t ) lA[ z ( t ) ,  z ( ~ ) ] ~  . . . . . . . . . . . . . . . . . . . . . . . .  (46c) 

The integral (45) can be solved numerically by the Nystr6m's method 
(Atkinson 1976). Because of the periodicity of all the functions in (45), we 
can choose the trapezoidal rule (Davis and Rabinowitz 1984) for the Nys- 
tr6m's method to obtain 
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qb(ti) + k( t i ,  t])qb(t]) = I~(li) t i (i - 1)13 i = 1, 2 . . . .  n . . . .  (47) 
"= n 

Eq. (47) is a complex system of linear equations, and can be solved efficiently 
by the generalized biconjugate gradient method (Sarkar et al. 1988). Once 
qb(t) is obtained at discretized points, the Szeg6 kernel can be obtained from 
(46a). To get the mapping function and its derivative from (42a) and (42b), 
we also need to calculate s(c ,  c) ,  which is equal to 

s(c, c) = s(z, c)s(z, c) d~z -- I + ( t ) l  2 d t  . . . . . . . . . . . . . . . . . . .  (48)  
i2 

To calculate the mapping functions and their derivatives that appear in 
our problem of interest, three successive conformal mappings are carried 
out 

Mapping 1 

Zk ~ Wk k = 1 , 2 , 3  wk - 
Zk + i A k  

Z k - -  i A  k 
. . . . . . . . . . . . . . . . . . . . .  (49) 

which maps the irregular half planes of interest onto irregular bounded 
domains wk. The quantity Ak represents complex constants that can be 
chosen such that mapping (49) is conformal, and z~ (k = 1, 2, 3) are the 
complex variables in the irregular half-planes with boundary values given 
by (31). 

Mapping 2 

wk ~ Fk k = 1, 2,  3 ek  = G(wk)  . . . . . . . . . . . . . . . . . . . . . . .  (50)  

which maps the irregular bounded domains onto unit discs Fk. This is done 
using the numerical conformal mapping method previously described. The 
accuracy of this mapping can be evaluated by calculating [ I IGII  - 11,  which 
for the numerical examples presented in the following section is at least 
equal to 10-15 for n = 200 in (47). This mapping method is therefore very 
accurate. 

Mapping 3 

F k ~ G  k = 1 , 2 , 3  ~k = i - -  
G + I  

G - 1  
. . . . . . . . . . . . . . . . . . . . . .  (51)  

which maps the unit discs onto flat half planes ~k. 

PLANE-STRAIN SOLUTION 

If there is a plane of symmetry normal to the z axis of Fig. 1, then the 
generalized plane-strain solution previously described reduces to a plane- 
strain solution. For this special case 

C46 ~--- C56 = C4i = C5i = 0 for i = 1, 2, 3 . . . . . . . . . . . . . . . . . . .  (52a) 

[~46 = ~56 ~- [~4i = [~5i = 0 f o r  i = 1 ,  2 ,  3 . . . . . . . . . . . . . . . . . .  (52b) 

13(~) = x,  = x2 = x3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (52c )  
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Substituting these relations into the general solution gives that c2 in (9c) 
always vanishes. Fur thermore ,  the problem of finding the stresses can be 
decomposed as the sum of two uncoupled problems.  

Plane Problem 
For which the stress components  are equal to 

cr~ = 2 Re[ix2~[(Zl) + ix~q~;(z2)] + c ~ p g y  . . . . . . . . . . . . . . . . . . . .  (53a) 

% y  = 2 Re[qbi(zl) + qb;(z2)] + pgy . . . . . . . . . . . . . . . . . . . . . . . . . .  (53b) 

~rxy = - 2  Re[ixlqbi(z0 + IJL21~2(Z2) ] . . . . . . . . . . . . . . . . . . . . . . . . . .  (53c) 

2 
~ = - - -Re [ ( ax31x l  z + a23 - -  a 3 6 b L 1 ) ~ i ( z 1 )  

a 3 3  

+ (al31X22 + a23 - a361x2)qb;_(z2)] + c3pgy . . . . . . . . . . . . . . . . . . . . . .  (53d) 

where Ix1 and ix 2 and their conjugates are the roots of/4(Ix) = 0 in (19c) 
and 

r  - ~ i (~ ' )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (54a) 
zi(~l) 

qb;(z2) - ~;(~2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (54b) 
z~(~2) 

which account for the effect of  gravity and the surface-load components  
acting in the x, y plane. 

