ROLE OF TOPOGRAPHY AND ANISOTROPY WHEN SELECTING UNLINED
PRESSURE-TUNNEL ALIGNMENT

By Bernard Amadei,' and Ernian Pan,? Associate Members, ASCE

ABsTRACT: This paper shows how analytical solutions, proposed by the writers to predict in-situ stresses in
rock masses with smooth and irregular topographies, can help in the selection of the alignment of unlined
pressure tunnels near slopes and valley walls. The proposed methodology can be applied to ridges and valleys
in isotropic or anisotropic rock masses subject to gravity or to combined gravitational and tectonic loading.
The analytical solutions are two-dimensional and assume plane or generalized plane strain. They can be used
to substitute existing design charts for pressure tunnels based on the finite-element method. It is found that
the safe alignment of unlined pressure tunnels depend greatly on the extent of tensile regions in valley walls,
which itself depends on parameters such as valley geometry, the degree of rock anisotropy, the orientation
of the planes of rock anisotropy, and the in-situ loading conditions (gravity, gravity and tectonic).

INTRODUCTION

Pressure tunnels, which are unlined over most of their lengths
have been used in various hydroelectric schemes around the
world and have been cailed on to perform under increasingly
higher heads, now approaching 1,000 m (Benson, unpub-
lished paper, 1988). The first and foremost consideration in
the safe design of unlined pressure tunnels is that water leak-
age by hydraulic opening (hydraulic jacking) of the rock mass
be avoided. Water leakage may lead to disastrous and ex-
pensive consequences as illustrated in many case studies (Broch
1984; Sharma et al. 1991; Brekke and Ripley 1993). Hydraulic
jacking can be prevented by positioning unlined pressure tun-
nels in competent rock and under enough rock cover to pro-
vide confinement and watertight conditions. Another alter-
native is to use steel liners, which tend to be costly.

Several criteria have been proposed in the literature to
determine the safe position of pressure tunnels near slopes
or valley walls (Broch 1984a; Brekke and Ripley 1993). One
empirical criterion, used successfully in many hydroelectric
projects, was first proposed by Bergh-Christensen and Dan-
nevig in 1971 (Broch 1984). The criterion is that at each point
along the pressure-tunnel alignment the minimum rock cover,
L, taken as the shortest distance to the valley slope surface
and shown in Fig. 1, must be equal to

L= Yl 1)
vy cos B

where h,, = static water head at the point of the tunnel under
consideration; 3 = average slope angle of the valley side (less
than 60°); v,, and y = unit weights of the water and the rock
mass, respectively; and F = a safety factor. For a near-hor-
izontal topography (cos B = 1), (1) reduces to the traditional
criterion where the minimum rock cover must be equal to
v.h, Fly; that is, the vertical stress associated with the
overburden rock must always exceed the water pressure at
any point along the tunnel.

Another criterion proposed by Selmer-Olsen (1974) is based
on the concept of using numerical methods, such as the finite-
element method, to determine the state of in-situ stress in
valley sides. The location of a pressure tunnel is selected
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based on the condition that nowhere along its alignment should
the internal water pressure exceed the minimum in-situ prin-
cipal stress, o3, in the surrounding rock mass (compression
being positive). Mathematically, this criterion can be ex-
pressed as follows:

O3 > 'Yth (2)

Design charts based on the finite-element method have been
proposed for idealized valley geometries and topographies
and for idealized rock mass properties.

Using the finite-element method to determine the in-situ
state of stress for selecting the alignment of pressure tunnels
has several limitations. First, the method is restricted to finite
domains. Second, the results tend to be mesh-dependent and
errors can arise when selecting the boundary conditions of
the domain of interest. Third, most pressure-tunnel design
charts obtained with the finite-element method are based on
the assumption that the rock mass is continuous, homoge-
neous, and isotropic. The effect of rock mass fabric such as
bedding, foliation, or jointing on in-situ stress distribution
and magnitude is usually not taken into account. Fourth, the
model topography is very much simplified and idealized. Fifth,
most finite-element analyses are two-dimensional and assume
plane-strain conditions. Finally, the stress perpendicular to
the model plane is assumed to be the intermediate principal
stress (Broch 1984a), which is not always mechanically correct
even under plane strain.

