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surfaces 

Summary. An analytical method is presented to derive the stresses in anisotropic half-spaces with smooth 
and irregular surface morphologies. The half spaces can be subjected to body forces, surface tractions, and 
uniform far-field stresses. The general solution is expressed in terms of three analytical functions using the 
analytical function method of anisotropic elasticity. These three functions are then determined using 
a numerical conformal mapping technique and an integral equation method. Numerical examples are 
presented for the stress concentration at irregular surfaces induced by a uniform far-field horizontal stress. 
The elastic half-spaces are assumed to be transversely isotropic or isotropic, and their surface morphologies 
are constructed by the superposition of multiple long and symmetric ridges (mounds) and valleys 
(depressions). For isotropic media, the stress concentration depends only on the half-space surface geometry. 
It is found here that for anisotropic media, the half-space surface geometry, as well as the orientation of the 
planes of material anisotropy, have a great effect on the stress concentration. The degree of material 
anisotropy, on the other hand, has little influence on the stress concentration. 

1 Introduction 

Stress concentration at the irregular surface of a half space has been addressed in the past using 
three types of analytical methods. One is the bipolar coordinate transform method as discussed 

by Ling [1] for circular notches. Another is the exact conformal mapping method, as studied by 
Savage and Swolfs [2] for long symmetric ridges and valleys, and recently by Chiu and Gao [3] for 

a cycloid rough surface. However, these two methods are restricted to isotropic media and to 
simple surface proftles. The third approach is the perturbation method discussed by Srolovitz [4] 
and Gao [5], [6], which can only be used for surface profiles with small amplitudes. 

In a recent paper, Pan and Amadei [7] presented a new analytical method for determining the 
stress field in a homogeneous, general anisotropic and elastic half space subject to gravity and 

surface loads under a condition of generalized plane strain and limited by irregular (but smooth) 
outer boundaries. Using the closed-form solutions of Amadei and Pan [8] and the analytical 
function method of Lekhnitskii [9], expressions for the stresses in an anisotropic half space with 

an irregular outer boundary were derived. The stresses were found to depend on three analytical 
functions that can be determined using a numerical conformal mapping method [10] and an 

integral equation method [11]. This solution has been extended more recently by the authors [12] 

to determine tectonic as well as gravitational stresses in irregular half-spaces. 
In this paper, we first derive an analytical solution for the stress field caused by the combined 

effect of body forces, surface tractions, and uniform far-field stresses in anisotropic half-spaces 
with irregular surfaces. This is an extension of the authors' previous solutions [7], [12] to the 

general case of body forces and far-field stresses. In order to illustrate the present solution, 

numerical examples are presented to show how various parameters affect the stress concentra- 
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tion at irregular surfaces induced by a uniform far-field horizontal stress. The elastic half-spaces 
are assumed to be transversely isotropic or isotropic. It is found that the stress concentration 
depends greatly on the half-space's surface geometry and the orientation of the planes of material 
anisotropy, and to a lesser extent on the degree of material anisotropy. 

2 Basic equations 

Consider the equilibrium of a half space with the geometry of Fig. 1. The medium in the half space 
is assumed to be linearly elastic, homogeneous, anisotropic and continuous with a uniform 
density 4. An x, y, z coordinate system is attached to the half space such that the x and z axes are 
in the horizontal plane and the y axis is pointing upward. The half space is subject to surface 

tractions tl (i = x,  y, z), body forces F~ (i = x, y, z), and a uniform far-field stress field a ~ 
(i, j = x, y, z). We assume that the geometry, the elastic properties of the medium, the surface 
tractions and body forces are independent of the z direction. We also assume that the boundary 
curve of the half space can be described by an analytic function y = y(x)  or in parametric form 
x = x(t), y = y(t). 

The problem is to find the magnitude and distribution of the stresses induced by the surface 
tractions, body forces and/or the far-field stresses in the half space. Since the geometry of the 
problem is independent of the z coordinate and the medium is homogeneous, the stresses can be 
determined assuming a condition of generalized plane strain, e.g. all planes normal to the z axis 
are assumed to warp identically [9]. In general, the stresses and strains must satisfy the following 
equations: 

2.1 Equa t ions  o f  equi l ibrium 

do-xx ~axy 
8 ~ - + ~ - y  + F x = O  

8a~y 8ayy 
+ + v , = o  

0-7- + + Fz = o ty Y~y(x) 

z / FF~F~ 

(1) 

Fig. 1. Geometry of the problem. Half 
space limited by a boundary curve 
y = y(x), and subject to body forces 
F~ (i= x ,y , z ) ,  surface tractions ti 
(i = x, y,z), and a uniform far-field 
stress field a ~ (i,j = x, y, z). In this 
figure, only the component a~ is 
shown for illustration 
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2.2 Constitutive relations 

[el = [a] [a] (2) 

o r  

[a] = [c] [el (3) 

where 

[el = [a~, 8,, az, 7y--, 7~z, 7~,]r (4) 

are the strain components, and 

M = [~x~, ~ . ,  ~zz, ~.~, ~ z ,  ~x.]~ (5) 

are the stress components, [a] is a 6 x 6 symmetric compliance matrix with 21 independent 
components ai~ (i, j = 1 -  6) and [c] is the corresponding stiffness matrix with components cij 
(i,j = 1 - 6 )  and is such that [a] = [c] - t .  In Eqs. (4) and (5), the superscript T indicates the 
transpose of the matrix. 

