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Gravitational and Tectonic Stresses 
in Anisotropic Rock with 
Irregular Topography 
E. PANt 
B. AMADEIt 
W. Z. SAVAGE~ 

An analytical method is presented to predict stresses in rock masses with 
smooth and irregular topographies formed by the superposition of multiple long 
and symmetric ridges and valleys. The rock masses are subject to gravity, 
uniaxial tectonic horizontal compression or tension acting normal to the ridge 
and valley axis, or to combined gravitational and tectonic loadings. The method 
can be applied to ridges and valleys of  realistic shape, in generally anisotropic, 
orthotropic, transversely isotropic, or nearly isotropic rock masses. Numerical 
examples are presented to show the nature of the in situ stress field in 
transversely isotropic rock masses with different symmetric and asymmetric 
topographies under gravitational loading, uniaxial tectonic horizontal loading, 
or combined gravitational and tectonic loading. Under gravity alone, it is shown 
that non-zero horizontal compressive stresses exceeding the vertical stress 
develop at and near ridge crests, and that horizontal tensile stresses develop 
under isolated valleys. Addition of a horizontal uniaxial compression to gravity 
increases slightly the horizontal compression at the crest of ridges and 
diminishes the horizontal tension in valley bottoms. Addition of the horizontal 
tectonic stress has little effect on the magnitude of the vertical stress. 

INTRODUCTION 

The effect of surface topography on gravitational 
stresses has been addressed in the past using two types 
of analytical methods. One is the exact conformal map- 
ping method, as presented by Akhpatelov and Ter- 
Martirosyan [1], Ter-Martirosyan and Akhpatelov [2], 
Ter-Martirosyan et al. [3], and Savage et al. [4]. How- 
ever, this approach is restricted to isotropic media, to 
smooth topographic profiles for which conformal map- 
ping functions can be found exactly, and to two- 
dimensional problems. The other approach for two- and 
three-dimensional problems in isotropic media is the 
perturbation method discussed by McTigue and Mei 
[5, 6] and Liu and Zoback [7]. Liao et al. [8] also used the 
perturbation method for two dimensional problems in 
anisotropic media. In general, the perturbation method 
can handle any smooth topographic feature but is 
restricted to topographies with small slopes not exceed- 
ing 10%. 
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The topographic effect on regional tilt, strain and 
tectonic stresses has been addressed in the past using the 
finite element method [9], the perturbation method 
[5, 10, 11] and the exact conformal mapping method [12]. 

All the solutions derived with the exact conformal 
mapping and perturbation methods show clearly that 
topography can have a major effect on the magnitude 
and distribution of stresses in situ. For instance, the 
expressions in Savage et al. [4] for gravitational stresses 
in long symmetric isotropic ridges and valleys clearly 
depend on the geometry of the topography as well as the 
Poisson's ratio for the rocks. It was found (1) that 
non-zero horizontal compressive stresses exceeding the 
vertical stress develop at and near ridge crests and (2) 
that horizontal tensile stresses develop under valleys. 
The horizontal compressive stresses in ridge crests de- 
crease and the horizontal tensile stresses in valleys 
become more compressive with increasing Poisson's 
ratio. As shown by Savage and Swolfs [12], superposing 
on the gravitational stresses the effect of a uniaxial 
tectonic compression acting normal to the axial planes 
of isolated symmetric ridges and valleys results in a slight 
increase in the lateral component of the compressive 
stresses at the ridge crests. Under the valley bottoms, this 
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superposition results in a decrease in the tensile stresses. 
The opposite effects occur when a far-field tectonic 
tension is superposed on the gravitational stress field. 

In a recent paper, Pan and Amadei [13] presented a 
new analytical method for determining the stress field in 
a homogeneous, general anisotropic and elastic half 
space subject to gravity and surface loads under a 
condition of generalized plane strain and limited by 
irregular (but smooth) outer boundaries. Expressions for 
the stresses in an anisotropic half space with an irregular 
outer boundary were derived. The stresses were found to 
depend on three analytical functions that can be deter- 
mined using a numerical conformal mapping method 
and an integral equation method. This solution was used 
more recently by the authors to determine gravity- 
induced stresses in long s y m m e t r i c  transversely isotropic 
ridges and valleys with planes of anisotropy striking 
parallel to the ridge or valley axis [14]. Parametric studies 
were presented on the effect of (1) topography, (2) 
orientation of anisotropy, and (3) degree of anisotropy 
on the magnitude and distribution of gravitational 
stresses. 

In this paper, we now consider the topographic 
modification of tectonic stresses in the absence or pres- 
ence of gravity. This is done for generally anisotropic, 
orthotropic, transversely isotropic, or nearly isotropic 
rock masses modeled as linearly elastic continua with 
smooth and a s y m m e t r i c  topographies constructed by the 
superposition of multiple long and symmetric ridges and 
valleys. Numerical examples are presented to show the 
nature of the in si tu stress field in transversely isotropic 
rock masses with different symmetric and asymmetric 
topographies under gravitational loading, uniaxial tec- 
tonic horizontal loading, or combined gravitational and 
tectonic loading. Finally, a discussion of the implications 
of the solutions to the understanding of crustal in si tu 
stresses is given. 

S T A T E M E N T  O F  T H E  P R O B L E M  

Consider the equilibrium of an anisotropic half space 
with the geometry of Fig. 1. The half space represents a 
rock mass with an irregular topography. The medium in 
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Fig. 1. Half space limited by a boundary curve y = y(x), and subject 
to gravity, g, and a far-field horizontal and uniform tectonic stress t ry .  

the half space is assumed to be linearly elastic, homo- 
geneous, anisotropic and continuous with a uniform 
density p. An x, y, z coordinate system is attached to the 
half space so that the x and z axes are in the horizontal 
plane and the y axis points upward. The half-space 
geometry and the medium's elastic properties are as- 
sumed to be independent of the z direction. The bound- 
ary curve of the half space is defined by an analytic 
function y = y ( x )  or in parametric form x - - x ( t ) ,  
y = y ( t ) .  The half space is subject to gravity, g, acting 
in the - y  direction and a far-field horizontal and 
uniform tectonic stress, axe, acting in the x direction. 