As the aim in pressure-tunnel design is to maximize the
tunnel length, which stays unlined with a minimum risk of
water leakage, knowledge of the in-situ stress field along the
proposed tunnel alignment is critical. Stress measurements
using techniques such as overcoring, hydraulic fracturing, or
hydraulic jacking tests (Price Jones and Sims 1984; Enever
et al. 1992) are required to finalize the design of pressure
tunnels. For preliminary design, however, estimating in-situ

FIG. 1. Definition of Minimum Rock Cover in Empirical Design
Criterion of Bergh-Christensen and Dannevig [after Broch (1984a)]
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stresses may be sufficient. Estimation of in-situ stresses can
also be useful when selecting the most appropriate in-situ
stress measuring techniques and the location of the stress
measurements.

The exact prediction of in-situ stresses in rock and their
variation is, for all practical purposes, impossible. Estimating
in-situ stresses is a difficult process and requires a detailed
characterization of the rock and considerable judgment. Models
(physical or numerical) can be developed to explore the im-
portance of such parameters as the rock’s constitutive model,
its loading history, geologic structures, and the boundary con-
ditions on in-situ stresses. Numerical estimation of in-situ
stresses can be carried out using the finite-element method
or other numerical methods available in rock mechanics
(boundary-element and discrete-element methods).

This paper aims to show how analytical solutions, proposed
by the writers (Pan and Amadei 1994; Pan and Amadei, in
press, 1995) to predict in-situ stresses in isotropic or aniso-
tropic rock masses with smooth and irregular topographies,
can help in the selection of the alignment of unlined pressure
tunnels near slopes and valley walls. The rock masses can be
subjected to gravity or to combined gravitational and tectonic
loading. The analytical solutions are two-dimensional and as-
sume plane or generalized plane strain. The solutions can be
used to substitute existing design charts for pressure tunnels,
based on the finite-element method. The effect of rock ani-
sotropy, gravity, tectonic stresses, and geometry of the to-
pography on in-situ stresses can be taken into account. At
the outset, this paper presents a review of the different an-
alytical methods available to estimate the effect of topography
on in-situ stresses. The way the analytical solutions developed
by the writers can be incorporated into a no-leakage criterion
to pressure-tunnel alignment is also shown. Finally, examples
are presented to illustrate the effect of valley geometry, the
degree of rock anisotropy, the orientation of the planes of
rock anisotropy, and in-situ loading conditions (gravity, grav-
ity and tectonic) on the selection of pressure-tunnel alignment
near valley walls.

EFFECT OF TOPOGRAPHY ON IN-SITU STRESSES

When estimating the state of stress at any point in a rock
mass, several assumptions are usually made. First, the state
of stress is described by two components: a vertical compo-
nent due to the weight of overlying rock at that depth, and
a horizontal component equal to several times or a fraction
of the vertical stress. Second, the horizontal stress is assumed
to be uniform in the horizontal plane. Finally, the vertical
and horizontal stresses are assumed to be principal stresses.
In general, these simplifying assumptions break down when
the ground surface is not horizontal. At the ground surface,
principal stresses are parallel and perpendicular to the to-
pography in the absence of surface loads. With depth, the
principal stresses turn and approach the same directions as
when the ground surface is horizontal. Stress measurements
showing the effect of topography have been reported by sev-
eral authors [Judd (1964), Chaplow and Eldred (1984), Haim-
son (1984), Myrvang (1993), among others].

The effect of surface topography on in-situ stresses has
been modeled in the literature using different analytical meth-
ods. One is the exact conformal mapping method as studied
by Akhpatelov and Ter-Martirosyan (1971), Ter-Martirosyan
etal. (1974), Ter-Martirosyan and Akhpatelov (1972), Savage
et al. (1985), and Savage (1994) for gravity loading only, and
by Savage and Swolfs (1986) for gravity and tectonic loading.
However, this approach is restricted to isotropic media, to
the very few smooth topographic profiles for which conformal
mapping functions can be found exactly, and to two-dimen-
sional problems. Another approach for two- and three-di-

880/ JOURNAL OF GEOTECHNICAL ENGINEERING / DECEMBER 1995

mensional problems in isotropic media is the perturbation
method discussed by McTigue and Mei (1981, 1987), McTigue
and Stein (1984), and Liu and Zoback (1992). Liao et al.
(1992) also used the perturbation method for two-dimensional
problems in anisotropic rock masses. The advantage of the
perturbation method is that it can handle any smooth topo-
graphic feature. However, the solutions derived with that
method are restricted to topographies with small slopes not
exceeding 10%.

