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Abstract. The edge function method, which involves the use of analytic solutions to model field behavior in 
the various parts of an elastic region, is applied to the analysis of a finite anisotropic plate with a single crack. 
Analytical solutions for the stress singularities at each crack tip facilitate the inexpensive calculation of accurate 
values of the stress intensity factors. A boundary Galerkin variational principle is used to match the boundary 
conditions. The method is applicable to isotropic and anisotropic materials and is demonstrated for a number of 
fracture problems involving variation of the crack position, crack orientation and material orientation. For the 
range of geometries examined in this paper, the calculated values of the stress intensity factors do not show a major 
dependence on the material anisotropy. The formulation of the method makes it easily applicable to the study of 
the interaction of several cracks and also to a limited study of crack propagation or damage development in a 
composite laminate. 

1. Introduction 

Applications of composite materials continue to increase and the associated fracture problems 
occupy the attention of many researchers. In some cases the composite may be modeled 
as a finite anisotropic plate while in other cases such a plate can be considered as a basic 
building block for a laminated structure. In either instance the analysis of such plates provides 
a valuable insight into the behavior of composite structures. Such an analysis is required to 
supplement the work already performed for isotropic plates and also to examine the effects of 
a finite boundary compared to the well documented results for the infinite case. 

This paper describes the use of the edge function technique to study the stress intensity 
factors of a crack in a finite anisotropic plate. The edge function method involves the use 
of analytical solutions to model the field behavior in various parts of the domain under 
investigation. The essence of the edge function approach is the approximation of the solution 
of a boundary-value problem by a linear combination of solutions of the field equations. A set 
of solutions is generated which can model arbitrary effects on each boundary (edge functions) 
and which exhibit rapid decay away from that boundary. Singular solutions corresponding to 
vertices, cracks, holes and concentrated loads are also included to provide a rapidly convergent 
analytical solution. The edge functions and singular solutions are based on the complex 
variable formulation. The unknowns in the linear combination are obtained from a system of 
equations which follows from the approximation of the boundary conditions by a boundary 
Galerkin energy method. 

Dwyer [ 1 ] gives a review of edge function work and presents accurate solutions for a range 
of singular problems. These include problems with mixed boundary conditions, singular loads 
and elliptical cutouts as well as arbitrarily oriented cracks. The method is particularly well 
suited to solving crack problems since an analytical approach is used to model the singularities, 
which requires much less computational time than the conventional numerical methods such 
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as finite elements or boundary elements. The accuracy of the results in the edge function 
analysis makes it an appropriate tool for an extensive parametric study of crack behavior 
as crack angle, crack position and fibre orientation are modified. Futhermore, it is possible 
to combine the edge function method with other standard methods such as finite elements, 
wherein the singularity is modeled by edge functions and far-field behavior is modeled by 
finite elements. The model can also handle isotropic data as a special case simply by perturbing 
the material constants by a very small amount and the solution has been shown to be highly 
stable for such perturbations. 

The next section provides a brief review of existing work. That is followed by a summary 
of the complex variable formulation of anisotropic elasticity and a description of the edge 
function representation of the solutions of the associated boundary value problems. The 
boundary-Galerkin method is then described, followed by the formulae for stress intensity 
factors. Numerical results are then presented in order to illustrate the accuracy and efficiency 
of this new method and also in order to examine the influence of crack orientation, material 
orientation and proximity of the boundary on the stress intensity factors. The final section 
presents some conclusions and discusses possible extensions of the current work. 

2. Review 

Much of the work performed on the fracture of anisotropic plates has utilized the finite element 
method. The method has been augmented in many ways to include a special element to deal 
with the crack singularity. Pian et al. [2] developed a hybrid finite element formulation and 
Mandell et al. [3] used this technique in studying stress intensity factors in anisotropic single 
edge notched, double edge notched and double cantilever beam fracture toughness specimens. 
Foschi and Barrett [4] used conforming isoparametric elements and a singular displacement 
field around the crack in an anisotropic plate. Tong [5] used a hybrid finite element approach to 
solve crack problems in a plate with rectilinear anisotropy. Soni and Stern [6] used a reciprocal 
work contour integral method to calculate the intensity of singular stress states at cracks in 
orthotropic plates but used the finite element method to model the field behavior, while Atluri 
et al. [7] obtained stress intensity correction factors for angle-ply laminates using the finite 
element method. 

