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Abstract. A new formulation of the boundary element method (BEM) is proposed in this paper to calculate stress
intensity factors for cracked 2-D anisotropic materials. The most outstanding feature of this new approach is that
the displacement and traction integral equations are collocated on the outside boundary of the problem (no-crack
boundary) only and on one side of the crack surfaces only, respectively. Since the new BEM formulation uses
displacements or tractions as unknowns on the outside boundary and displacement differences as unknowns on
the crack surfaces, the formulation combines the best attributes of the traditional displacement BEM as well as the
displacement discontinuity method (DDM). Compared with the recently proposed dual BEM, the present approach
doesn’t require dual elements and nodes on the crack surfaces, and further, it can be used for anisotropic media
with cracks of any geometric shapes. Numerical examples of calculation of stress intensity factors were conducted,
and excellent agreement with previously published results was obtained. The authors believe that the new BEM
formulation presented in this paper will provide an alternative and yet efficient numerical technique for the study
of cracked 2-D anisotropic media, and for the simulation of quasi-static crack propagation.

1. Introduction

The boundary element method (BEM) has emerged as a powerful numerical method which
has certain advantages over the finite element method. The BEM is particularly suited to cases
where better accuracy is required due to problems such as stress concentrations or where the
domain of interest extends to infinity. The most important feature of the BEM is that it only
requires discretization of the boundary rather than the domain.

Stress intensity factors are important in the analysis of cracked materials. They are direct-
ly related to fracture propagation criteria. The singularity of stresses near a crack tip is a
challenge to numerical modeling methods, even to the BEM. Previously, several methods
within the scope of the BEM have been suggested for handling stress singularities: The first
one is the Green’s function method [1]. This method has the advantage of avoiding crack
surface modeling and also gives excellent accuracy; it is, however, restricted to very simple
crack geometries for which analytical Green’s functions are available. The second one is the
subregional method [2, 3]. The advantage of this approach is its ability to model cracks with
any geometric shape. The disadvantage is an artificial subdivision of the original region into
several subregions, thus resulting in a large system of equations. The third approach is the
displacement discontinuity method (DDM) [4]. Instead of using the Green’s displacements
and stresses from point forces, the DDM uses Green’s functions caused by point dislocations
or point displacement discontinuities. This method is very efficient for crack problems in
infinite domains where there is no no-crack boundary. Unfortunately, it is not suitable for
finite domain problems, since the kernel functions in DDM involve singularities with order
higher than those in the traditional displacement BEM.
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162 E. Pan and B. Amadei

In recent years, the dual BEM [5–8] has been proposed for the study of cracked media.
Compared with the aforementioned first two methods, the dual BEM does not require the
artificial subdivision of the region or the Green’s functions corresponding to the crack. Com-
pared with the DDM, the dual BEM can be used to solve finite domain problems with high
order singularities on the crack surface only. To the authors’ knowledge, however, the dual
BEM has been applied only to isotropic elasticity problems [7, 9, 10]. Also, in the dual BEM,
elements and nodes are collocated on both sides of the crack surface, which then doubles the
number of the resulting algebraic equations along the crack.

In this paper, the authors proposed a new BEM formulation to calculate stress intensity
factors in cracked 2-D anisotropic materials. The new formulation is an extension of the dual
BEM and is such that the displacement integral equation is collocated on the outside boundary
only and the traction integral equation on one side of the crack surface only. No double elements
and nodes are required along the crack surface as compared to the dual BEM. The new BEM
formulation thus possesses the best attributes of both the traditional displacement BEM and the
DDM. Further, the hyper-singularity in the traction integral equation is handled by introducing
a new Gauss quadrature formulae which is very similar to the traditional weighted Gauss
quadrature but with a different weight. This new Gauss quadrature formulae is very accurate,
and can be used for any curved crack geometry as compared to the piecewise straight crack
geometry requirement for the dual BEM. For mixed mode problems, the decoupling technique
developed by Sollero and Aliabadi [2] is employed to avoid the hyper-singular integral along
the crack surface. The authors have also introduced a new set of crack tip elements which can
dramatically improve the accuracy of the numerical calculation. Examples of calculation of
stress intensity factors in infinite and finite anisotropic domains have shown that the proposed
new formulation is simple, accurate, and yet easily applicable to complex crack geometry
shapes.