In spite of their limitations, all the solutions derived with
the exact conformal mapping and perturbation methods clearly
show that the topography can have a major effect on the
magnitude and distribution of in-situ stresses. For instance,
the expressions in Savage et al. (1985) for gravitational stresses
in long symmetric isotropic ridges and valleys clearly depend
on the geometry of the topography and on the rock’s Poisson’s
ratio. It was found that: (1) Nonzero horizontal compressive
stresses develop at and near ridge crests; and (2) horizontal
tensile stresses develop under valleys. The horizontal com-
pressive stresses in ridge crests decrease and the horizontal
tensile stresses in valleys become more compressive with an
increasing Poisson’s ratio. As shown by Savage and Swolfs
(1986), superposing the effect of a uniaxial tectonic compres-
sion acting normal to the axial planes of isolated symmetric
ridges and valleys on the gravitational stresses results in a
slight increase in the lateral component of compressive stresses
at the ridge crests. Under the valley bottoms, this superpo-
sition results in a decrease in the tensile stresses. The opposite
effects occur when a far-field tectonic tension is superposed
on the gravitational stress field. McTigue and Mei (1981,
1987) and Liao et al. (1992) also showed that topography
affects gravitational stress distributions even in areas of low
regional slopes.

Because of the limitations of the conformal mapping and
perturbation methods, numerical methods were, until re-
cently, the only other alternative to determine in-situ stresses
in rock masses with complex topographies. However, the lim-
itations can be overcome with a new analytical method pro-
posed by Pan and Amadei (1994) to determine the stress field
in a homogeneous, general anisotropic, and elastic half-space
subject to gravity and surface loads under a condition of
generalized plane strain and limited by irregular (but smooth)
outer boundaries. More recently, the method was extended
to account for the effect of uniform far-field stresses associ-
ated with tectonic loading (Pan and Amadei, in press, 1995).
In the analytical solutions, the stresses are expressed in terms
of three analytical functions that can be determined using a
numerical conformal mapping method and an integral equa-
tion method. The solutions were used to determine the stresses
induced by gravity in long symmetic and asymmetric ridges
and valleys (Pan and Amadei 1993; Pan et al. 1994), as were
the stresses induced by gravity or combined gravity and
uniaxial horizontal tectonic loading in symmetric and asym-
metric ridges and valleys (Pan et al. 1995). Parametric studies
were conducted for transversely isotropic ridges and valleys
with planes of anisotropy striking parallel to the ridge or
valley axis. The effect of topography, orientation of aniso-
tropy, and degree of anisotropy on the magnitude and dis-
tribution of gravitational stresses was investigated.

The parametric studies conducted by Savage et al. (1985),
Savage and Swolfs (1986), Liao et al. (1992), Pan and Amadei
(1993), Pan et al. (1994), and Pan et al. (1995) show the
existence of a zone of tensile stresses developing at and near
valley bottoms in isotropic rock and transversely isotropic
rock, with planes of transverse isotropic parallel to the valley
axis. The existence of such a zone is critical: (1) When se-
lecting the alignment of pressure tunnels near slopes and val-
ley walls; and (2) in deciding where unlined tunnel sections



end and steel lining starts. More specifically, the parametric
studies show the following trends:

1. For symmetric valleys under gravity only, the maximum
tensile stress is at the valley bottom and the zone of
tension is symmetric for isotropic rock and for trans-
versely isotropic rock with vertical and horizontal planes
of anisotropy. If the planes of anisotropy are inclined,
the tensile region is no longer symmetric and extends
on the side of the valley that is dipping in the same
direction as the planes of anisotropy. The other side of
the valley experiences more of a compressive state of
stress.

2. For symmetric valleys under gravity only, and for a given
dip angle of the planes of rock anisotropy, the extent
of the tensile region depends on the rock elastic prop-
erties. In particular, the size of the tensile region de-
creases as the ratio between the rock modulus parallel
to the planes of anisotropy and that normal to the planes
of anisotropy increases (or in other words as the rock
becomes more deformable in the direction normal to
the planes of anisotropy). For both isotropic and ani-
sotropic rocks, the tensile stresses become more com-
pressive with increasing Poisson’s ratio(s).

3. For symmetric valleys under gravity only, the tensile
region decreases as the valleys become narrower.

4. For asymmetric valleys under gravity only, trends sim-
ilar to those for symmetric valleys can be found. How-
ever, the tensile zone at the valley bottom is no longer
symmetric and its shape depends on the topography.

5. For symmetric and asymmetric valleys, addition to the
gravity of a horizontal uniaxial compressive tectonic stress
normal to the valley axis diminishes the tension in valley
bottoms.