The problem is to find the magnitude and distribution 
of the stresses induced by gravitational and/or tectonic 
loading of the half space. As done by Pan et  al. [14] for 
symmetric ridges and valleys under gravity only, the 
stresses are determined assuming a condition of general- 
ized plane strain [15]. In general, the stresses and strains 
in the x, y, z coordinate system, induced by gravitational 
and tectonic loading satisfy several basic equations [13]: 
(1) equations of equilibrium, (2) compatibility conditions 
and (3) boundary conditions. Furthermore, the six strain 
components [e] = [(.xf.y(.zyy=yxzyxy] r are related to the six 
stress components [a] = [axaya=r.rx~Txy] r through con- 
stitutive relations expressed as follows 

[e] = [a] [a] (1) 

where [a] is a 6 x 6 symmetric compliance matrix with 21 
independent components a~y(i,j = 1-6). As in Pan et al. 
[14], the rock mechanics sign convention that compres- 
sive stresses are positive is adopted. 

ANALYTICAL SOLUTION OF THE PROBLEM 

Adding the tectonic stress ax°°~ to the stresses obtained 
from the gravitational solution of Pan et  al. [14] gives the 
following expression for the six stress components in the 
half space of Fig. 1 

2 axx = 2Re[p.~ 4~(z,) + pz~z(z2) + ~23~(z3) ]  
o0 

+ cl pgy  - axx 

g,.y = 2Re[~(z , )  + ~(z2)  + 23~i(z3)] + p g y  

a... = - 2Re[#1 q~ ~ (zl) + #2 ~ i (zz) + #3 23 q'~ (z3)] 

ax= = 2ReLu, 2t ~ ( Z l )  +/z222@~(z2) + #3 ~(z3)] + c2pgy 

ay= = -2Re[2,  4)[ (z,) + i2c/'~(z2) + 4~(z3)] 

2 
a:= = ----Re{[al3bt~ + a23 - a342m 

a33 

+ a35/Ai )~1 - -  a36/Al]t~ ( z i )  + [am3/-t22 + a23 - -  a3422 

+ a35#2 22 - -  a36/A2]~2(z2) + [al3,~3/A2 + a23,~.3 - a34 

"b a35/A3 - -  a36JA3 ~3]~3 (z3)} 

+ c3 pgy.  (2) 

In equation (2), ck(k  = 1,2,3), #k(k = 1,2,3) and 
2k(k = 1, 2, 3) have the same significance as in Pan et  al. 
[14]. Also, ~'k(Zk)(k  = 1, 2, 3) denote the derivatives of 
three analytical functions ~,(zk) with respect to the 
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variable Zk = x + #,Y, where x and y are the coordinates 
of the point in the anisotropic medium at which the 
stresses are calculated. The three functions 4k(Zk) must 
satisfy the traction-free boundary conditions along the 
boundary curve y = y ( x )  which can be expressed as 
follows 

2Re[41 (gl) + 42 ('72) "]- :'3 43 (Z3)] 

;o = - o g  yx ' ( s )ds  (3) 

2 R e [ ~  4~ (z~) + #2 42 (z2) + #~ 2~ 43 (z3)] 

= [ a ~ - c ~ p g y ] y ' ( s ) d s  (4) 

2Re[2, 4, (z~) + 22 42(z2) + 43(z3)] 

= - c~pg yy ' ( s )ds  (5) 

where s is the arc-length along the curve y = y(x) .  There, 
x'(s) and y'(s)  are the total derivatives of x and y with 
respect to s, respectively. 

The determination of the three functions 4k(Zk) and 
their derivatives depends mainly upon the geometry of 
the boundary curve y = y(x) .  As shown by Pan and 
Amadei [13], these functions can be determined using a 
numerical conformal mapping method [16] and an inte- 
gral equation method [17]. Three new analytical func- 
tions T~ (k = 1, 2, 3) are introduced such that 

~'~ ((,) = 4'~(zk)Z',(~k) (k = 1, 2, 3) (6) 

where z, = Z,  (~k)(k = 1, 2, 3) are three conformal map- 
ping functions that map the lower half planes bounded 
by Zk= x ( t ) + # k y ( t )  onto the lower flat half planes 
Im ~, ~< 0 (k = 1, 2, 3). This is done in three steps [13]. 
First, the lower half planes bounded by z , = x ( t )  
+ #ky(t)  are mapped onto irregular bounded domains 
wk. Then, the domains w, are mapped onto unit disks F,. 
Finally, the unit disks F, are mapped onto the flat half 
planes (,.  In equation (6), ~ , ( ( , )  and Z~,(~,) are the 
total derivatives of ~Uk and Z, with respect to ~,. As 
shown by Pan and Amadei [13], if tk is the value of ~, 
on the boundary curve, the boundary conditions (3)-(5) 
lead to the following system of three singular integral 
equations that can be solved for the three functions 
~ ( t , )  

b,2 (. -o~ 7j,2(t2)t~(fi)dt, 

+ ~ J+~ t, - zl 

bt3 ~ - ~  ~3(t3)t'3(tt ) dtl 
+ ~xi  J + ~  tj --  zl 

f l ( z ) t ' ( z , )  l f -~ °A( t ) t ' ( t l ) d t  , (7) 
- 2 + ~ J+  ~ tl - zt 
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b2, ~ (z2 )  + ~ ~;  (z,)1; (z2) + ~ ~'3(%)t'3(T:) 

b2 2 ~ -oo ~( t , ) t~( t2)d t2  

b23 ~ -~ ~'3(t3)t'3(t2) dh 

+ ~ / J +  ~ t2 _-- z2 

l f2(z)t'(r2) F (8) 
- 2 ~ J+ o~ t2 - z2 

b3, ~V; (z3) + ~ ~;(zz)t ' t (z3)+ ~ ~v~(T2)t~(%) 

b32 ~ ~j(t ,) t~(t3)dt3 

+ J+ 
b33 ~ -o~ ~,2(t2)t~(t3 )d/3 

+ J+ 

f3(z)/'(v3) 1 [-°°f3(t)t'(t3) dt (9) 
- 2 1- ~ X /  J +  oo t3 - -  Z3 

The coefficients bi j ( i , j= 1,2,3) and the functions 
f ( t ) ( i =  1,2,3) in equations (7)-(9) are given by 
equations (A1) and (A2) in the Appendix of the paper 
by Pan et al. [14]. The only difference is in the expression 
of f l( t) ,  f2(t) and f3(t) where v(t)  is now equal to 
( c l p g y ( t ) - t r ~ ) y ' ( t )  instead of clpgy(t)y ' ( t ) .  In 
equations (7)-(9), z is a fixed point on the t [ -  0% + oo] 
axis and Zk(k = 1,2,3) are fixed points on the 
/k( Im (k = 0) axes. There, t'(tj) and t'k(tj)(k,j = 1, 2, 3) 
are the total derivatives of t and tk with respect to the 
variable t j [ - ~ ,  + oo] and are equal to 