In (54), the boundary values of ~ and ~ ;  are obtained by solving the 
integral (38a) and (38b) with bii (i, j = 1, 2, 3) and f~(0 (i = 1, 2, 3) being 
given by (71) and (72) and in Appendix  I. 

Antiplane Problem 
For which the stress components  are equal to 

~ z  = 2 Re[p,3fP~(z3)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (55a) 

%z = - 2  Re[~(z3 ) ]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (55b) 

where ix 3 and its conjugate are the roots of I2(~) =- 0 in (19a). The expression 
q~(z3) is such that its boundary value is equal to 

- - - 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (56) 

This function accounts for the effect of  the surface-load component  parallel 
to the z axis. In the absence of such load, both ~xz and %z vanish. In that 
case, two of the principal stresses induced by gravity and the surface tractions 
tx and ty are located in the x, y plane, and ~rzz is the third principal stress. 

STRESSES IN ISOLATED RIDGE OR VALLEY 

As an illustrative example,  consider a long isolated symmetric ridge with 
the geometry of Fig. 2(a). The topography of the ridge is expressed in 
parametric form as follows: 
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y = y(x) 

a/q-3 (a) 
> 
X 

Y 

-a/',F3 
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~ ' (b) 

FIG. 2. (a) Symmetric Ridge of Height b; (b) Symmetric Valley of Depth Ibl 

x = t ( - o o < t <  +oo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (57a) 

a2b 
y - (t 2 + a2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (57b) 

where b = ridge height  and  is a ssumed  to be  posit ive.  If b is negat ive ,  (57) 
corresponds to a long isolated symmetr ic  valley where  I bl is the depth  
of the valley [Fig. 2(b)].  The  inf lect ion points  of the b o u n d a r y  curve are 
located at x = • a/x/3 and y = 0.75b, at which the slopes are equal to • (3b%/3)/ 
(8a). 

For the geometry of Figs. 2(a) and 2(b), (31) becomes 

a2blzk 
z~(t) = t + t2 + a2 k = l ,  2, 3; -oo < t < oo . . . . . . . . . . . .  (58) 

After  carrying out  the analyt ical  conformal  ma p p i ng  def ined  in (49), the 
u n b o u n d e d  curves (58) become  b o u n d e d  curves in the wk p lanes  as 

aZbtxk 
t + t2 + a-------- ~ + iAk 

wk(t ) = a2b~ k k = 1, 2, 3; -oo  < t < oo . . . . . .  (59) 

t + t2 + a2 iA~ 

In t roducing a new pa ramete r ,  O, which varies over  a f ini te  in terval  ( - at/2, 
~r/2) such that  t = a tan  O, (59) can be  reduced  to 
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a . s i n  0 + b ~ k  C0s30 + i A k  COS 0 

wk(O) a .s in  0 + blXk cos30 -- iAk COS 0 k = 1, 2, 3; 

"ff 'It 
- 2  < 0 < ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (60) 

The derivative of  (60) with respect to 0 is equal to 

dwk(O) 2iAk(2bb~k sin 0 cos30 -- a) 
dO (a-sin 0 + b~k cos20 - iAk cos 0) 2 

k = 1 , 2 , 3 ;  

'iT Tf 
- - < 0 < -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (61) 

2 2 

Finally, the relationship between zk and ~k, and the functions Z'k(~k) in 
(34) can be expressed as 

~k = i Fk(Wk) q- 1 
Fk(Wk) - 1 

k = 1, 2 , 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (62) 

and 

1 - 4A k dFk 1 

z'~(~) 

with 

[Fk(Wk) -- 1] 2 dw k (Zk -- iZk)  2 
k = 1 , 2 , 3  . . . . . . . . . .  (63) 

Wk -- 
Zk + iAk 

Zk -- i A  k 
k = 1 , 2 , 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (64) 

In (62) and (63), the functions Fk(Wk) (k = 1, 2, 3) and their derivatives 
are determined using the numerical conformal mapping method previously 
discussed. 