There is field evidence to support the existence of tensile
stresses near valley bottoms. For instance, Knill (1968) found
that there is usually a zone near the valley surface in which
the rock mass is loose and discontinuous. Because of this,
Knill suggested that underground excavation, tunnelling, or
dam foundation be carried well below this zone. Another
evidence for valley-bottom tensile stress is rebound near val-
ley bottoms and valley walls, as noted by Matheson and
Thomson (1973). This upwarping phenomenon may be con-
sidered a result of tensile stresses (Matheson and Thomson
1973; Silverstri and Tabib 1983). James (1991) also described
the evidence of tensile stresses near valley bottoms, such as
bed separation and bedding fractures at the toes of deep
valleys and open (tension) joints deep into valley sides. By
conducting a survey on the nature and frequency of coal-mine
roof failure beneath valleys, Molinda et al. (1992) found that
52% of the unstable roof cases in the surveyed mines occurred
directly beneath the bottommost part of the valley. The sur-
vey also showed that broad, flat-bottomed valleys were more
likely to be sites of hazardous roof conditions than narrow-
bottomed valleys. They also found evidence of valley stress
relief beneath several valleys in the form of bedding plane
faults and low-angle thrust faults at mining depths as great
as 100 m.

NO-LEAKAGE CONDITION

Consider the equilibrium of an anisotropic half-space with
the geometry of Fig. 2. The half-space represents a rock mass
with an irregular topography. The medium in the half-space
is assumed to be linearly elastic, homogeneous, transversely
isotropic, and continuous with a uniform density p. An x-,
y-, and z-coordinate system is attached to the half-space so
that the x- and z-axes are in the horizontal plane and the y-
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FIG. 2. Geometry of Problem: Anisotropic Half-Space with Irreg-
ular Topography
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FIG. 3. Definition of Variables for No-Leakage Condition

axis points upward. The half-space is subject to gravity, g,
acting in the —y direction, and to far-field horizontal and
uniform tectonic stresses, ¢, and o7, acting in the x- and
z-directions, respectively. The half-space geometry and the
rock mass elastic properties are assumed to be independent
of the z-direction. The boundary curve of the half-space is

defined by an analytic function y = y(x) as follows:

y(x) = Zl yix) 3)
with
azb,
yidx) = G-x)Ta 4)

Egs. (3) and (4) correspond to the geometric superposition
of i = 1, N symmetric ridges or valleys y = y,;(x) centered
atx = x,. If b, is positive, (4) corresponds to a ridge of height
b,. If b, is negative, (4) corresponds to a valley with depth
|b;]. The parameter a; controls the lateral extent of each ridge
or valley with inflection points located at x = x; * a,/V3,y
= 0.75b;, at which the slopes are equal to *3b,V/3/(8a,) (Pan
et al. 1994). Thus, different, complex, and smooth topogra-
phies can be obtained by choosing different, positive, or neg-
ative values of a;, b;, and x; fori = 1, N.

The planes of transverse isotropy in the rock mass are
assumed to strike parallel to the z-axis and to dip at an angle
¥ in the +x-direction. In a coordinate system attached to the
planes of transverse isotropy, the rock mass deformability is
described by five elastic properties: E, E’, v, v', and G’ where:
(1) £ and E' are Young’s moduli in the plane of transverse
isotropy and in the direction normal to it, respectively; v and
v’ are Poisson’s ratios characterizing the lateral strain re-
sponse in the plane of transverse isotropy to a stress acting
parallel and normal to it, respectively; and (3) G’ is the shear
modulus in planes normal to the plane of transverse isotropy.

Consider the geometry of Fig. 3, which shows an xy cross
section of the half-space in Fig. 2. The first step in the pro-
posed methodology is to analytically determine the magnitude
and distribution of the in-situ stresses induced by gravitational
and/or tectonic loading of the half-space. This can be done
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FIG. 4. Contours of o,/vD and S for Three Symmetric Valleys
Where b/D = —1 and a/D is: (a) 2.0; (b) 1.0; (c) 0.5
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using the analytical solution suggested by Pan and Amadei
(1994) and Pan and Amadei (in press, 1995). It is shown that
for the orientation of the planes of transverse isotropy and
the tectonic stresses considered here, the rock mass deforms
in plane strain in the xy-plane. In addition, at each point
P(x.,y), two of the three principal stresses are local in the x,
y-plane and the longitudinal stress in the z-direction is the
third principal stress. The smallest of the three principal stresses
is defined as o;.