2.3 Compatibility conditions 

~37;,~ OTrz = 0 
~y Ox 

~2~ x ~2ey ~27x r 
#y--T + ~x2 = Ox ~3y 

(6) 

2.4 Boundary conditions on y = y(x) 

a~  cos (n, x) + o-~y cos (n, y) = t~ 

a~r cos (n, x) + ayy cos (n, y) = t r (7) 

a~  cos (n, x) + ar~ cos (n, y) = tz 

where cos (n, x) and cos (n, y) are the direction cosines of the outward normal, n, of the boundary 

curve y = y(x). 

3 Analyt ical  method 

Because the problem is linear, we can express the total stress field as the sum of the following three 

stress fields: 

r = r + o8 + r  (8) 

In Eq. (8), ~r ~ is the given uniform stress field, and a~ is the particular solution of the stress field 
corresponding to the body force Fi in Eq. (1). This particular solution is required to satisfy the 

compatibility condition (6). One such particular solution is that corresponding to gravity which 
has been studied exclusively elsewhere [7], [8]. Finally, a~ is the homogeneous solution of Eq. (1) 
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which can be expressed in terms of three analytical functions as follows [7], [9]: 

ah~ = 2 Re [#12(~1'(Z1) ~- #22~2t(Z2) "-~ #32~3~[I'3'(Z3)] 

crhy = 2 Re [~l'(za) + ~2'(zz) + 23~3'(z3)] 

(Zhy = --2 Re [#z~z'(z~) + #202'(zz) + #32~(/i3'(z3)] 

0"h= = 2 Re [#121~l'(zl) + #222~2t(Z2) -]- #3~3'(Z3)] 

trh~ = --2 Re [21~ ' (z l )  + 22~2'(z2) + ~3'(z3)] 

2 
a)~ -- Re {[a13#12 -b a23 - -  a3421 q- a35#121 -- aa6#t] ~1'(zl) 

a33 

-~- [1/13#22 + a23 -- a3422 q- a35#222 --  a36#2 ] ~2'(z2) 

-1- [1/1323#32 q- 1/2323 -- 1/34 -t- a35#3 -- a36#323] ~3'(z3)}.  

E. Pan and B. Amadei 

(9) 

In Eq. (9): (i) #l,  #2 and #3 are complex numbers with positive imaginary parts. These 
numbers  and their respective conjugates are the roots of the following equation: 

14(#) 12(#) -- /3z(#) = 0 

with 

/2(#) = 

13(#) = 

1 4 ( # )  = 

(10) 

fl55# 2 - 2fl45# + fl44 

i l l5#  3 --  (fl14 -t- fl56) #2 nt - (fl25 -~- fl46) # --  fl24 (11) 

f i l l #  4" - -  2fl16# 3 -F (2ill 2 + fl66) #2 - -  2fl26# d- fl22. 

flij (i, j = 1 -  6) are related to the elements aij of matrix [a] in Eq. (2) as follows: 

fl~i = aij - a~aaja/aaa (i , j  = 1, 2, 4, 5, 6). (12) 

(ii) 21, 22 and 23 are such that 

. - - .  /3(#3) 21 = - 13(#1) 2z = - 13(#2). 23 = - - - .  (13) 
/2(#1)' /2(#2)' /4(#3) 

(iii) ~k'(Zk) (k = 1, 2, 3) denote the derivatives of three analytical functions ~k(Zk) with respect 
to the variable Zk = X + #kY where x and y are the coordinates of the point  in the anisotropic 
medium at which the stresses are calculated. The three functions @k(Zk) must  satisfy the traction 
conditions along the boundary  curve y = y(x). Following a procedure similar to that  used by Pan 
and Amadei  [7], these traction conditions can be expressed as follows: 

2 Re [~1(zl) + ~z(z2) + 23t~a(Z3)] = ~ [ty --  (0"~ p -I- O'y0y) Xt(S) -t- ((75 q- O'x5 ) y'(s)] ds (14) 
0 

2 Re [#1~l(zl) + #2~2(z2) + #32aq153(za)] i [ - t x  + P = (axr + a;r)o x'(s) - (a~  + a~ y'(s)] ds (15) 
0 

2 Re [21(.bl(zl) + 22@2(z2) + @3(z3)] = f [--tz + (a~= + ~;~ x'(s) -- (trP~z + a ~  y'(s)] ds (16) 
0 

where s is the arc-length along the curve y = y(x). x'(s) and y'(s) are the total derivatives of 
x and y with respect to s, respectively. 
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The determination of the three functions t ~ k ( Z k )  and their derivatives depends mainly upon the 
geometry of the boundary curve y = y(x). As shown by Pan and Amadei [7], these functions can 
be determined using a numerical conformal mapping method [10] and an integral equation 
method [11]. Three new analytical functions ~k (k = 1, 2, 3) are introduced such that 