Z'j(tj) 
t'(tj) i 

x ' ( t )  + #jy '( t) ;  

_ Z~(tj) .  x ' ( t )  + #ky'(t) (10) 
t'~(tj) -- Z , ( tk  ) x ' ( t )  + lijy'(t)  

where x ' ( t )  and y ' ( t )  are the total derivatives of x and 
y with respect to t. 

The three integral equations (7)-(9) can be discretized 
and solved for the boundary values of the three analyti- 
cal functions q,~,(t,) by the method proposed by Sarkar 
et al. [18]. Then, the interior values of these analytical 
functions are calculated using the Cauchy integral theo- 
rem [ 19]. Finally, the stress functions 4 :, (z,) are obtained 
using equation (6) and the six stress components are 
determined using equation (2). The infinite integrals 
appearing in equations (7)-(9) are determined using an 
inverse mapping from the boundary of the (k planes to 
the circumference of unit discs. For these integrals to 
converge, the boundary curve x = x(t) ,  y = y( t )  must be 
asymptotic to the x-axis of Fig. 1 at x = + oo. 

It can be shown that the six stress components defined 
in equation (2) satisfy the conditions that shear and 
normal stresses vanish along the boundary y = y ( x ) .  
Furthermore, as x ~ _+ 0% the stress field approaches the 
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testonic stress field if only tectonic loading is active. For 
gravitational loading only, the lateral strains Ex and ?x~ 
approach zero as x--,___oo, consistent with the results 
given by Savage et aL [20] for the isotropic case. The 
stresses are such that the longitudinal strain E~ is equal 
to zero for gravitational loading only or to a constant 
value, a3~ ax~x if tectonic loading is active, where a3~ is a 
component for matrix [a] defined in equation (1). 

S T R E S S E S  B E L O W  RIDGES A N D  V A L L E Y S  W I T H  
COMPLEX TOPOGRAPHIES 

Generalized plane-strain solution 

The topography is assumed to be smooth and to be 
expressed in parametric form as follows. 

with 

x ( t ) = t  (--oo < t < +o0)  

N 

y ( t )  = ~ yi(t)  
i = l  

(11) 

a~b, 
y ,( t )  = (t 2 2" (12) 

- -  X i )  - -  a i 

Equations (11) and (12) correspond to the geometric 
superposition of  i = 1, N symmetric ridges or valleys 
x( t ) ,  yi( t)  centered at x = x~. If b~ is positive, equation 
(12) corresponds to a ridge with height b~. If  b~ is 
negative, equation (12) corresponds to a valley with 
depth I be l. The parameter a~ controls the lateral extent of  
each ridge or valley with inflection points located at 
x = x~ + a~/~/3, y = 0.75b~ at which the slopes are equal 
to 4-3b1,J3/(8a~) [14]. Thus, different complex and 
smooth topographies can be obtained by choosing differ- 
ent positive or negative values of  a~, b~ and x~ for i = 1, 
N. As an example, Figs 2(a) and (b) show asymmetric 
topographies obtained by superposition of  N = 2 sym- 
metric ridges or valleys, respectively. 

For the topography defined in equations (11) and (12), 
the mappings zk = Zk(~)  (k = 1, 2, 3) which map the 
lower half planes bounded by zk = x ( t )  + ltky(t) onto the 
flat lower half planes Im ~k ~< 0 (k = 1, 2, 3) consist of  
three successive conformal mappings (Fig. 3): 

Mapping 1: 

zk =:, % k = 1 , 2 , 3  

zk(t) + i.4k %(0 = oo < t < oo (13)  
zk(t) - iAk 

with 

N 

zk(t) = t + l~k ~ a2b,/[( t - xi) 2 + a~] (14) 
i = l  

maps the lower half planes bounded by z k = x ( t ) +  
iz~y(t) onto irregular bounded domains %.  In equation 
(13), Ak(k = 1, 2, 3) are complex constants chosen such 
that the mapping is conformal. In equation (13), the 
variable t can be replaced by a new parameter 0 that 
varies over a finite interval [ - n / 2 ,  ~/2] such that 
t = tan 0. Then equation (13) takes the following form 

% ( 0 )  = p ( 0 )  + iA cos 0 n 
p ( O ) - i A c o s O  k = 1 , 2 , 3 ;  - ~ < 0 < ~  (15) 

with 

a 2 bi cos 3 0 
p(O) =sinO +#k ~ (16) 

(sinO I X/COS 0~2 ~ a~ C0S2 0 ~ i =  = l  

Mapping 2: 

%=~ Fk k = 1 , 2 , 3  

Fk = Fk(Wk) (17) 

maps the irregular bounded domains wk onto unit discs 
Fk. This is done using a numerical conformal mapping 
method as discussed in Trummer [16] and Pan and 
Amadei [13]. 

Y " Y l  +Y2 ~Y - • 

- ' -  Y2 .~ . . . . . .  