The boundary integral equation method has also been widely used. Snyder and Cruse [8] 
obtained numerical results for center-cracked and double-edge cracked finite width tension 
specimens using material properties representative of a family of advanced fiber reinforced 
composite laminates. Karami and Fenner [9] and Blandford et al. [10] also used the boundary 
integral equation method, while Cruse and Wilson [11] combined the latter method with the 
finite element method. 

In addition to the above, some other numerical techniques have also been applied. Bowie 
and Freese [12] calculated the stress intensity factors for the plane problem of a central crack 
in a rectangular sheet of orthotropic material using an extension of the modified mapping 
collocation method [13]. Gandhi [14] investigated the problem of an inclined crack in an 
orthotropic rectangular plate under tension, using a modified mapping collocation method. 
A recent paper by Yum and Hong [15] uses the same method for the mixed mode fracture 
problem, where an inclined crack parallel to the fiber direction is considered. They present 
stress intensity correction factors for a range of crack lengths, crack angles, material properties 
and plate aspect ratios. A similar study is provided by Gyekenyesi and Mendelson [16] for a 
rectangular orthotropic center-cracked plate. They also used a mapping collocation technique. 



Edge funct ion analysis 329 

Satapathy and Parhi [17] determined stress and displacement fields for the case of a crack 
situated symmetrically and oriented normal to the edges of an orthotropic elastic strip by using 
a reduction to Fredholm integral equations. 

Some very recent publications show that there continues to be much interest in the cracked 
anisotropic plate. Chen and Atluri [18] present a general two-dimensional finite element alter- 
nating method for the determination of weight functions for isotropic or orthotropic cracked 
structures subjected to mixed mode loading. Woo and Wang [19] use the boundary colloca- 
tion method to compute stress intensity factors for an internal crack in a finite anisotropic 
plate while Chen and Kudva [20] obtain stress intensity factors using a complex variable 
formulation in conjunction with a hybrid displacement finite element scheme. 

3. Complex potential formulation of generalized plain strain 

This section summarizes the formulation of the complex variable approach to anisotropic 
elasticity due to Lekhnitskii [21] and is included here for completeness. The modern subscript 
notation and the implied summation convention are adopted. In this paper, tensile normal 
stresses are taken to be positive. 

Consider a cylindrical linearly anisotropic body which is deformed by body forces and 
surface tractions which act in a plane normal to the generators but do not vary along the 
generators. The deformation of the body is described in an (Xl, x2, x3) Cartesian coordinate 
system where the x3-axis is parallel to the generators. The body is assumed to deform under 
a condition of generalized plane strain in the (Xl, x2) plane. In the (Xl, x2, x3) coordinate 
system, the components of displacement and strain are 

ui = u i ( x l ,  x2) (1) 

and 

+ uj,i) (2) ~ij -- 2 ' 

respectively (with i, j = 1-3). The constitutive model for the anisotropic medium is described 
by Hooke's law which can be written in matrix form as follows 

= (3) 

or 

= Aa,  (4) 

where 

= (Cll, e22, C33, 2C23, 2e13, 2e12) T 

are the strain components and 

o = (O-ll ~ 022 ~ 033 ~ 023 ~ o13 ~ o12) T 

are the stress components. A is a (6 x 6) symmetric compliance matrix with 21 independent 
components a i j ( i , j  = 1,6) and C is the corresponding matrix of elastic parameters with 
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components cij(i, j = 1,6) and is such that C =A -1 . The stresses must satisfy the equilibrium 
equations given by 

,r~j,j + f~ = 0, (5) 

where fi (i = 1-3) are the components of the body force vector _f. In general, a particular 
integral can be developed to model the body force. The boundary conditions can then be 
modified to yield a boundary value problem with zero body forces [1]. In this case, it follows 
from Lekhnitskii [21 ] that the stresses and displacements have the following complex potential 
representations 

3 

aij = Re ~ sijkq~(Zk) 
k = l  

(6) 

and 

3 

= Re ~ P i k ~ k ( z k ) ,  u i  

k = l  

(7) 

where Re denotes the real part of a complex function and O~(zk)(k = 1,2, 3) denote the 
derivatives of three analytical stress functions Ok(zk) of the variable zk = x~ + #kxz where 
Xl and x2 are the coordinates of the point in the anisotropic medium at which the stresses 
and displacements are calculated. The parameters #k(k = 1,2, 3) are complex numbers with 
positive imaginary parts and are the roots of a characteristic equation of the form [21] 

c~# i = 0. (8) 

i=1 

The coefficients, sijk, Pik and ci, in (6), (7) and (8) respectively, are functions of the 
compliance components aij (i, j = 1-6). If the body has a plane of symmetry normal to the 
generators (x3-axis), it can be shown that the body deforms in aplane strain manner and that 
the displacement and stress components depend on ~1(zl ) and ff2(z2) only. 