Nk'(~k) = r Zk'((k) (k = 1, 2, 3) (17) 

where Zk = Zk(~k) (k = 1, 2, 3) are three conformal mapping functions that map the lower half 
planes bounded by zk = x(t) + #ky(t) onto the lower flat half planes Im (k < 0 (k = 1, 2, 3) [7]. In 
Eq. (17)~ ~k'(~k) and Zk'((k) are the derivatives of ~Yk and Zk with respect to (~. Let tk be the 
boundary value of (k, and following a procedure similar to that used by Pan and Amadei [7], it 
can be shown that the boundary conditions (14)-(16) lead to the following system of three 
singular integral equations that can be solved for the three functions q'k'(tk): 

bll ~1'("~1) + b ~  (/!Y2'(~2)t2t('gl)+ ~ ~  ~3'('t3)t3t("~1) 

--03 --o0 

hi2 f 7t2'(t2) t2'(tl) dtl + b13 f ~3'(t3) ta'(tl) 
+ ~ni tl - ~l ~ni tl - ~1 

+o~ +oo 

- -oo  

f~(z)2t'(zl) + ~1 f fl(t)tlt'(h)_ z~ dt~ 
+co  

(18) 

b21([-12t('~2) -.[- ~ ~llt('~l) tlt('c2) -]- ~ ~l13t(TY3) t3t(~2) 

- o ~  - o o  

b22 f (Pl'(tl) tl'(t2) dt2 + b2~ f ~'3'(ta)___t3'(tz) dt2 
4- ~ t2 -- Z2 ~ i  t2 -- Z2 

+oz  + ~  

f2(z)2t'(~2) + ~nit f fz(t)t__z_t'(t2)z z2-dt2 
+o0 

(19) 

--oo - o o  

b32 f kUl'(tl)____tl'(t3)dt3 + ba3 f 7'2'(t2)____t2'(t3) dt3 
q- ~E/ t3 -- Z3 ~ /  t3 -- 273 

+or  +~c 

- o ~  

f3(z)2t'(z3) + ~nil f f3(t)t3t'(t3)_ z3dt3 (20) 

+oo 

where the coefficients bij (i, j = 1, 2, 3) and the functions f(t) (i = 1, 2, 3) are given by Eqs. (A.1) 
and (A.2) in Appendix A. In Eqs. (18)-(20), z is a fixed point on the t [-0% +oo] axis and 
zk (k = 1, 2, 3) are fixed points on the tk (Im (k = 0) axes. t'(ti) and tk'(tj) (k, j = 1, 2, 3) are 
respectively the total derivatives of t and tk with respect to the variable tj [-0% + oc] and are 
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equal to 

Z/(tj) . Z/(tj) x'(t) + #ky'(t) (21) 
t'(tj) = x'(t) + #sy'(t)' tk'(tj) = Zk'(tk) " x'(t) + #jy'(t) 

where x'(t) and y'(t) are the derivatives of x and y with respect to t, respectively. 
The three integral equations (18)-(20) can be discretized and solved for the boundary values 

of the three analytical functions 7"k'(tk) by the method proposed by Sarkar et al. [13]. Then, the 
interior values of these analytical functions are calculated using the Cauchy integral theorem [11]. 
Finally, the stress functions q~k'(Zk) are obtained using Eq, (17) and the six stress components are 
determined using Eqs. (8) and (9). The infinite integrals appearing in Eqs. (19)-(21) are 
determined using an inverse mapping from the boundary of the ~k planes to the circumference of 
unit discs [7]. It is also noted that for these integrals to converge, the boundary curve (x(t), y(t)), 
the surface tractions and the body forces must be such that the following limits exist: 

limit [t~s'(t)l < 

limit Ix'(t)l < ~ ;  limit ly'(t)l < ~ (22) 
t - ~ - -  o~ t---, • ~ 

limit [a~x'(t)l < ~ ;  limit ]a~y'(t)l < ~ .  
t ~ •  t ~ + o o  

4 Generalized plane strain, plane and antiplane problems 

The half space with the geometry of Fig. 1 is assumed to be orthotropic in an n, s, t Cartesian 
coordinate system attached to planes of anisotropy in the medium. The orientation of that local 
coordinate system with respect to the global x, y, z coordinate system is defined by a dip azimuth 
fl and a dip angle @ as shown in Fig. 2. The t-axis is located in the xz plane. The constitutive 
equation in the n, s, t coordinate system is given by the following equation [9]: 

m 
8n 

~t 

7st ] = 

?.t ] 

_7.d 

m 
- 1 va. yr. 