I X l  I 0 I X 2 ! 

xl-a1/~/3 x l+a,H3 x~-a2AI3 xz+a2/~3 

zly ( b )  

0 x 

Fig. 2. Asymmetric topographies obtained by superposition (a) of two separate symmetric ridges with b~/Ib21 = 0 . 5  and 
b2 J b21 = l ,  (b)  of two separate symmetric valleys with bl / I b21 --  - 0.5 and be / I b21 = - 1. In  (a) and  (b)  al / I b21 = l ,  a,  / I b,I -- I, 

and x2/Ib21 = l. 
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1.5 

o 1.o 2.0 ' ~  o , :! ~. 0.5 /I.0 1:5 

[ -- RelZl l  
O I ' ! ' , 1 . 5 "  ~ 

0 1.0 2.0 
1.0 

0 1.0 2.0 

Fig. 3. Example of mappings 1, 2 and 3 for k = 1 and the geometry of  Fig. 2(a). E/E '= GIG'= 3, v = 0.25, v ' =  0.15 and 
~, =45 °. 
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Mapping 3: 

F k ~ k  k = 1,2,3 

F,.( I + 1 (k = i ~ ' W k "  (18) 
F k ( W D -  1 

maps the unit discs Fk onto the flat half-planes ~k. 
For  the topography defined in equations (11) and 

(12), t'(t/) and t'k(tj) defined in (10) take the following 
form 

Z:(t j )  
t'(tj) = 1 - -~g:q( t )  

, Z j ( t j )  1 - 2#kq(t) 
tk(tj) = Z'k(tk)" l -- 2#/q(t) (19) 

with 

q ( t ) =  ~ a ~ b , ( t - x i )  
,=, [ ( t -  

(20) 

The rock mass with the geometry of  Fig. 1 is assumed 
to be orthotropic in an n, s, t cartesian coordinate system 
attached to planes of  anisotropy in the medium. The 
orientation of this coordinate system with respect to the 
x, y, z coordinate system is defined by a dip azimuth/ /  
and a dip angle ~b as shown in Fig. 4. The t-axis is 
located in the xz  plane. The constitutive equation for the 

rock in the n, s, t coordinate system is given by the 
following equation [15] 

£n 

Es 

£t 

):st 

~nt 

1 Vsn Vtn 0 

En Es JEt 
v~ 1 vts 

0 
E. E, E, 

Vn, vst 1 
0 0 

E. E, JEt 

1 
0 0 0 - -  0 

Gst 
1 

0 0 0 0 

0 0 0 0 0 

or in a more compact matrix form as 

[el,,,, = lh] [ ~ L , .  

0 0 

0 0 
- _ 

~nn 

0 a= 
~tt 

0 °st 
~n, 

0 ~ 

1 

(21) 

(22) 

In equation (21), E,, E, and Et are, respectively, the 
Young's moduli in the n, s and t directions, respectively. 
The moduli G,,, G,, and G,, are, respectively, the shear 
moduli in planes parallel to the ns, nt and st planes, 
respectively. Finally, vo(i, j = n, s, t) are the Poisson's 
ratios that characterize the normal strains in the sym- 
metry directions j when a stress is applied in the sym- 
metry directions i. Nine independent elastic constants 
are needed to describe the deformability of the rock mass 
in the n, s, t coordinate system. 
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? y ~ / /  PLANE OF 
• ~ SYMMETRY 

x 

Fig. 4. Orientation of planes of symmetry with respect to the x, y, z 
coordinate system (after [14]). 

If the medium is transversely isotropic in one of the 
three ns, nt or st planes, only five independent elastic 
constants E, E' ,  v, v' and G' are needed to describe the 
deformability of the medium in the n, s, t coordinate 
system where: (i) E and E '  are Young's moduli in the 
plane of transverse isotropy and in a direction normal to 
it, respectively, (ii) v and v' are Poisson's ratios charac- 
terizing the lateral strain response in the plane of trans- 
verse isotropy to a stress acting parallel and normal to 
it, respectively, and (iii) G'  is the shear modulus in planes 
normal to the plane of transverse isotropy. 

Because of the linear relationships existing between 
coefficients a U and h U of the matrices [a] and [It] in 
equations (1) and (22), respectively, it can be shown that, 
the ratios between the stresses tr~ defined in (2) and a 
characteristic stress pglbl (where I b[ is a characteristic 
elevation) or the ratios between a,j and a characteristic 
stress a x% (for tectonic loading only) depend on the 
following eight dimensionless quantities 

E,. E, E~. E, .  E~ (23) 
~-~. ~; v,~; v,.; v,,; G,,' G~,' G.," 

If  the medium is transversely isotropic with, for instance, 
transverse isotropy in the st plane, the stress ratios 
cr~ffpglb I and au/trx~x depend only on four dimensionless 
terms 

E G 
~-7; v; v'; G---- 7. (24) 

The stress ratios crej/pglbl and au/tr~x also depend on 
(1) the orientation angles fl and ~b of the planes of 
anisotropy with respect to the x, y and z axes of Fig. 1, 
(2) the coordinates (x / Ib  I, y / Ib  I) of the points at which 
the stresses are calculated, and (3) the geometry of the 
topography defined by the ratios a~/I b I, bi/I b l a n d  x~/I b[ 
for i = 1, N. For combined gravitational and tectonic 
loading, the stress ratios tr~/pglbl also depend on 
ax~/pglb l .  Equation (2) shows that in general, at each 
point in the half space, the stress field is three- 
dimensional and the principal stress components are 
inclined with respect to the x, y and z axes. 

Plane-strain solution 
The solution presented above takes a simpler form for 

orthotropic and transversely isotropic rock masses with 
planes of elastic symmetry normal to the z axis of Fig. 1. 
This takes place (1) when the dip azimuth fl in Fig. 4 is 
zero and the dip angle ~ varies between 0 and 90 °, or (2) 

when fl and ~b are equal to 90 °. For those cases, the 
generalized plane-strain solution reduces to a plane- 
strain solution and the stress components are now equal 
to 

trxx = 2Re[/t2~(z~) +/~22 ~(z2)] + ctpgy - a~x 

ayy = 2Re[~'~ (Zl) + ~(z2)] + Pgy 

trxy = - 2Re[/tl ~ (zl) +/z2 ¢~ (z2)] 

tr~ = try~ = 0 

2 
tr:~ = - - - -  Re{[a]3# 12 + a2a - -  aa6# l  ]¢~'1 ( z l )  

a33 

q-[a13/ t  2 -I- a23 - -  a 3 6 # 2 ] ~ ( 2 2 ) }  --1- c3pgy. (25) 

Equation (25) shows that at each point beneath the 
surface, two of the three principal stresses induced by 
gravity and the far-field tectonic stress are located in the 
x, y plane and that the longitudinal stress a~ is the third 
principal stress. 