Representations (6) and (7) are sufficient also for the case when two or three of the roots of 
(8) coincide e.g. isotropic materials. It was found that formulae (6) and (7) are highly stable in 
the neighborhood of such materials and that there is no need to deal with such cases separately. 
Numerical solutions to such problems can be obtained by perturbing the elasticities slightly 
as shown by Grannell and Quinlan [22]. 

4. Potential function representation 

Finite polygonal regions deforming in plane strain, such as the one shown in Fig. 1, are 
considered. The regions may contain cracks and circular or elliptical holes. In the edge 
function method, for a given polygonal region, the functions ffk(zk) (k = 1,2) appearing in 
(6) and (7) are expressed as follows 

N Mn 

F_, Z 
n = l  m = l  

(9) 
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Fig. 1. A finite polygonal region with an internal crack and cavity. 

where qSk~ (zk) are analytic functions which satisfy the homogeneous form of the equilibrium 
equations (5) and Ak~ are arbitrary constants which must be chosen to satisfy the boundary 
conditions of the region as well as possible. The rationale of the method is to choose functions 
~bk~ (zk) which are capable of representing the solution in the neighborhood of critical parts 
of the region boundary such as straight line segments, angular comers (vertices), cracks and 
interior cavities. In (9), N is the number of such critical parts and Mn is the number of 
potential functions associated with critical part n. In general, the solution for each critical part 
is an infinite series truncated at Mn terms. 

The notation (Zl, z2) is used, in this section, to denote a local set of axes attached to 
each critical part n = 1, N relative to which the potentials ~bk~(zk ) are defined. The notation 
#k(k = 1,2) denotes the roots of (8) relative to the local set of axes. The equations of 
anisotropic elasticity are form-invariant under rotation of axes. The formula relating the roo t s  
of (8) to those relative to a rotated system of axes is given in Lekhnitskii [21]. 

4.1. EDGE AND VERTEX FUNCTIONS 
In this section, particular forms of the potentials ~bk~ (zk) associated with each critical part of 
the boundary of the region of interest are described. These forms are used to model arbitrary 
displacements or tractions on each straight line edge or cavity edge of the region and are 
termed edge functions. System matrix stability considerations require that each edge function 
displacement and traction field decays away from the boundary with which it is associated. 
Singular solutions which satisfy homogeneous boundary conditions in the neighborhood of 
a vertex are included in the representation of the approximate solution in order to accelerate 
convergence. Such solutions are termed vertex functions. 

4.1.1. Line edge functions 

Consider the finite polygonal region of Fig. 1. Let (z l ,z2)  be a local coordinate system 
attached to one of its line edges of length a. The z 1-axis is directed along the edge and the 
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x2-axis points into the interior of the region. The origin of the local coordinate system is at 
one end of the edge. For edge number n the edge function complex potentials are [1] 

qSk~n(Zk) = eim*k; k = 1,2, (10) 

where 

27rM 
m -  - - ;  M = I , 2 , . . . , M ~ .  

a 

The displacements and stresses computed by combining (6), (7), (9) and (10) decay expo- 
nentially away from the edge into the interior, are periodic in xl with period a, and reduce 
to trigonometric polynomials on the edge. The higher edge function harmonics decay rapidly 
away from each edge and hence contribute to the stability of the system matrix. 

The potentials (10) must be supplemented by potentials with two further degrees of freedom 
in order to model arbitrary (aperiodic) effects on each edge. In particular, the auxiliary 
potentials must yield displacements/tractions which are non-zero at x 1 = 0 and x 1 = a. One 
choice for such auxiliary potentials is given by [1] 

m 
C k . ( z k )  = = z k ,  m = l , 2 , . . . , M G  k 1,2. ( l l )  

These functions are known as polar functions and are defined with respect to an origin at the 
center of the region. 