0 0 0 
E, E~ Et 

Vns 1 vta 
0 0 0 

E. Ea Et 

Vnt Vat 1 
- -  0 0 0 

E. Ea Et 

1 
0 0 0 ~.,  0 0 

0 0 0 0 --1 0 
Gnt 

1 

Gna 
0 0 0 0 0 

aaa 

o-. 

fist 
(23) 

or in a more compact matrix form as 

[el.at = [h] [a].~t. (24) 

In Eq. (23), E,, Ea and Et are, respectively, Young's moduli in the n, s and t directions, re- 
spectively. G,,, Gnt and Gst are, respectively, the shear moduli in planes parallel to the ns, nt and st 
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sA  
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S Y M M E T R Y  

j - 7  t/ 

\ 

Fig. 2. Orientation of planes of symmetry (i.e. the local 
n, s, t coordinate system) with respect to the global x ,  y, z 

coordinate system 

planes, respectively. Finally, vij (i, j = n, s, t) are Poisson's ratios that characterize the normal 
strains in the symmetry directionsj when a stress is applied in the symmetry directions i. Because 
of symmetry of the compliance matrix [h], Poisson's ratios v u and vii are such that vi;/E~ = vii/E ~. 
Therefore, nine independent elastic constants are needed to describe the deformability of the 
material in the local n, s, t coordinate system. 

For known orientations of the planes of anisotropy with respect to the x, y, and z axes, the 
compliance matrix [a] of Eq. (2) in the global (x, y, z) coordinate system can be obtained by using 
second order tensor coordinate transformation rules [9], [14]. Actually, a linear relationship exists 
between the elements of matrix [a] in Eq. (2) and the elements of matrix [hi in Eq. (24), which can 
be expressed as 

[a] = [Q]r [h] [Q] (25) 

where [Q] is a 6 • 6 matrix given in Appendix B. 
Because of this linear relationship, one can show that the total stresses in their dimensionless 

lbrm depend on the following eight dimensionless quantities: 

E~ E, E~ E~. E, (26) 
E~-- ; --Et ; v~,; yr,; vt,; G~ ; G,,t ' G,~" 

If the medium in the local (n, s, t) coordinate system is transversely isotropic in one of the three 
ns, nt or st planes, only five independent elastic constants E, E', v, v' and G' are needed to describe 
the deformability of the medium in the n, s, t coordinate system where: (i) E and E' are Young's 
moduli in the plane of transverse isotropy and in the direction normal to it, respectively, (ii) v and 
v' are Poisson's ratios characterizing the lateral strain response in the plane of transverse isotropy 
to a stress acting parallel and normal to it,'respectively, and, (iii) G' is the shear modulus in planes 
normal to the plane of transverse isotropy. Again, for this case, the total stresses in their 
dimensionless forms are found to depend on the following four dimensionless terms: 

E G 
. . . . .  (27) E "  v; v ,  G" 

It is obvious that the total stresses in their dimensionless form also depend on (i) the 
orientation angles fl and ~, of the planes of anisotropy with respect to the x-, y- and z-axes of 
Fig. I, (ii) the coordinates of the points at which the stresses are calculated, (iii) the geometry of 
the surface morphology, and (iv) the relative magnitudes of the surface tractions, body forces, and 
the uniform far-field stresses. Equations (8) and (9) show that, in general, at each point in the half 

space, the stress field is three dimensional and the principal stress components are inclined with 

respect to the x, y and z axes. 
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The generalized plane strain solution presented above takes a simpler form for orthotropic 
and transversely isotropic materials with planes of elastic symmetry normal to the z axis of Fig. 1. 
This takes place (i) when the dip azimuth fl in Fig. 2 is zero and the dip angle ~b varies between 
0 and 90 degrees or (ii) when fl and ~ are equal to 90 degrees. For  those cases the generalized plane 
strain solution reduces to a plane strain solution with 

C46 ~ C56 : C4i -~- C5i ~- 0 

fl46 = f l56 = f14, = f15' ~--- 0 

13(#) = 21 = 22 =/~3  = 0 

for i = 1,2,3 

for i =  1,2,3 (28) 

and the problem of finding the total stresses can be decomposed as the sum of two uncoupled 
problems: 

(i) a plane problem for which the stress components are equal to 

(29) 

axe, = 2 Re [#12~1'(zl) + #22~b2'(z2)] + a~P~, + cr~ 

err = 2 Re [r + ~2'(z2)] + a~'r + aoy 

a~,, = - 2  Re [#1~1'(zl) + ,u2~b2'(z:)] + a~Py + ~~ r 

- - -  Re {[a13#12 + a23 - a36#11 ~l'(z~) + [ala#22 + a2a - a36#21 '/i2'(z2)} + a~= + ao  
2 

a33  

where #1 and #2 are the roots of 14(#) = 0 in Eq. (11), and ~k'(Zk) are related to ~Pk'(~k) (k = 1, 2) 
through Eq. (17). The boundary values of the latter functions ~ l ' (q )  and ~2'(t2) are obtained by 
solving the two integral equations (18) and (19) with b u andfi(t) defined in Eqs. (A.4) and (A.5) in 
Appendix A. 