The second step is to compare o5 with the water pressure
at P(x,y), equal to y,h,. At that point, the static water head
h,,is equal to H — y — D, where H is the maximum static
water head and D is a characteristic depth of the topography.
Thus, the no-leakage criterion defined in (2) can be rewritten
in dimensionless form as follows:

s=ﬂ—ﬂ[ﬂ—l—1]>0 )

Contour diagrams of S can be generated for different types
of topography, rock mass properties, rock mass loading con-
ditions (gravity, gravity and tectonic), and different values of
the ratio H/D. The contour § = 0 corresponds to the balance
between the increasing water pressure and the increasing mi-
nor in-situ principal stress. The domain S > 0 corresponds to
the region in the rock mass in which unlined pressure tunnels
can be placed without leakage. If a safety factor against leak-
age F is introduced, the critical contour is no longer $ = 0,
but § = §. with
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In general, S and S, depend on the following parameters: (1)
Four ratios of elastic constants E/E', G/G’, v, v, and the dip
angle & of the planes of transverse isotropy; (2) the rock’s
relative density vy/v,; (3) the ratio between the maximum
static water head H and a characteristic depth D of the to-
pography; (4) the coordinates x/D and y/D of the point P(x,y)
at which the leakage criterion is verified; (5) the ratios a,/D,
b;/D, and x,/D for i = 1, N defining the geometry of the
topography; (6) the ratios o,/yD and ¢7,/yD when tectonic
loading is active in the x,z horizontal plane; and (6) the value
of the safety factor F.

NUMERICAL EXAMPLES

An initial illustrative example, Figs. 4(a—c) show contours
of the minimum principal stress o;/yD (left-hand side) and
contours of S (right-hand side) for three symmetric valleys
with /D = —1 and a/D = 2, 1, and 0.5, respectively. The
ratio H/D is equal to 0.5. The rock is assumed to be isotropic
with a Poisson’s ratio of 0.25 (E/E' = G/IG' = 1,v = V' =
0.25). Figs. 4(a—c) indicate that as a/D decreases, or in other
words as the valley walls become steeper, the zone where o,/
vD is tensile (negative) decreases in size and the no-leakage
region (S > 0) becomes larger. For higher values of the max-
imum static head H, with H/D equal to 1.0 and 1.5, it can
be shown that S is always negative over the domain considered
here.
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Figs. 5(a—c) show contours of a;/yD (left-hand side) for
the same three valley geometries considered in Figs. 4(a~c),
except that the rock’s Poisson’s ratio is now equal to 0.35
instead of 0.25. The right-hand sides of Figs. 5(a~c) show
three § = 0 contours for H/D = 0.5, 1.0, and 1.5. Again,
as the valley walls become steeper, the zone where o3/yD is
tensile (negative) decreases in size (and even vanishes for a/
D = 0.5) and the no-leakage region (§ > 0) becomes larger
for a given value of H/D. As expected, for a given valley
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FIG. 7. Contours for Symmetric Valley with b/D = —1and a/D =
1.0, Where Planes of Rock Anisotropy Dip at 45° to the Right:
(a) o3/yD; (b) S = 0

geometry, the extent of the no-leakage region (§ > 0) in-
creases as the maximum static water head, H, decreases.
Comparison between Fig. 5 and Fig. 4 indicates that, for a
given valley geometry, an increase in the rock’s Poisson’s
ratio: (1) Reduces the extent of the tensile zone at and near
valley bottoms; and (2) increases the extent of the no-leakage
region (S > 0) for a given value of the H/D ratio.

The effect of rock anisotropy on the distribution of o;/yD
and the extent of the no-leakage region (S > 0) for H/D =
0.5, 1.0, and 1.5 is demonstrated in Figs. 6-9. The rock is
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FIG. 9. Contours for Nonsymmetric Valley formed by Superpo-
sition of Two Symmetric Valleys, Where Rock Mass has Vertical
Planes of Rock Anisotropy: (a) o,/yD; (b) S = 0

now strongly transversely isotropic with E/E’ = G/G' = 3,
v = 0.25, and v/ = 0.15.