4.1.2. Cavity and crack edge functions 

Consider now elliptical cavity, n, in the polygonal region of Fig. 1 with major and minor 
semi-axes, a and b respectively. Let (xl, x2) be a local coordinate system attached to that 
cavity with origin at the center of the cavity. For the cavity of Fig. 1, the complex potentials 
are given by [21] 

m G (zk) = ~k , r a =  1 ,2 , . . . ,Mn;  k = 1 , 2 ,  (12) 

where 

~ = (a - i#kb) 
(13) 

The potentials (12) are based on a conformal mapping of the exterior of the ellipse onto that of 
the unit circle. That branch of the square root in (13) is taken which ensures decay away from 
the elliptical edge. The tractions corresponding to (12) are self-equilibrated on the elliptical 
edge.The potentials (12) reduce to trigonometric polynomials in 0 where 0 = arg(~) on the 
edge. 

Crack edge functions can be obtained from the cavity edge functions simply by setting 
b = 0 in (13). The square root singularity at the crack tips may be seen by examining the 
derivatives of ¢~(zk)  with respect to zk, e.g. 

m m  

q~k~£- --m~k ; r a =  1 , 2 , . . . , M G  k = l , 2 .  (14) 
, / ( 4  - °2) 
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4.1.3. Vertex functions 

Consider now vertex, n, of the finite polygonal region in Fig. 1 and let (971, Z2) be a local 
coordinate system with origin at that vertex. Solutions of (5) which satisfy zero boundary 
conditions (displacement and/or traction) on each side of the vertex in Fig. 1 are sought in the 
form 

~k~(Zk) = Ekr~z}n; k = 1,2, (15) 

where Eln and E2n are complex constants. Imposition of the boundary conditions on each 
side of the vertex yields a 4 × 4 linear system of equations 

A(An)e_e_ = 0, (16) 

where e is the vector of real and imaginary parts of the constants Elm and E2,~ in (14). The 
existence of non-trivial solutions of (15) requires that 

IA(A )I = 0, (17) 

M which yields the set { k~, A2,. . . ,  A n } of exponents (both real and complex exponents occur). 
If Re(An) < 1, then the stresses are singular, as can be seen by substituting (14) in (6). 

5. The boundary Galerkin method 

The representation of the approximate solution of the boundary value problem has the form 
given by (6) and (7) where, according to (9), the complex potentials,/bk (zk), consist of linear 
combinations of edge functions, vertex functions and polar functions. Thus, the equilibrium 
equations (5) are satisfied a-priori if appropriate particular integrals are subtracted to yield a 
modified problem with zero body forces. The only remaining step is to determine the coeffi- 
cients appearing in the edge, vertex and polar function potentials from the boundary conditions 
of the boundary value problem. This is done using the boundary Galerkin method. 

The boundary Galerkin method is based on an abstract principle of virtual work, which is 
equivalent to the minimization of the strain energy error in the case of traction or displacement 
problems. The set of admissible displacements consists of the finite-strain-energy displace- 
ments which satisfy (5) with [ = _0 and from which rigid-body displacements are excluded. 
Let {hi, h2 , . . . ,  h N} be a basis for a finite dimensional sub-space of the above set and let_t(h d) 
be the traction vector (computed from the displacement h_h_j using (2) and (3) on the boundary). 
The boundary of the region is denoted by I'. Tractions are specified on F~ and displacements 
on F,~ with I' = I't + F~. The boundary conditions are 

on r,  (18a) 

and 

u = g_ on I'~,, (18b) 

where the boundary values of traction and displacement are indicated by overbars. As shown 
by Dwyer [1], the system equations have the form 

G¢ = b, (19) 
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where 

(20) 

and 

bi= fFtT-.h-ids- fGt(h~).~ds. (21) 

In (19), c_ is the vector of the unknown coefficients in the edge, vertex and polar function 
potentials. Matrix G is symmetric and positive definite for displacement or traction prob- 
lems. 

Boundary values and errors of the approximate solution are computed at a number of 
equidistant points on each boundary. The errors are computed in terms of the differences 
(residuals) between the prescribed and computed quantities at each of these points. For 
convenience, the root mean square of the residuals is used as a concise measure of accuracy. 
Displacements and tractions on specified lines and curves are also computed as well as 
circumferential stresses on the surface of each cavity. 