(ii) An antiplane problem for which the total stress components are equal to 

a~,z = 2 Re [#r + ~r~P= + o'~ 

%= = - 2  Re [~3'(z3)1 + o-rP= + O'~ 
(30) 

Similarly, #3 is the root  of/2(#) = 0 in Eq. (11), and ~a'(z3) is related to ~I/3t((3) through Eq. (17). 
The boundary values of the latter function ~3'(t3) are obtained from the integral equation (20). 

5 Surface morphologies 

The half-space's surface morphology is assumed to be smooth and to be expressed in parametric 
form as follows: 

x(t) = t ( - o o  < t < + o0) 

s (31) 
y(O = E y,(t) 

i=1 

with 

ai2bl 

yi(t) = (t - xi) 2 + ai 2" (32) 
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Equations (31) and (32) correspond to the geometric superposition of i = 1, N symmetric ridges 
or valleys x(t), y~(t) centered at x = x~. If  b~ is positive, Eq. (32) corresponds to a ridge with height 
b~ (see Fig. 3 a for al/b~ = 1). If  b~ is negative, Eq. (32) corresponds to a valley with depth Ib~[ 
(see Fig. 3 b for al/b, = - 1). The parameter  at controls the lateral extent of each ridge or valley 

with inflection points located at x = x~ + a~/]/~, y = 0.75b~ at which the slopes are equal to 

! 3 b l  ~/3/(Sad [7]. Thus, any given smooth  morphologies can be expressed by choosing different 
positive or negative values of a~, b~ and x~ for i = 1, N. As an example, Fig. 4 shows the geometry 

(in dimensionless form) of three symmetric valleys with N = 1, x 1 = 0, and al/b 1 = - 2 ,  - 1, and 
-0 .5 .  The respective slopes at the inflection points of the valleys are equal to • 0.32 (18.0~ • 0.65 

(33.0~ and _4-1.30 (52.4~ 

xi-ai/X'~ xi xi+ai/XI3 (a) 
> 

X 

! Y  

xiai/'x[3 l xi+ai/"~ 
J Xi ~ , ~ " , J @ ~ 7  >X 

Fig. 3. Symmetric surface morphologies centered at x = x~. a A symmetric ridge of height bi with a~/b~ = 1, 
b a symmetric valley oftdepth Ibil with a~/b~ = -1 

y/Ibll 

% / b 1 ~  

Fig. 4. Symmetric valleys with x~ = 0, and al/b~ = -2 ,  - 1  and -0.5 

> 

x/Ibll 
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Re(z) 

0 1.0 2.0 

Re(z 1) 
I ~ I 

0 1.0 2.0 

1.0/q ~\~0~ ~ 

0 1.0 2.0 

1.5-  

i 
1.0 ~ �9 

1 ~  

r 

Jl 
1.0 ~ 1.0 

I 

1.5 

Fig. 5. Example  of mapp ings  1, 2, and  3 for k = I and  for the  symmetr ic  valley of Fig. 3b.  O the r  pa ramete r s  
are: dip az imuth  fl = 0 ~ dip angle ip = 45 ~ and  E/E' = G/G' -= 3, v = 0.25, v' = 0.15 

For the surface morphology defined in Eqs. (31) and (32), the mappings Zk = Zk(~k) 

(k = 1, 2, 3) which map the lower half planes bounded by Zk = x(t)  + #ky( t )  onto the flat lower 
half planes Im ~k < 0 (k = l, 2, 3) consist of three successive conformal mappings (Fig. 5): 

M a p p i n g  1." 

Zk ::::~ W k k =  1,2,3 

zk(t) + iAk (33) 
wk(t) -- - -oo < t < 

Zk(t) --  iAk 

with 

N 

zk(t) = t + I~k • ai2bi/(( t  --  xi)  z + ai 2) (34) 
i = 1  

maps the lower half planes bounded by Zk = x(t)  + #ky(t) onto irregular bounded domains Wk. In 
Eq. (33), Ak (k = 1, 2, 3) are complex constants chosen such that the mapping is conformal. The 
variable t in Eq. (33) can be replaced by a new parameter 0 that varies over a finite interval 
[--n/2, re/2] such that t = tan 0. Then Eq. (33) takes the following form: 

p(O) + iAk COS 0 n n 
W k ( O ) = p ( O ) _ i A k c o s O  k = 1,2,3; - - ~ < 0 < ~  (35) 
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with 

N ai2bl cos 3 0 
p(O) = sin 0 + Pk ~=~ (sin 0 -- x~ cos 0) 2 + ai 2 cos 2 O" (36) 

Mapping 2: 

W k ~ F ,  k =  1,2 ,3  

Fk = Fk(Wk) 
(37) 

maps the irregular bounded domains w, onto unit discs F,. This is done using a numerical 

conformal mapping  method as discussed in Trummer  [10] and Pan  and Amadei [7]. 