For the geometry of Figs. 2(a) and 2(b), t ' ( t j )  and t~(tj) defined in (-39) 
take the following form: 

r( t j )  = 
z;(tj) 

1 2a2btlxJ 
(a 2 + t2) 2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (65a) 

Z~(tj)  ( a  2 + t2) 2 - 2a2bt~k . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 6 5 b )  
t'k(tj) = Z'~(tk) ( a  2 + t2) 2 2a2bt~j 

The rock mass in the ridge of Fig. 2(a) is assumed to be orthotropic in a 
n, s, t cartesian coordinate system. That  coordinate system is attached to 
planes of anisotropy in the medium,  and its orientation with respect to the 
x, y, z coordinate system, and therefore the ridge, is defined by the dip 
azimuth 13 and the dip angle t~, as shown in Fig. 3. The t-axis is located in 
the x z  plane. The constitutive equation for the rock in the n, s, t coordinate 
system is given by the following equation: 
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FIG. 3. Orientation of Planes of Symmetry with Respect to x,  y ,  z Coordinate 
System Attached to Ridge or Valley 
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or in a more compact matrix form 

m - -  

(~ nn 

~ss 

I (~tt 
r st 

I (~nt 
I cr~ 

. . . . . . . .  (66) 

e,,, = h~r,,, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (67) 

Nine independent elastic constants are needed to describe the deforma- 
bility of the rock in the n, s, t coordinate system. The quantity En, Es, and 
Et are the Young's moduli in the n, s, and t (or 1, 2, and 3) directions, 
respectively. The quantity Gns, Gnt, and Gs, are the shear moduli in planes 
parallel to the ns, nt, and st planes, respectively. Finally, v o (i, ] = n, s, t) 
are the Poisson's ratios that characterize the normal strains in the symmetry 
directions j when a stress is applied in the symmetry directions i. Because 
of symmetry of the compliance matrix h, Poisson's ratios vq and vii are such 
that u i j / E  i = vji/Ej. 

Eqs. (66) and (67) still apply if the medium is transversely isotropic in 
one of the three ns, nt, or st planes. In that case, only five independent 
elastic constants are needed to describe the deformability of the medium in 
the n, s, t coordinate system. Let 's  call these constants E, E ' ,  v, v', and G'  

112 



with the following definitions: (1) E and E' are Young's moduli in the plane 
of transverse isotropy and in direction normal to it, respectively; (2) v and 
v' are Poisson's ratios characterizing the lateral strain response in the plane 
of transverse isotropy to a stress acting parallel and normal to it, respectively; 
and (3) G' is the shear modulus in planes normal to the plane of transverse 
isotropy. Relationships exist among E, E', v, v', and G' and the coefficients 
of matrix h in (67). For instance, for transverse isotropy in the st plane 

1 1 1 _ 1 _ 1 1 1 1 v~ v,, v' __ - -  P s t  - -  ])ts 

E, E " E ,  E, E ' G , ,  Gnt G " E ,  E,  E " E ,  E, 

_ v 1 _ 1 _ 2 ( 1  + v )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 6 8 )  

E' Gst G E 

For known orientations of the planes of anisotropy with respect to the x, 
y, and z axes, the constitutive relation of the medium in the x, y, z coordinate 
system and defined in (2) or (3) can be obtained by using second-order 
tensor coordinate transformation rules. Because of the Iinear relationships 
existing between coefficients aii and hij of matrices a and h in (2) and (67), 
respectively, it can be shown that the ratios between the stresses cr,- i and a 
characteristic stress pg [ b l depend on the following eight dimensionless quan- 
tities: 

E , E ,  E , E , E ,  
. . . .  ] ) sn  ; P t n  ; Uts  ; 
En' El' Gst' Gnt' Gns 

If the medium is transversely isotropic with, for instance, transverse isotropy 
in the st plane, and using (68), the stress ratios are found to depend only 
on four dimensionless terms 

E G 
_ _ ,  t .  _ _  

E "  v; v ,  G' 

The stress ratios crijpglb [ also depend on: (1) The orientation angles 13 
and ~ of the planes of transverse isotropy with respect to the x, y, and z 

o s r - ~  ~ - 0 4 J  ~ -  
0 ~ ~ - 0 . 6  - ( X 4 ~  

-0.5 ~ - - ' - 0 . 8  
1.0 

- 1 . 0  - 1 . 2 - -  - -  
-1,4 - -  

~> -1 .5  - - - 1 . 6 -  
-1.8 - -  
-2.0 

- 2 . 0  -2.2 - 
-2.4 

- 2 . 5  -2 .6  
-2.8 

- 3 . 0  ~ -3,o 
-3.2 
-3.4 

-3 .5 :  -3.6 
- 4 . 0  L ; I I I I I I P ! 