The coefficients Ak~ (k = 1,2) in (9) are, in general, complex constants. Hence each 
value of m on each critical part, n, has four real constants associated with it, giving rise to 
four degrees of freedom (or unknowns) in the system of equations (19). This is true for polar 
functions and line and cavity edge functions. In the case of homogeneous vertex functions, 
the number of degrees of freedom depends on the number of vertex functions chosen in 
the particular representation for each vertex. Particular solutions which are used to modify 
the boundary conditions do not contribute to the total number of degrees of freedom. The 
relationship between the potential functions and the degrees of freedom is described in greater 
detail in Dwyer and Amadei [23]. 

6. Calculat ion of  stress intensity factors 

It is assumed that the crack propagates in a self-similar manner. The stress intensity factors 
for mode I and mode II crack propagation are defined 

KI - lim ~/2(Xl - a)a221xz=0, 

KII = lim ~/2(Xl -- a)ffl2lx2=O, 
X 1---+ O, 

(22) 

where (Xl, X2) are Cartesian coordinates relative to a system of axes with center at the middle 
of the crack with the xl-axis directed along the crack. It follows from (6), (12), (13) and (22) 
that, for crack, n, 

m n  

KI = - R e  + 
r n = l  

N~ 
kn - R e  E r a (  #lc~n ~ ) / , / - d  

= lm + 
m = l  

(23) 



Edge function analysis 335 

< W > 

TTT TT1 

I .... ...... ; 
-""""E 2 . "''''''"" .. '""" 

>×  

7- 

Fig. 2. A cracked anisotropic plate under uni-directional tension T. 

where o~,~ are the particular A~,~ in (9) which correspond to the cavity edge functions for 
crack, n. The above formulae apply to the crack tip at X l = a. Similar formulae apply to the 
tip at x 1 = - a. 

7. Numerical  examples  

In the examples presented here the material parameters are defined in terms of Young's moduli, 
shear moduli and Poisson's ratios in a global (x, y, z) coordinate system such that the x and 
z-axes are horizontal and the y-axis is vertical upwards. The compliances aij of matrix A in 
(4) are such that 

1 1 1 
al l  = Ell '  a22 = E2 '  a33 : E33' 

Y2I //31 //32 
a12 = -E ' - -2 '  a13 = - - ~ 3 '  a 2 3 - - E 3 '  (24) 

1 1 1 
a44 -- G23' a55 : GI3'  a66 : G12' 

where El,/~2 and E3 are Young's moduli in the 1, 2, 3 directions parallel to the x, y and 
z axes, respectively. The moduli Gt2, G13 and G23 are, respectively, shear moduli in planes 
parallel to the xy, xz  and yz planes. Finally, uij( i , j  : 1,2, 3) are the Poisson's ratios that 
characterize the normal strains in the symmetry directions i when a stress is applied in the 
symmetry directions j .  Because of symmetry of the compliance matrix A, Poisson's ratios uij 
and uj~ are such that uij/Ei = uj i /E d. 

Because of the theory of linear elasticity, the stresses depend only on ratios of elastic 
constants and ratios of geometric dimensions. Therefore, the geometric units used in the 
following examples are immaterial. In all cases the stress intensity factors are normalized 
with respect to the applied load T and with respect to the square root of half crack length 
(Fig. 2). 

The success of the edge function method for anisotropic fracture problems is well docu- 
mented (Dwyer [1], Dwyer and Amadei [24]). These references illustrate the applicability of 
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Table 1. Stress intensity factors for crack in 
anisotropic plate 

Kx K~I 

Foschi and Barrett [4] 0 .515  0.543 
Gandhi [14] 0.519 0.514 
Woo and Wang [19] 0.519 0.513 
efm 0.519 0.513 

the method for both traction and mixed boundary conditions. Extremely accurate solutions are 
obtained and stress intensity factors compare well with the literature. The first two examples 
here demonstrate such comparisons. 

Example 1 
This example is defined by the geometry in Fig. 2. In this first case / /  = W = 10 cm, 
a = 1 cm, d = 5 cm, 0 (crack angle) - 45 ° and ~ (material angle) = 45 °. The material 
constants are (in GPa) E1 = 48.265, E2 = 17.238, G12 = 6.895 and u12 = 0.29, which 
represent the smeared out properties of fiber-glass [14]. 