Mapping 3: 

Fk=>(k k =  1,2 ,3  

Fk(Wk) + 1 (38) 
~ = i - -  

F (wk)- 1 

maps the unit discs Fk onto the flat half-planes ~k. 
For  the morphology  defined in Eqs. (31) and (32), t'(tj) and tk'(tj) defined in Eq. (21) take the 

following forms: 

z;(tj) 
t'(tj) = 

1 - 2/~jq(t) 

Zf(tj) 1 - 2#kq(t) 
t , ' ( t j )  = - -  

Zk'(tk) 1 -- 2#jq(t) 

(39) 

with 

q(t) = ~ ai2bi(t - xi) 
~=1 [(t - xi)2~ a/ /212" 

(40) 

6 Numerical examples 

In the following numerical examples, stress concentration at the irregular surface of a half-space 
is analyzed. The half-space consists of either an isotropic or a transversely isotropic medium, and 

is subjected to a far-field horizontal stress a~ In the transversely isotropic case, the planes of 
transverse isotropy are assumed to be parallel to the z-axis of Fig. 1 (fl --- 0~ and the elastic 
constants of the medium are selected within the following restrictions [14], [15]: 

E , E ' , G ~ G ' > O  

0 < v < 1 (41) 
E 

1 - v -  2v '2 E~ > 0. 

Note  that  since the anisotropic solution presented in this paper  cannot  be reduced directly to the 

isotropic solution [7], a nearly isotropic material  (NI) with E/E' = G/G' = 1, v = 0.25, v' = 0.24, 
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and ff = 0 ~ is adopted. It  is also noted that  in Figs. 7, 9, and 10, only the right halves of the plots 
are presented because of symmetry.  

Figures 6 - 9  show how the stress concentrat ion (or normalized horizontal stress), c&x/a~ 
varies with the normalized horizontal distance x/lbtl along the surface of a symmetric valley with 
the geometry of Fig. 3 b. 

Figure 6 shows the effect of the dip angle, ~b, of the planes of transverse isotropy on the 
stress concentration. The medium's  elastic properties are such that  E/E' = G/G' = 3, v = 0.25, 
v' = 0.15, and the dip angle ~k = 0, 45, or 90 degrees. The nearly isotropic case (NI) is also shown 
for comparison. It  is clear from Fig. 6 that  near the central region of the valley (Ixl/Ibll _-< 0.5), the 
magnitude of the horizontal stress is usually higher than the magni tude of the far-field horizontal 
stress. The max imum value of ax~/a~ along the surface of the valley, defined here as the stress 
concentration factor (SCF), is greater than 3 for the transversely isotropic and nearly isotropic 
cases. Actually, SCF = 5.4, 3.3, and 3.4, respectively, for ~ = 0, 45, and 90 degrees, compared  to 
3.7 for the nearly isotropic case. Notice that  for ff = 45 degrees, the SCF is reached not at the 

center, but on the left-hand side of the valley (Ixl/Ibll = - 0 . 0 8 ) .  Figure 6 indicates that  in order to 
reduce the SCF, horizontal planes of transverse isotropy should be avoided. Also for non- 

horizontal planes of transverse isotropy, the SCF can be smaller than its value for the isotropic 
case. 

Figures 7 -  9 show the effect of the degree of anisotropy on the stress concentration. Again, 
the nearly isotropic case (NI) is included for comparison.  In Fig. 7, the medium's  elastic 
properties are such that  G/G' = 3, v = 0.25, v' = 0.15, ff = 0 ~ with E/E' equal to 1, 2 or 3. It  can 
be seen from this figure that  the three curves corresponding to E/E' = 1, 2, 3 nearly coincide with 

each other, which implies that the value of Young's modulus ratio does not  have much influence 
on the stress concentration (for instance, SCF = 5.2, 5.3, and 5.4, for E/E' = 1, 2, and 3, 

respectively, a slight increase with increasing E/E'). However,  these SCF values are significantly 
different from the value of 3.7 associated with the nearly isotropic case. In  Fig. 8, the medium's  

elastic properties are such that  E/E' = 3, v = 0.25, v' = 0.15, ~ = 45 ~ with G/G' equal to 1, 2 or 3. 
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Fig. 6. Variation of the stress 
concentration a~:,la~ along the 
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The material properties are such 
that E/E' = G/G' = 3, v = 0.25, 
v' = 0.15. The dip angle of the 
planes of transverse isotropy 
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stress distribution for the nearly 
isotropie case (NI) is also shown 
for comparison 
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This  f igure shows tha t  the va lue  of  the shear  m o d u l u s  ra t io  G/G' has a c lear  effect on  the stress 

concen t ra t ion .  F o r  example ,  the S C F  decreases  wi th  increas ing  G/G' (SCF  = 4.3, 3.7, and  3.3, for  

G/G' = 1, 2, and  3, respectively).  I t  is a lso in teres t ing  to  no te  tha t  the S C F  for the t ransverse ly  

i so t rop ic  case can  be la rger  than,  equa l  to, or  smal ler  t han  the S C F  for the  nea r ly  i so t rop ic  case. 