Figs. 6(a), 6(b), and 7(a), 7(b) show the contours for o,/
vD and § = 0 when the planes of rock anisotropy are hori-
zontal, vertical, and dipping at & = 45° in the + x-direction.
In both Figs. 6 and 7 the contours of S = 0 are obtained for
H/ID = 0.5, 1.0, and 1.5. The valley is symmetric with the
same geometry as in Figs. 4(b) and 5(b), with /D = —1 and
a/D = 1. Comparison of Fig. 6(a), 6(b), and 7(a), 7(b) with
Fig. 4(b) reveals several trends. First, horizontal planes of
anisotropy give a smaller tensile region, larger values of ¢,/
D at a given depth, and larger no-leakage regions than the
isotropic case. Second, when the planes of anisotropy are
vertical the extent of the tensile zone and the no-leakage
region is not much affected by the anisotropic nature of the
rock. However, the effect of the valley on the distribution of
o3/yD is felt at a much larger depth. Third, when the planes
of anisotropy dip at an angle other than 0° or 90°, the tensile
and no-leakage regions are no longer symmetric with respect
to the axial plane of the valley. As shown in Figs. 7(a) and
7(b) for ¢ = 45°, the tensile region is no longer symmetric
and extends on the left-hand side of the valley which is dipping
in the same direction as the planes of rock anisotropy. The
right-hand side of the valley, on the other hand, experiences
more of a compressive state of stress and is more favorable
than the left-hand side with regard to positioning unlined
pressure tunnels.

Figs. 8(a—c) show contours of a3 /yD and Figs. 8(d—f) show
three S = 0 contours for H/D = 0.5, 1.0, and 1.5. The valley
geometry is the same as in Fig. 4(b), 6, and 7 except that the
planes of rock anisotropy are now dipping at an angle of 30°
in the +x-direction. The rock mass is: (1) Under gravity only
in Figs. 8(a) and 8(d); (2) under gravity and in a uniaxial
tectonic compressive stress field o7, /yD = 1 in Figs. 8(b)
and 8(e); and (3) under gravity and in a biaxial tectonic com-
pressive stress field 0%, /yD = ¢%,/yD = 1 in Figs. 8(c) and
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8(f). Figs. 8(a—f) indicate that addition of far-field compres-
sive stresses reduces the extent of the tensile region in the
valley walls and bottom [the tensile region vanishes in Fig.
8(c)] and increases the extent of the no-leakage region on
both sides of the valiley.

Finally, Figs. 9(a) and 9(b) show contours of o;/yD and S
= 0 for a nonsymmetric valley formed by the superposition
of two symmetric valleys with a,/D = a,/D = 1.0, b,/D =
0.5, bo/D = —1.0, x,/D = —1, and x,/D = 1.0. The rock
mass has vertical planes of rock anisotropy. Here, the tensile
and no-leakage regions are not symmetric because of the
asymmetry in the topography.

CONCLUSIONS

We have shown that the safe alignment of unlined pressure
tunnels depends greatly on the extent of tensile regions in
valley walls, which itself depends on parameters such as valley
geometry, degree of rock anisotropy, orientation of the planes
of rock anisotropy, and the in-situ loading conditions (gravity,
gravity and tectonic). In this paper, the criterion used to
determine the safe alignment of pressure tunnels is such that
no leakage takes place if there is enough in-situ confinement.
The no-leakage criterion used in this paper is, in essence,
similar to that proposed by Selmer-Olsen (1974). The main
difference is that in-situ stresses are now determined analyt-
ically instead of numerically. The effect of rock anisotropy,
gravity, tectonic stresses, and geometry of the topography on
in-situ stresses can be taken into account in a more rational
and exact manner than was done earlier with the finite-ele-
ment method.

Following Selmer-Olsen (1974), here hydraulic jacking is
assumed to occur only along surfaces oriented perpendicular
to the least in-situ stress component o;. This is a conservative
assumption since, as pointed out by Brekke and Ripley (1993),
the jacking pressure could be higher than o if jacking occurs
along surfaces (joints, faults, foliation, etc.) that are inclined
with respect to that stress component.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

a;, b, = parameters describing topography;
D = characteristic depth of topography;
E, E' = Young’s moduli;
F = safety factor against leakage;
G, G' = shear moduli;
H = maximum static water head;
h, = static water head at a point in rock mass;

L = rock cover;
N = number of symmetric ridges or valleys;
x,y = coordinates of point P(x.y);
X;,y; = coordinates;
B = average slope angle of valley side;
v = unit weight of rock;
Y. = unit weight of water;
v, v’ = Poisson’s ratios;
0o; = minimum in-situ principal stress; and
o7, 07, = far-field tectonic stresses in x-, and z-directions.
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