The problem was solved using just 51 degrees of freedom. All root mean square residuals 
were less than 1 percent of the applied load. This indicates that an extremely accurate solution 
has been obtained. Table 1 presents the current results (denoted 'efm') as well as those of 
several other researchers. The close agreement of the results is obvious. 

Example 2 
An example involving an isotropic material is included now to provide further comparison 
with the literature. In this case (refer to Fig. 2 ) / / =  8.484 cm, W = 2.828 cm, a = 1 cm, d = 
1.414 cm and 0 = 45 °. The edge function results and those of other researchers are presented 
in Table 2. 

Convergence of the solution in this case required a higher number of degrees of freedom 
than in the previous example. However it has been found in previous edge function work that 
convergence is faster on the crack surface than on the exterior boundaries. It is clear from 
the final results that the computed stress intensity factors closely match those reported in the 
literature. 

Example 3 
The variation of the stress intensity factors with respect to the orientation of the crack is 
considered in this example. The plate and crack dimensions are identical to those of Example 1 
and three types of material are examined. One material is isotropic. The second is Glass/Epoxy 
[15] with material properties (in GPa) defined by E1 = 48.27, E2 = 17.24, G12 = 6.9 and 
ut2 = 0.29 and the third material is Graphite/Epoxy [15] with material properties (in GPa) 
defined by Et  = 133.8, E2 = 9.58, G12 = 4.8 and u12 = 0.28. The material orientation is 0 ° 
in each case. 

The stress intensity factors are calculated for crack orientations varying from 0 ° to 90 ° and 
the resultant normalized mode I and mode II values are plotted in Figs. 3 and 4, respectively. 
The mode I factors are all at a maximum when the crack is perpendicular to the applied load 
and decrease smoothly to a minimum value of zero when the crack is parallel to the applied 
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Fig. 3. Variation, with crack orientation, of the normalized stress intensity factors K~/(Tv'~ ) for isotropic, 
glass/epoxy, and graphite/epoxy materials. The material angle c~ = 0 °. 
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Fig. 4. Variation, with crack orientation, of the normalized stress intensity factors A'u/(Tx/-E ) for isotropic, 
glass/epoxy, and graphite/epoxy materials. The material angle a = 0% 
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Table 2. Stress intensity factors for crack in isotropic 
plate 

Ka 

Cruse and Wilson [11] 0.728 0.590 
Karami and Fenner [9] 0.732 0.591 
Blandford et al. [10] 0.725 0.598 
Yum and Hong [15] 0.727 0.591 
efm (67 degrees of freedom) 0 . 7 1 5  0.572 
efm (99 degrees of freedom) 0 . 7 2 5  0.588 

load. The mode II factors are zero when the crack is perpendicular to the load and reach a 
maximum when the crack is oriented at 45 ° . They then decrease to zero again when the crack 
is parallel to the load. A comparison of Figs. 3 and 4 shows that both modes I and mode II 
stress intensity factors are equal when the crack is oriented at 45 ° to the applied load. This 
is of course the situation where both modes of fracture propagation are expected to be the 
same. It is also interesting to note that the effects of the anisotropy are almost negligible in 
this example. A convergence study of one of the cases here, involving the more anisotropic 
Graphite/Epoxy material, showed that both the mode I and mode II stress intensity factors 
stabilized to three decimal places when 71 degrees of freedom were used. 

Example 4 
This case concerns the calculation of stress intensity factors when the orientation of the 
material is varied. The plate and crack geometry are the same as in the previous example 
except that here the crack orientation is fixed at an angle of 45 ° to the applied load. The 
same materials (Glass/Epoxy, Graphite/Epoxy and isotropic) as in the previous example are 
used. 

The material orientation is varied from 0 ° to 90 ° and the resultant mode I and mode II 
stress intensity factors are plotted in Figs. 5 and 6, respectively. The isotropic results provide a 
set of reference values. Both mode I and mode II factors for the anisotropic materials attain a 
minimum when the material is aligned at 45 ° to the horizontal (material axes are parallel to the 
crack) and a maximum when the material is aligned at 90 °. The effects of the anisotropy can 
be seen in these results with greater variation being exhibited for the more strongly anisotropic 
Graphite/Epoxy material. 