In  Fig.  9, the m e d i u m ' s  elast ic  p roper t i e s  are  such tha t  E/E' = G/G' = 3, v = 0.25, ~k = 90 ~ and  
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Figs. 7 - 9 .  Variation of the stress concentration ~/cr~ 
along the surface of a symmetric valley with x1 = 0 and 
al/bt = - 1 .  The transversely isotropic properties are such 
that G/G'=3, v=0.25 ,  v '=0 .15 ,  r  degrees, and 
E/E'= 1, 2, and 3 (Fig. 7), E/E'= 3, v = 0.25, v ' =  0.15, 
{k = 45 degrees, and G/G'= 1, 2, and 3 (Fig. 8), and 
E/E' = G/G' = 3, v = 0.25, ~ = 90 degrees, and v' = 0.15, 
0.25, and 0.35 (Fig. 9). The stress distributions for the nearly 
isotropic case (NI) are also shown for comparison 
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v' = 0.15, 0.25 or 0.35. This figure shows that  Poisson 's  rat io v' has little effect on the stress 

concentrat ion.  The SCF  increases slightly with Poisson 's  rat io v' (SCF = 3.4, 3.5, and  3.6, for 

v' = 0.15, 0.25, and 0.35, respectively), and is slightly less than the value of 3.7 associated with the 

nearly isotropic case. 

F igure  10 shows the effect of different surface profiles on the stress concentrat ion.  The 

medium's  elastic propert ies  are such that  E/E' = G/G' = 3, v = 0.25, v' = 0.15, and ~O = 90 ~ The 

surface morphologies  correspond to the three symmetric  valleys shown in Fig. 4 with 

a x/bl = - 2 ,  - 1 ,  and - 0 . 5 .  Figure 10 clearly indicates that  the geometry of the surface profiles 

has a great  effect on the stress concentrat ion,  and that  the SCF  increases significantly with 

increasing at~b1, corresponding to steeper valleys. F o r  instance, for at/b t = - 2, - 1, and - 0.5, 

SCF = 2, 3, and 6, respectively. 

Finally,  Fig. 11 shows the var ia t ion of the stress concentrat ion t&x/tr~ along a complex 

surface. The half-space's morpho logy  is obta ined by superposi t ion of N = 4 ridges and valleys 

of Eqs. (31) and  (32). The parameters  are al/y(O) = 1 for i = 1--4,  bt/y(O) = 0.8983, b2/y(O) 
= 1.2657, ba/y(O) = -2 .1186 ,  b4/y(O) = 1.343 8, x~/y(O) = O, x2/y(O)= 1.35, xa/y(O) = 1.6, and 

x4./y(O) = 2.1. Here, y(0) is the characterist ic height of the surface morpho logy  at  x = 0. The 
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medium's elastic properties are such that E/E' = 2, G/G' = 1, v = v' = 0.25, and the dip angle 
= 30 degrees. Figure 11 shows clearly that the variation of the stress concentration along the 

surface is opposite to the geometry of the surface morphology, that is, local depressions (mounds) 
correspond to higher (lower) stress concentrations. For example, at x/y(O) = 1.55 (depression), 
the stress concentration is 1.72, while at x/y(O) -- 0 (mound), the stress concentration is 0. 

7 Conclusions 

In this paper, an analytical method is presented to derive the stresses in an anisotropic half-space 
with a smooth and irregular surface consisting of the superposition of multiple long and 
symmetric ridges and valleys. The method overcomes the small amplitude morphology 
limitation associated with the perturbation method, and the isotropic and simple surface profile 
limitations related to the exact conformal mapping methods. The anisotropic half-space can be 
subjected to the combined effect of body forces, surface tractions, and uniform far-field stresses, 
which is an extension of the authors' previous results to the general case of body forces and 
far-field stresses. It is found that, in general, the stress field in the anisotropic haft-space is 
three-dimensional (i.e. generalized plane strain) with the principal stresses being inclined with 
respect to the ridge or valley axis. However, for materials with higher degrees of elastic symmetry, 
the generalized plane strain solution can be decoupled into plane and antiplane problems. 

As illustrative examples, the present solution was applied to find the stress concentration at 
irregular surfaces induced by a uniform far-field horizontal stress in transversely isotropic and 
isotropic media. It is found that while the half-space surface geometry and the orientation of the 
planes of material anisotropy can have a large effect on the stress concentration, the degree of 
material anisotropy has a lesser influence. For almost all the cases corresponding to symmetric 
valleys, the stress concentration factors are greater than 3, and can be as high as 5 or 6 if the 
far-field stress is parallel to the planes of transverse isotropy or if the surface morphology 
becomes steeper. For complex surface morphologies, the variation of the stress concentration 
along the surface is usually opposite to the geometry of the corresponding surface morphology, 
that is, local depressions (mounds) usually correspond to higher (lower) stress concentrations. 