-3.0 -2.0 -1.0 0 1.0 2.0 
x / b  

3.0 

F IG .  4 (a ) .  C o n t o u r  P l o t s  o f  %x/pgb f o r  T r a n s v e r s e l y  I s o t r o p i c  C a s e  w i t h  13 = 0 ~ 
E/E' = 3,  G/G' = 3,  v = v '  = 0 . 2 5 ,  a n d  ~ = 00 
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1 ' 0 1 1 ' '  i ~ ' ~ - 3 ~ ' ~  t l = ' /  
o5 I_ 1 

- o . s  ~ - - ~  ~ - - - - . o . ~ - - - - - - - ~ - ~  
-1.oF . . . . . . .  o . ~ ~  

: - - - I  -I 
E - 1 . 6 - - - - - - - -  .. 1 

t -3.s [- -2.4 j 
4 0 l .  I I ~ I n I t I i I ~ I 

-3.0 -2.0 -1.0 0 1.0 2.0 3.0 
x / b  

FIG. 4(b). C o n t o u r  P lo ts  o f  cr~.x/pgb for Transversely Isotropic Case with 13 = 0 ~ 
E/E' = 3, G/G'  = 3, v = v' = 0.25, and r = 45 ~ 

l o  , ,  ' ' d  

0.5! - .o.2 

0 O. "' " 0 " 2 ~ ~  
-0.5 ~ -0 . !  

-1.0 ~ 0.5 

-1.5 -'- o. -- --0.7--  
-2.0 

-2.5 - 

-3.0 

-3.5 

-4.0 
-3.( 

-o.8 t 
-0.9 
-1.o 
1.1 

-1.2 
1.3 

-1.4 
i l l l i l i t l l l  

-2,0 -1.0 0 1.0 2.0 3.0 
x/b 

FIG. 4(c). C o n t o u r  P lo ts  o f  crxJpgb for Transversely Isotropic Case with 13 = 0 ~ 
E/E'  = 3, G /G '  = 3, v = v' = 0.25, and r = 90 ~ 

axes attached to the ridge or valley; (2) the coordinates (x /b  1, Y/I b I) of the 
points at which the stresses are calculated; and (3) the ratios a/[b and 
b/I b l describing the geometry of the ridge or valley. If the ridge has any 
surface loads, the stress ratios also depend on three dimensionless quantities 
tx/pglbl, ty/pglbl, and tz/pg[b[. 

As a numerical example,  consider the symmetric ridge of Fig. 2(a) with 
a/b = 1, and gravity being the only active force. The slopes at the inflection 
points of the ridge are equal to 0.65. The  rock in the ridge is assumed to 
be transversely isotropic in the st  plane of Fig. 3. The  planes of transverse 
isotropy are assumed to strike parallel to the ridge axis (13 = 0~ and dip 
at an angle ~ of 0 ~ (horizontal anisotropy),  45 ~ (inclined anisotropy),  or 90 ~ 
(vertical anisotropy). The stress distribution in the ridge was determined 
for a transversely isotropic rock mass with E/E '  = 3, GIG'  = 3, and v = 
v' = 0.25. Figs. 4(a), 4(b), and 4(c) show the contour diagrams of the 
horizontal stress ratio crxx/pgb only for r = 0 ~ 45 ~ and 90 ~ respectively. 
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These figures show that the orientation of the anisotropy has a strong effect 
on the distribution of horizontal stresses. At a given depth below the ridge, 
the horizontal stress is much higher when the rock mass has horizontal 
anisotropy [Fig. 4(a)], than when the anisotropy is vertical [Fig. 4(c)]. This 
is because the rock mass is three times more deformable in the vertical 
direction than in the horizontal direction. This increase in stress can also 
be observed when the planes of anisotropy are inclined at 45 ~ [Fig. 4(b)]. 
In that case, the stress distribution is no longer symmetric with respect to 
the vertical axial plane of the ridge. 