Example 5 
In this final example the effects of the proximity of the boundary are considered by varying 
the position of the crack. The same geometric dimensions are used as in Example 1 and the 
material orientation and crack orientation are both kept at 0 ° to the horizontal. The Glass/Epoxy 
material defined above is used in this example as well as the case of the isotropic material. 

The position of the crack is moved from the center of the plate to a position where the crack 
tip is only a distance of 1.5 times the crack length from the right-hand edge of the plate. The 
variations of the stress intensity factors at the right most crack tip and left most crack tip are 
plotted in Figs. 7 and 8 for the isotropic material and the Glass/Epoxy material respectively. 
There is an obvious increase in the values as the crack tip approaches the boundary. The effect 
is slightly more pronounced in the case of the isotropic material. 
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Fig. 5. Variation, with material orientation, of the normalized stress intensity factors KI/(Tx/-ff ) for isotropic, 
glass/epoxy, and graphite/epoxy materials. The crack angle 0 = 45 °. 
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Fig. 6. Variation, with material orientation, of the normalized stress intensity factors I(n/(Tx/ra ") for isotropic, 
glass/epoxy, and graphite/epoxy materials. The crack angle 0 = 45 ° 
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Fig. 8. Variation, with distance to the plate edge, of the normalized stress intensity factors KI/(Tv/-ff ) at left and 
right crack tips for the glass/epoxy material. The crack angle 0 = 0 ° and material angle a = 0 °. 
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Table 3. Convergence of mode I stress intensity 
factors in Glass/Epoxy plate (~ = crack orien- 
tation) 

DOF I(~ (c~ = 0 °) K~ (~ = 45 °) 

47 1.082 0.545 
71 1.085 0.541 
95 1.086 0.540 

119 1.086 0.540 

For the case of the crack center at a distance of 2.5 times the crack length from the right 
hand edge, the convergence of the mode I values is presented in Table 3. The material is 
Glass/Epoxy and two crack orientations, with respect to the material, are considered. It is 
clear that in both cases the values stabilized after using 95 degrees of freedom. 

8. Conclusions 

The edge function method has been used to examine a number of issues related to cracks in 
finite anisotropic plates. Accurate values of stress intensity factors are obtained using a small 
number of degrees of freedom. Some special test cases have shown close agreement with 
other published results. 

Convergence of the method is influenced by the rate of decay of the line edge functions 
and crack edge functions away from their respective local axes. The faster the rate of decay 
the less perturbation induced on other boundaries. The edge functions decay most rapidly and 
hence do not create a significant disturbance on crack boundaries. This feature explains the 
more rapid convergence on the crack boundaries as distinct from the straight edge boundaries 
where the influence of crack edge functions from a nearby crack may be significant. Indeed it 
is found that several extra orders of line edge functions are required to model the effects on the 
edge closest to the crack tip in the cases where the crack is moved close to that boundary. 

The examples considered above suggest that the effects of the anisotropy are not very 
significant in determining values of stress intensity factors when the crack is far away from 
the outer boundaries and the material axes are horizontal. The Graphite/Epoxy material is 
strongly anisotropic but even in that case there is no major deviation away from the isotropic 
results. Some effects of the anisotropy are apparent however when the material orientation is 
varied. 

An interesting extension of the present work would be to examine the case of several 
interacting cracks. This analysis would be analagous to studying the effects of damage accu- 
mulation in a composite. Each crack would require its own set of crack functions, which 
would obviously increase the total number of degrees of freedom required to obtain an accu- 
rate solution. However this number would still be much smaller than that for conventional 
methods. This was shown in an example involving two cracks, which is presented in Dwyer 
and Amadei [24]. 

Another aspect of damage progression could be studied by modeling crack propagation. 
This could be achieved by using the stress intensity factors to determine the direction of 
propagation and then carrying out an edge function analysis of the new problem with the 
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crack at a more advanced position. The method is well suited to this type of  analysis since 
only new crack edge functions would be required and the remainder of  the model  remains 
the same. This is in contrast to the type of  extensive remeshing necessary in a typical finite 
element  analysis. A disadvantage of  the current program, however, is the inability to model  a 

curved crack which would constitute a more realistic form of  propagation. The model  is also 
limited at present to embedded cracks and an alternative formulation would be required to 

handle edge cracks. 
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