Appendix A 

Coefficients b~s and functions j~(t) in Eqs. (18)-(20): 

b l l  = ~ - ~1)  ( , h , h  - 1) - ( m  - - T : - - ~  ,~3(,~2 - ,h )  

b12 

b13 

b21 

b22 

b23 = 

b31 

b32 

b33 = 

(~2 -- //2) (~2/~'; -- 1) -- (~2 ~ - - - ~ 3  ~3()~2 -- ~2) 

(~"2 - ~3) 23(s163 - 1) - (~2 ~---Z"~'~3 23(22~a - 1) 

(~---~ - 1) ( ~  - ~ )  - (~-7 - ~ )  ~ ( ~  - - 7 - - ~ - ~  

( ~ i 3  - 1) ( E  - ~ )  - ( i 1  - ;~t) ~ ( m  - - - J = ~  

( ; ~  - 1) ~ ( E  - m )  - (~ -7~  - 1) ;.~--(~, - - - f = - ~  

( ~  - ~2) ; .3(E- - m )  - (~1~3 - 1) ( m  - - T - = ~ 2 )  

(~,  - 2~) ( ~  - ~ )  - ( ;~  - ~ )  ( ~  - - - - = ~  

( ~ i  - -  A2) ( ~ 1  - -  f12) - -  (A1 - -  ~ 2 ) ( ~ 1  ~ - - - - ~ 2  

(A.1) 
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f i ( t )  = [~'~2(2223 --  1) --  (~2 ---y-=-~a) ,~223] u(t) + (2223 --  1) v(t) -- (~2~---f-~)~3w(t) 

fz(t) = [~-~(212~ --  1) --  (~a ---'S-~-fi~3 21231 u(t) + (2~23 --  1) v(t) -- (~----~--~3 23w(t) 

f3(t) = [~-~(3~1 - -  "~2) - -  ~.l(~x ~ - ' ~ 2  ] u(t) + (~1 - -  )~2) o(t) - -  (~ t  ~ - - - ~ - ~  w(t) 

where  

u(t) = ty(t) s'(t) - (~P + a~ x'(t) + (aPx~ + a~ y'(t) 

v(O = t~(t) s'(t) -- (aPxy + (roy) x'(t) + (aPex + a:r ~  y'(t) 

w(t) = tz(t) s'(t) - (a~z + a; ~  x'(t) + (CrPxz + a~ y'(t). 

If  there  is a p lane  of  s y m m e t r y  n o r m a l  to  the z axis, Eqs.  (A.1) and  (A.2) reduce  to  

b i i  = # i  - / q ~ ,  

b 2 1  = ~ 2  - -  ~t--T, 

ba 1 = #~ - ]./2, 

and  

f i ( t )  = ---fi-~u(t) -- v(t) 

f2(t) = ---fi-[u(t) -- v(t) 

f3(t) = --(~1 ----]---~2 w(t). 

b12 = #2 - ~2 ,  b13 = 0 

b22 = #1 - ~-T, b23 = 0 

b32 = O, b33 = 0 

E. Pan  and B. Amadei  

(A.2) 

(A.3) 

(A.4) 

(A.5) 

Appendix B 

The e lements  of the ma t r i x  [Q] in Eq. (25) are  

-- l l  2 m l  2 r/12 

/22 m22 /122 

/32 m32 n32 

1213 m2m3 n2n3 

131i m3ml nanl 

1112 mira2 nin2 

where  li, mi, and  nl are 

i.e., 

m 
2 m i n i  2n l l l  2 / imi  

2m2n2 2n2/2 2/2m2 

2m3n3 2n313 2/3m3 
(B.1) 

m2n3 + man2 n213 + n312 12m3 + 13m2 

rain3 + m3nl nil3 + n311 lira3 + lami 

rain2 + m2na nil2 + n21i llm2 + lzmi 

the d i rec t ion  cosines of  the n, s, t axes in the g loba l  x, y, z c o o r d i n a t e  system, 

ll = cos (n, x) ml = cos (n, y) nl  = cos (n, z) 

12 = cos (s, x) me = cos (s, y) nz = cos (s, z) 

13 = cos (t, x) m3 = cos (t, y) n3 = cos (t, z). 

(B.2) 

By using the d ip  a z imu th  fi and  the d ip  angle  ~k as shown  in Fig.  2, Eq. (B.2) can be expressed  as 

11 = sin r cos fl mi = cos ~b ni  = sin ~k sin fl 

12 = - c o s  r cos fi m2 = sin ~O n2 = - c o s  ~ sin fl (B.3) 

13 = - s i n  fl m3 = 0 n3 -- cos ft. 
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