CONCLUSION 

The analytical conformal mapping method has been used in the past to solve 
some problems of elasticity for which the governing equation is equivalent to 
a harmonic or a biharmonic equation (Nebari 1952; Muskhelishvili 1953). 
However, that method is limited to a small family of problems with irregular 
geometries for which exact conformal mapping functions can be found. For 
more complex elasticity problems, it is common practice to use numerical 
methods, such as the finite element, finite difference, or boundary element 
methods. When determining gravitational stresses in rock masses with non- 
planar topographies, the analytical conformal mapping method can only be 
used for simple isolated symmetric ridges or valleys in isotropic media. 

In this paper, we propose a new analytical method for determining the 
stresses in a homogeneous, general anisotropic, and elastic half-space, with 
any irregular but smooth boundary. The half-space is subject to gravity and 
surface loads. The stresses are determined assuming a condition of gener- 
alized plane strain, and are expressed in terms of three analytical functions 
using Lekhnitskii's method. These functions are determined using a nu- 
merical conformal mapping method and an integral equation method. When 
applied to rock masses, the proposed method is limited to rock masses in 
two-dimensional conditions. 

To the writer's knowledge, the numerical conformal mapping method has 
rarely been used in the past for solving elasticity problems. The method is 
indeed very powerful when combined with the integral equation method, 
since the solutions are expressed in terms of analytical functions that are 
continuous and differentiable. Because of this analytical property, more 
accurate results can be obtained. Further, the method presented in this 
paper could be a substitute for numerical methods when solving two-di- 
mensional elasticity problems with complex geometries. This application is 
being investigated by the writers. 
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APPENDIX I. VARIABLES IN (37)- (38)  

Coefficients bij and functions fi(t) in (37)-(38) 

bu = (Ixz - ~l)(h2h3 - 1) - (~2 - Ix3)h3(h2 - ~kl) . . . . . . . . . . . .  (69a) 
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b12  = 

h i 3  = 

b21 = 

b22 = 

323 = 

b31 = 

b32  = 

b33 = 

f m ( t )  = 

- -  (I.I.2 

(Ix2 - Ix2)(),2X3 - 1 )  - ( Ix  2 - IX3)h3(X2 - h2 )  . . . . . . . . . . . .  ( 6 9 b )  

(Ix2 - IL3)h3(h2X3 - 1 )  - (Ix2 - I x 3 ) h 3 ( h 2 h 3  - 1 )  . . . . . . . . . .  ( 6 9 c )  

(X~X3 - 1)(IL~ - ~ 2 )  - (X~ - X 2 ) X 3 ( ~  - ~ 3 )  . . . . . . . . . . . .  ( 6 9 d )  

(~.1X3 - 1)(Ix---~ - Ix~) - (h-~ - ~,~)h3(IL~ - IL3) . . . . . . . . . . . .  ( 6 9 e )  

(~kl~- 3 - -  1)~k3(l,L 1 - -  121,3) - -  (~kl~t 3 - -  1)h3(IL t - -  ]..L3) . . . . . . . . . .  ( 6 9 f )  

( ha  - h2)X3( lx~  - Ix3) - ( h l h 3  - 1 ) ( IL l  - IL2) . . . . . . . . . . . .  ( 6 9 g )  

(h~  - h2) ( Ix~  - IL~) - ( h i  - Xl ) ( IL1 - IL2) . . . . . . . . . . . . . . .  ( 6 9 h )  

(h~  - h2 ) ( IXl  - Ix2) - (h~  - h2) ( ILa  - Ix2) . . . . . . . . . . . . . . . .  ( 6 9 i )  

[ IL2()kZh3 - -  1 )  - -  ( IL2 - -  b L 3 ) h 2 h 3 ] U ( t )  -}- ()k2)k3 - -  1 ) V ( / )  

- I x 3 ) h 3 w ( t )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 0 a )  

f 2 ( l )  = [],,LI(~.I~. 3 - -  1 )  - -  ( I L l  - -  I L 3 ) ~ l ) t 3 ] U ( / )  @ (~klX 3 - -  1 ) V ( / )  

- (P.1 - I x 3 ) k 3 w ( t )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 0 b )  

f 3 ( t )  = [ ~ l ( h l  - -  ~t2) - -  h l ( I L  1 - -  ~ 2 ) ] u ( t )  + ( h  1 - -  h2)v(t ) 

- - IL2)w(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 0 c )  

w h e r e  u ( t )  = - p f y ( t ) x ' ( t )  + t . ( t ) s ' ( t ) ;  v ( t )  = q p g y ( t ) y ' ( t )  + t~ ( t ) s ' ( t ) ;  a n d  
w(t) = c2pgy(t)y'(t) + tz(t)s'(t . 