N U M E R I C A L  E X A M P L E S  

In the numerical examples presented below, the ge- 
ometry of Figs 2(a) and (b), and Fig. 4 is adopted. The 
rock mass is assumed to be either isotropic or trans- 
versely isotropic. Note that the anisotropic solution 
presented in this paper becomes singular if the rock mass 
is isotropic with E/E" = G/G'  = 1 and v = v' [13]. This 
is because the formulation for isotropic elasticity is 
different from that for anisotropic media as discussed by 
Lekhnitskii [15]. The isotropic case can, however, be 
approached asymptotically by considering a nearly 
isotropic rock with E / E ' = G / G ' =  1, v =0.25 and 
v' = 0.24, and ~k = 0 °. 

Figures 5-8 show contours of dimensionless stresses 
trxx/pg Ib I, a , / p g l b l  and axy/pg Ibl or axx/a~x, ayy/a~Z 
and axy/ax% for a symmetric ridge or valley, centered at 
x~=0,  with height b~=b or depth I b l l = l b l  and 
a~/Ib I = 1. For this geometry, the inflection points of the 
ridge or valley are located at x / I b l =  +x/3/3 and 
y / I b l =  +0.75 at which the slopes are equal to 
+(3x/3)/8 (or 33.0°). 

Figures 5(a)-(c) are contour diagrams of dimension- 
less tectonically induced stresses axx/ax%, %.y/ax% and 
trxy/ax~ for a ridge in a nearly isotropic rock mass. Here 
ax°~, the uniform far-field horizontal tectonic stress, is 
assumed to be compressive and gravity is not active. 
Because of symmetry, only the right halves of the plots 
of stress contours are presented. Note that the signs of 
trxy/tr~x will be opposite on the left halves. Similar 
contour diagrams for a symmetric valley are shown in 
Figs 6(a)-(c). Comparing Figs 5(a) and 6(a), tr~.Jtr~.Z is 
less than unity near the ridge crest and larger than unity 
and concentrated at the valley bottom. With increasing 
depth, axx/ax~ approaches unity under both topographic 
features. Figs 5(b) and 6(b) show that the dimensionless 
vertical stress ratio tryy/trx. ~ is an order of magnitude 
smaller than a~x/ax% in both the ridge and valley. Also, 
concentrations of axy/ax°~ develop on the flanks of the 
ridge and valley. 



P A N  e t  al.: S T R E S S E S  A N D  T O P O G R A P H Y  207 

oF <: I 
o.s o.s o.s Oxx (9) 

~ O . I b  

_ .o  , , ° ,  o" ,Jo • 0.0 0.5 1.0 1.5 2.0 2.5 3.0 - ' 0.0 0.5 1.0 1.5 2.0 2.5 • 

• " • ~o ' " ' )Oh x/o 

0 5 0.5 0.5 

 -0.5  -05 

- 1.0 

-1.5 -I .5  - I .5  

- 2 0  I - 2 0  - 2 0  
"o.o os I.o 1.5 2.0 2.5 3.0 o.o o.5 1.o !.5 zo 2.5 3.o a.o o3 1.o 1.5 2o 2.5 5. 

)cA) xJb x/b 

!.o ~ ,.o ,.o ~ " Oxyli) 

O.S o.5 i).5 ~ 

O0 I ~ I I ~  I 

O.O 0.0 

-°5  -05 i , , J  " 

-1. -1.5 - " 

-2.0 O.O 0.$ ,.O 1.5 2.0 ~.5 3.0 O .o '  ,.u 1 O.O 0.5 1.0 ,.5 ,.O 2.5 3.0 

xfo xfo x/o 

Fig. 5. Stress contour diagrams for a symmetric ridge with at/Ibl= 1 in a nearly isotropic rock mass (E/E'= GIG'= 1, 
v = 0.25, v' = 0.24 and 0 = 0°). Contour diagrams of a~x/a.~ ~, ~yy/a ~ and e.~y/a.~ in (a), (b) and (c), resistively, for tectonic 
loading only. Contour diagrams of e~x/0g Ib I, ay~./pg Ib I and e.~y/0g Ib [ in (d), (e) and (f), respectively, for gravitational loading 
only• Contour diagrams of exx/pg I b h tryy log I b I and %/pg I b h respectively, in (g), (h) and (i) induced by gravity and a far-field 

tectonic stress a.~ = pg Ib[. The dimensionless stresses are defined as Oxx, 0y~, and 0xy. 

For comparison, Figs 5(d)-(f) and Figs 6(d)-(f) are, 
respectively, contour diagrams of dimensionless gravity- 
induced stresses axx/Pg Ibl, ayy/pg Ibl and trxy/pg Ib[ for 
a ridge and a valley in a nearly isotropic rock mass 
subject to gravity only. Figures 5(d) and 6(d) indicate a 
concentration of compressive stress ~xx/pglbl on the 
sides of  the ridge and tensile stress axx/pglbl at the 
valley bottom. For  the ridge and the valley, the contours 
of  ayy/pg Ibl nearly follow the ridge and valley shape 
[Figs 5(e) and 6(e)]. Also, concentrations of axy/pglbl 
can be seen on the lower sides of  the ridge and valley in 
Figs 5(f) and 6(f), respectively. 

The combined effect of  gravitational and horizontal 
tectonic loading on the stresses in the ridge and valley in 
a nearly isotropic rock mass is illustrated in Figs 5(g)-(i) 
and Figs 6(g)-(i). In this example, the uniform far-field 
horizontal tectonic stress ~r~ is assumed to be compres- 

sive and equal to the characteristic stress pglbl. Com- 
paring Figs 5(d)-(f) with Figs 5(g)-(i) for a ridge and 
Figs 6(d)-6(f) with Figs 6(g)-(i) for a valley, indicates 
that addition of  a far-field horizontal tectonic stress 
Pg Ibl increases the magnitude of  axy/pg Ibl and, to a 
greater extent, the magnitude of the horizontal stress 
axx/pglbt. However, under the crest of the ridge only a 
slight increase in compressive stress axx/pglbl occurs; 
for instance from 0.31 to 0.66 at x/Ibl=O and 
y/Ib I = 0.5. Also, the concentration of  trxx/pglbl on the 
sides of the ridge in Fig. 5(d) disappears in Fig. 5(g). At 
the valley bottom, addition of  the tectonic stress changes 
the sign of  axx/pg Ibl from tensile to compressive; for 
instance from -0 .98  to 2.72 at x/Ibl=O and 
y / l b l = - 1 . 0 .  In general, with increasing depth, ~r.~.~ 
increases by pglbl. The results shown in Figs 5 and 6 
are essentially identical to those obtained by Savage 
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et al. [4] and Savage and Swolfs [12] for symmetric ridges 
and valleys in isotropic rock but with slightly different 
geometries. 

The effect of anisotropy on the stress distribution in 
a symmetric ridge and valley is shown in Figs 7 and 8. 
The rock mass is transversely isotropic with planes of 
transverse isotropy parallel to the z-axis of Fig. 4 
(fl = 0 °) and is such that E / E '  = G / G '  = 3, v = 0.25, and 
v' = 0.15. It is subject to combined gravitational loading 
and a horizontal far-field tectonic stress ¢ ~  equal to 
~glbl 

Figures 7(a)-(c) show contour diagrams of a~/pg [ b I, 
a./pglbl and trxy/pglbl for a ridge with horizontal 
planes of transverse isotropy (q~ = 0°), and Figs 7(c)-(f) 
show the corresponding stress contour diagrams for a 
ridge with vertical planes of transverse isotropy 
(~k = 90°). Comparing Figs 5(g)-(i) and Figs 7(a)-(f) 

reveals similar patterns for the stress contour diagrams 
for both isotropic and anisotropic rocks. However, the 
stresses differ in magnitude everywhere except near 
the crest of the ridge. For instance, at a given point in 
the ridge, the magnitude of a~,/pgJbl is largest in the 
ridge with horizontal planes of transverse isotropy [Fig. 
7(a)], smallest in the ridge with vertical planes of trans- 
verse isotropy [Fig. 7(d)], and in between these two 
extremes for the nearly isotropic case [Fig. 5(g)]. The 
magnitude of the concentration in G~y/pglbl on the 
flanks of the ridge is 0.39 for vertical anisotropy [Fig. 
7(f)], 0.42 for horizontal anisotropy [Fig. 7(c)], and 0.48 
for the nearly isotropic case [Fig. 50)]. The magnitude of 
the vertical stress ~yy/pg Ibl is only slightly affected by 
the isotropic or anisotropic character of the rock. 

Figures 8(a)-(c) show contour diagrams of G~/pgJbl, 
~/pgJbl and G~/pg[b[ for a valley with horizontal 
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Fig. 6. Stress contour diagrams for a symmetric valley with a , / lb l=  1 in a nearly isotropic rock mass ( E / E ' - - G / G ' =  1, 
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tectonic stress a.~ = pg [bl. The dimensionless stresses are defined as a~x, ~,.,., and 0~.,. 
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planes of  transverse isotropy, and Figs 8(d)-(f) show 
the corresponding stress contour diagrams for a valley 
with vertical planes of transverse isotropy. As for 
the ridge, comparing Figs 6(g)-(i) and Figs 8(a)-(f) 
reveals similar patterns for the stress contour dia- 
grams for both isotropic and anisotropic rocks but 
differences in the stress magnitudes. For instance, at 
the valley bottom (x/Ibl = 0 and y/Ibl = - 1.0), the 
concentration of axx/pglbJ is 4.1 for horizontal 

anisotropy [Fig. 8(a)], 2.9 for vertical anisotropy 
[Fig. 8(d)], and 2.7 for the nearly isotropic case 
[Fig. 6(g)]. The concentration of trxy/pglb I near the 
bottom of the valley is 0.73 for horizontal anisotropy 
[Fig. 8(c)], 0.77 for vertical anisotropy [Fig. 8(f), and 
0.74 for the nearly isotropic case [Fig. 6(i)]. Again, the 
magnitude of the vertical stress tryy/pglb[ is only slightly 
affected by the isotropic or anisotropic character of  the 
rock. 
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As a final numerical example, Figs 9(a)-(f) show 
stress contour diagrams below a complex (asymmetric) 
topography similar to that analyzed by Swolfs and 
Savage [21]. Here, y(0) is the characteristic height equal 
to elevation of  the topography at x = 0. The rock is 
transversely isotropic with planes of transverse isotropy 
striking parallel to the z-axis of Fig. 4 (/~ = 0 °) and 
dipping at an angle ~b = 30 ° in the + x  direction. The 

rock-mass elastic properties are such that E/E'= 2, 
G/G" = I and v = v' = 0.25. 

Figures 9(a)-(c) show contour diagrams of 
a=/pgy(O), tryy/pgy(O), and axy/pg(O) when the rock 
mass is subject to gravity only. For comparison, Figs 
9(d)-(f) show the corresponding stress contour diagrams 
when the rock mass is now subject to combined gravita- 
tional loading and far-field horizontal tectonic loading 
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a~%=pgy(O). The contours of cryy/pgy(O) nearly 
follow the ridge and valley shape [Figs 9(b) and (e)]. 
Also, concentrations of compressive stress axx/pgy(O) 
and shear stress a~flpgy(O) can be seen in the valley 
at x/y(O)= 1.6 in Figs 9(a), (c), (d) and (f). Com- 
paring Figs 9(a)-(c) with Figs 9(d)-(f) shows that 
addition of a far-field horizontal tectonic stress pgy (0) 
increases the magnitude of a~y/pgy(O) near the ground 

surface and to a greater extent, increases the magnitude 
of the horizontal stress axx/pglbl. For instance at 
x/y(O) = 1.6. The magnitude of the concentration of 
axx/pgy(O) is about 0.86 under gravity alone and is 2.5 
if tectonic loading is added. Also, addition of the 
far-field horizontal tectonic stress has little effect on the 
magnitude of the vertical stress ayy/pgy(O) [Figs 9(a) 
and (e)]. 