I f  t h e r e  i s  a p l a n e  o f  s y m m e t r y  n o r m a l  t o  t h e  z a x i s ,  ( 6 9 )  a n d  ( 7 0 )  r e d u c e  
t o  

b t l  = IXt - IL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 1 a )  

h i 2  = 12L 2 - -  ~IL 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 1 b )  

b13 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 1 c )  

b21 = ~L2 - -  ILl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 1 d )  

b22 = ILl - I~1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 1 e )  

b23 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 1 f )  

b31 = ILl - P-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 1 g )  

b32 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 1 h )  

b33 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 1 0  

a n d  

f l ( t )  = - IL u(t) - v ( O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 2 a )  

f 2 ( t )  = - I x ~ u ( t )  - v ( t )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 7 2 b )  

f3( t )  = - (I, Zl - I x 2 ) w ( t )  = - (IX1 - tXa)t~(t)s ' ( t)  . . . . . . . . . . . . . . . .  ( 7 2 c )  
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APPENDIX III. NOTATION 

The following symbols are used in this paper: 

A k = complex constants;  
A(w,  z) = complex function in (44); 

a = global compliance matrix;  
aij = components  of compliance matrix a; 

a, b = constants defining ridge or  valley geometry  in 
(57); 

a~, a2 = real  constants;  
bii = complex constants defined in Append ix  I; 

e = stiffness matrix;  
c 2 = curve class of second continuously derivative;  
cij = components  of stiffness matr ix c; 

E,  E '  = Young 's  moduli ;  
E~ = Young 's  moduli  in local nst coordinate  system; 
e = strain matrix;  

e,-j = components  of strain matr ix e; 
F(x, y) = stress function; 

Fk ~ ~k = mappings from Fk planes onto ~k planes;  
i f (x)  = total  derivative df/dx; 
fj(t) = complex functions defined in Append ix  I; 

f,x_ = part ia l  derivative Of/Ox; 
f = conjugate  o f f ;  

G, G '  = shear moduli ;  
G~j = shear moduli  in local nst coordinate  system; 

g = gravi tat ional  acceleration;  
H(w, z) = complex function in (44); 

h = local compliance matrix;  
Im f = imaginary part  of f; 

k(t, T) = complex function in (46); 
L2, L3, L4 = differential  opera tors  in (14); 

12, 13,/4 -= complex parameters  in (19); 
nst = local coordinate  system; 

Re f = real par t  of f; 
s(t) = arc length along boundary  curve; 

s(z, c) = Szeg6 kernel  in (43); 
t = also used as parametr ic  variable;  

tk, ~k = real variables;  boundary  values of complex var- 
iables ~k; 

tk(t) = real functions in (36); 
t(tk) = real  functions in (37); 
t~(tk) = real  functions in (37) and (38); 

tx, ty, t~ = surface traction components ;  
Wk ~ Fk = mappings from Wk planes onto Fk planes;  

xyz = global coordinate  system; 
y = y(x) = boundary  curve of topography;  

z = also used to represent  the complex plane;  
z(t) = x(t) + iy(t) = complex expression o f y  = y(x);  

Zk(t) = x(t) + IXky(t ) = boundary  curve of  Zk planes;  
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Zk ~ Wk 

~ = Z ; ' ( ' z , )  
0 

•1, ~-2, h3 

tXk 
Vii 

l~ ~ "d ~ 

P 

(Yij 

4. 
~g- 

, ( t )  

,I,(t) 
,V(x, y) 

oft 

= mapping functions; 
= mappings from zk planes onto w~ planes; 
= dip azimuth; 
= also used as an upper bound for variable t; 
= elastic constants defined in (15); 
= mappings from zk planes onto ~k planes; 
= real variable in (60) and (61); 
= complex parameters in (18); 
= complex roots of (20); 
= Poisson's ratios in local ns t  coordinate system; 
= Poisson's ratios; 
= rock mass density; 
= stress matrix; 
= components  of stress matrix or; 
= stresses for homogeneous solution; 
= stresses for particular solution; 
= complex functions; 
= complex function in (46); 
= complex functions; 
= complex function in (46); 
= stress function; 
= dip angle; 
= a bounded simply connected domain; 
= closure of l~; and 
= boundary  of ~ .  
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