1.0 1 .o 

(a) Oxx 
0.5 - ~ 0.5 

o.o . ; ~  ~,., o o 
"" -0 .5  0~ -0.5 ~- ~ 0 . 6  ~ 0 . 5  ~ ~ 0 . 6  

- 1.0 r 0. 7 ___ ~ -- 1.0 

0.8 ~ -- 1.5 
- , 5  r ~ .o.9 

-2.0 -2.0 
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 x/y(O) 

,o F 
0.5 F- 

0.0 i~  

o 
~ - 0 . 5  - 

- 1 . 0  ,...- 

- 1 . 5  

- 2 . 0  ~ 
- 3 . 0  

(b) 

o.B 
" ' J  j 
" - ' J r  .---1.2 I j 

~ I .-.--I .6 

--..--2.0 

_2.4 

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 

~y(O) 

1.0 

0.5 

0.0 

-0.5 

- I  .0 

..: -1 .5 

== -2,0 
3,0 

.o O'xy " 

0.5 

0.0 

- 1 . 0  

- 1 . 5  - 

-2 .0  , \ , .  , / 
- 3 . 0  

1.0 

0.5 

0.0 

-0 .5  

-1 .0  

-1.5 

i -2.0 
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

x/y(O) 
Figs  9 (a-c) .  See caption overleaf. 



212 PAN et al.: STRESSES AND TOPOGRAPHY 

1.0 

O.5 

0.0 

- 1 . 0  

-1 .5  L 

22.0 
- 3 . 0  

O X X  

- lr 

1.4 

I.S 

1.8 

- 2 ° 5  ~ 2 . 0  - 1.5 w '1.0 wO.5 0.0 0 .5  1.0 

x/y(o) 
1.5 2.0 2,5 

t 
1.0 

0.5 

• 0.0 

- -  - 0 . 5  

~ - 1 . 0  

. ~  - 1 . 5  

- -  - 2 . 0  
3.0 

lo[ 
0.5 - 

0.0 ; 

0 
-o.s • 

- 1 . 0  

- 1 . 5  

-2.0 -- 
-3.0 

Oyy 
(e) 

/ 

-2 .S  - 2 . 0  -1 .S  
t ~ - - r - ~ l  • t 

- I . 0  - 0 . 5  o.o 

x/y(O) 

~ 0 . 6  

1 

1.4 

1.8 

2.2 

I I 
0 . 5  1.0 

~ 1.0 

0.5 

~ 
0.0 

~ - - ~  -o .5  

~ -1 .0  

- 1 . 5  

I - 2 .0  
1.5 2.0 2.5 3.0 

1.0 

0.0 o \ 

-1.0 

-1.5 

-2.0 
-3.1 -2.5 -2 .0  -1.5 -1 .0  -0.5 0.0 0.5 

x/y(O) 
Figs 9 (d-f). 

1.0 1.5 2.0 2.5 

1.0 

0.5 

0.0 

- - 0 .5  

- 1 . 0  

- I . 5  

- 2 . 0  
3.0 

Fig. 9. Contour diagrams of  ~xx/Pgy(O), %y/pgy(O) and ~xy/pgy(O) in a transversely isotropic rock mass (E/E" = 2, G/G" = I, 
v = v' = 0.25, fl -- 0 ° and ~ = 30 °) under gravity only in (a), (b) and (c), respectively, and under combined gravitational and 
tectonic loading with ~ = pg [b[ in (d), (e) and (f), respectively. Topography obtained by superposition of  N = 4 ridges and 
valleys with ai/y(O)= 1 for i = 1-4, b~/y(O)=0.8983, b,/y(O)= 1.2657, b3/y(O)=-2.1186, bJy(O)= 1.3438, xl/y(O)=O , 

x2/y(O) = 1.35, x3/y(O ) = 1.6, x4/y(O ) = 2.1. 

D I S C U S S I O N  

T h e  s t a t e  o f  s t r e s s  in  t h e  E a r t h ' s  c r u s t  h a s  b e e n  

i n v e s t i g a t e d  b y  a v a r i e t y  o f  m e a s u r i n g  t e c h n i q u e s  a n d  

predicted by a number of analytical models [20, 22-24]. 
From in situ stress measurements at shallow depths, two 
common features have been observed [22]: The first is 
the ubiquity of high horizontal stresses relative to the 
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overburden-caused vertical stress. The second is that, in 
many cases, the vertical stress component is not a 
principal stress. The topographic effect, first proposed by 
Savage et al. [4] for isotropic rock masses in symmetric 
ridges and valleys, and extended recently by the authors 
[13,14] to anisotropic rock masses below any smooth 
topographies, can give a satisfactory explanation of both 
observations. For instance, numerical examples in 
Savage et al. [4], Savage and Swolfs [12], Pan et al. [14] 
and in this paper all show that the near-surface horizon- 
tal stress trxx in symmetric or asymmetric ridges is 
non-zero and its value can be high relative to the vertical 
stress component ayy, whether the rock mass is nearly 
isotropic or anisotropic. Even if the ground surface is 
fiat, the horizontal stress can still be higher than the 
vertical stress because of the effect of anisotropy [25, 26]. 
Furthermore, principal stress trajectories in Pan et al. 
[14] show clearly that near the surface, the vertical stress 
component ayy is not a principal stress except for points 
along the center line of the symmetric ridge or valley. 
The same result is shown for the isotropic case by Savage 
et al. [4]. 

There is some field evidence for the theoretically 
predicted tensile stresses near valley bottoms. For in- 
stance, Knill [27] found that there is commonly a zone 
near the valley surface in which the rock mass is loose 
and discontinuous. Because of this, Knill [27] suggested 
that underground excavation, tunnelling, or dam foun- 
dation should be carried well below this zone. Other 
evidence for valley bottom tensile stress is rebound near 
valley bottoms and valley walls as noted by Matheson 
and Thomson [28]. This upwarping phenomenon may be 
a consequence of tensile stresses [28-30]. Also, far-field 
strains or tectonic loading can change the features of the 
gravity-induced stress field. For example, we have shown 
in this paper, as did Savage et al. [4], that addition of an 
initial horizontal uniaxial compression to gravity load- 
ing can diminish the horizontal tension, eventually 
changing it to horizontal compression in valley bottoms. 

The results presented above also have implication to 
earthquake-related problems. For example, to study the 
state of stress in a mountainous region, Swolfs and 
Savage [31] approximated the surface topography by a 
long symmetric ridge. The rock mass in the ridge was 
assumed to be isotropic and both gravitational and 
tectonic stresses were calculated from their exact sol- 
ution. Swolfs and Savage [31] found that the maximum 
stress differences try-a3 are generally greater in the axial 
portion of the ridge than beneath its flanks. Thus, 
gravity and tectonic stress fields are modified by topog- 
raphy to localize and enhance the stress conditions that 
favor recurrent faulting and seismicity along the axial 
portion of mountain ranges. An example is the Hida 
Range, Japan where earthquake swarms occurred in the 
axial portion of the range [31]. However, if the topogra- 
phy can not be approximated by a long symmetric ridge 
or the rock mass is anisotropic, the above observation of 
the location of the maximum stress difference a~-tr 3 may 
not be true. In order to solve such a complex problem, 
the present analytical method can be used. 

An interesting study would be to compare the analyti- 
cally predicted stress field in a region with the measured 
stress field. If the predicted gravity-induced stress field is 
consistent with the measured field, then one could 
conclude that the measured stresses are predominantly 
of gravitational origin. Examples are Fifth Water Ridge, 
Utah and Yucca Mountain, Nevada as demonstrated by 
Swolfs and Savage [31]. Otherwise, the region may be 
subject to tectonic loading, as well as gravity loading. An 
example is the Hida Range, Japan [31]. 

CONCLUSION 

In this paper, an analytical method is presented to 
predict stresses in rock masses with smooth topographies 
constructed by the superposition of multiple long and 
symmetric ridges and valleys. The method overcomes the 
small slope topography limitation associated with the 
perturbation method and the isotropic limitation associ- 
ated with the exact conformal mapping methods. The 
rock masses are subject to gravity, uniaxial tectonic 
horizontal compression or tension acting normal to the 
ridge and valley axis, or to combined gravitational and 
tectonic loading. The method, which is an extension of 
that initially proposed by Pan et al. [14] for gravitational 
loading of isolated symmetric ridges and valleys, can 
be applied to ridges and valleys of realistic shapes, 
in generally anisotropic, orthotropic, transversely iso- 
tropic, or nearly isotropic rock masses. It is found that 
at each point of such rock masses, the stress field is 
three-dimensional and the principal stresses are inclined 
with respect to the plane normal to the ridge or valley 
axis when the planes of anisotropy are inclined with 
respect to the ridge or valley axis. On the other hand, for 
rock masses with planes of transverse isotropy parallel 
to or normal to the valley or ridge axis, two of the three 
principal stresses are in the plane normal to that axis and 
the third principal stress is parallel to that axis. 

The magnitude of the predicted stresses is on the order 
of a characteristic stress, pg [bl, where p is the rock 
density, g is the gravitational acceleration and I bl is a 
characteristic topographic elevation. Under the effect of 
a uniaxial tectonic stress, trx~, and in the absence of 
gravity, the magnitude of the predicted stresses is on 
the order of a~ .  The magnitude and distribution of the 
stress ratios tr~j/pglb I or aq/ax~x depend on (1) the 
topographic geometry defined by the ratios ai/[b[, b~/lb I 
and the location xg/lb I of the i = 1, N symmetric ridges 
and valleys comprising the topography, (2) the orien- 
tation of the anisotropy with respect to the ridge and 
valley axis defined by the strike and dip angles of the 
planes of rock anisotropy, and (3) the degree of rock 
anisotropy defined by ratios of elastic constants such as 
E/E ' ,  G/G' ,  v and v' for transversely isotropic rocks. 
For combined gravitational and tectonic loading, the 
stress ratios t rq /pglb[also  depend on a.~/pg I b[. 

As originally shown by Savage and Swolfs [12] and 
as we show here for symmetric and isotropic ridges 
and valleys, far-field horizontal tectonic compressions 
are reduced at ridge crests and concentrated at valley 
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bottoms.  Also, addi t ion  of  a far-field horizontal  uniaxial  
compression to gravity increases slightly the horizontal  
compression at the crests of  ridges and  diminishes the 
horizontal  tension in valley bot toms.  Addi t ion  of  the 
far-field tectonic stress has little effect on the magni tude  
of  the vertical stress. 

For  rock masses with identical topographies subject to 
gravi ta t ional  and  far-field compression,  similar pat terns 
in the stress con tour  diagrams can be observed for both 
isotropic and  anisotropic  rocks; however, the stresses 
differ in magni tude.  At  a given point  in a ridge, the 
horizontal  compression is the largest when the rock is 
transversely isotropic with horizontal  anisotropy,  the 
smallest when the anisot ropy is vertical, and  in between 
these two extremes when the rock is isotropic. For  a 
valley, the horizontal  compression at the valley bo t tom 
is larger for hor izontal  anisotropy than  for vertical 
anisotropy.  The magni tude  of  the vertical stress is only 
slightly affected by the isotropic or anisotropic character 
of  the rock. 

For  more complex topographies,  the effect of  adding 
a far-field horizontal  compressive stress is, to a great 
extent, to increase the magni tude  of  the horizontal  stress 
componen t  near  the g round  surface. With  increasing 
depth, the horizontal  stress increases by the magni tude  
of  the tectonic stress. 

The numerical  examples presented in this paper  are 
only a sample of  possible case studies that  can be 
addressed with our  analytical  method because it is now 
possible to consider different topographies of more 
realistic shapes, rock anisotropy,  and  the separate or 
combined  effect of  gravity and tectonic stresses when 
est imating the magni tude  and  dis t r ibut ion of  stresses 
in si tu.  
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