2. Green’s functions for 2-D anisotropic elasticity

The complex variable function method has been found to be very suitable for the study of 2-D
anisotropic elastic media [11]. The Green’s functions for point sources in these media have
been studied by several authors, notably by Eshelby, Read and Shockley [12], Stroh [13] and
Lekhnitskii [11]. In the following, we present briefly the Green’s function solutions for point
forces in a 2-D infinite and anisotropic medium. The procedure is similar to the one used by
Lekhnitskii [11], Suo [14] and Pan and Amadei [15].

With three complex analytical functions fi(zi), one can, in general, express displacements
and stresses by

ui = 2 Re

2
4 3X
j=1

Aijfj(zj)

3
5 ;

�2i = 2 Re

2
4 3X
j=1

Lijf
0

j(zj)

3
5 ;

�1i = �2 Re

2
4 3X
j=1

Lij�jf
0

j(zj)

3
5 :

(1)
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In these equations, zj = x+ �jy; Re denotes the real part of a complex variable or function;
and �j(j = 1; 2; 3) are three distinct complex roots with positive imaginary part of the
following equation:

l4(�)l2(�)� l23(�) = 0; (2)

where

l2(�) = �55�
2 � 2�45�+ �44;

l3(�) = �15�
3 � (�14 + �56)�

2 + (�25 + �46)�� �24;

l4(�) = �11�
4 � 2�16�

3 + (2�12 + �66)�
2 � 2�26�+ �22:

(3)

In (3),

�ij = aij �
ai3aj3

a33
; (4)

for generalized plan strain problems, and

�ij = aij (5)

for plane stress problems (of monoclinic materials with the symmetry plane at x3 = 0). In
these two equations, aij are the elements of the compliance matrix.

Also in (1), the elements of matrix [L] are2
664
��1 ��2 ��3�3

1 1 �3

��1 ��2 �1

3
775 (6)

and the elements of the matrix [A] are

A1� = �11�
2
� + �12 � �16�� + ��(�15�� � �14);

A2� = �21�� + �22=�� � �26 + ��(�25 � �24=��) � = 1; 2;

A3� = �41�� + �42=�� � �46 + ��(�45 � �44=��);

A13 = �3(�11�
2
3 + �12 � �16�3) + �15�3 � �14;

A23 = �3(�21�3 + �22=�3 � �26) + �25 � �24=�3;

A33 = �3(�41�3 + �42=�3 � �46) + �45 � �44=�3:

(7)

In (6) and (7),

�1 = �
l3(�1)

l2(�1)
; �2 = �

l3(�2)

l2(�2)
; �3 = �

l3(�3)

l4(�3)
: (8)

For concentrated forces acting at the source point (x0; y0), the complex functions in (1)
can be expressed as [14]

fj(zj) =
3X

k=1

�1
2�

DjkPk ln(zj � z0
j ); (9)
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where z0
j = x0 + �jy

0; Pk(k = 1; 2; 3) is the magnitude of the point force in the k-direction;
and

D = A�1(B�1 + �B�1
)�1;

B = i AL�1;
(10)

where i =
p � 1; overbar means complex conjugate; superscript �1 means matrix inverse.

Substitution of (9) into (1) gives the following Green’s displacements:

U�

kl =
�1
�

Re

2
4 3X
j=1

AljDjk ln(zj � z0
j )

3
5 (11)

and Green’s tractions

T �

kl =
1
�

Re

2
4 3X
j=1

Llj
�jnx � ny

zj � z0
j

Djk

3
5 ; (12)

with nx and ny being the outward normal components of the field point.

3. The new boundary integral equations

The traditional displacement boundary integral equation is well-known, and can be expressed
as

cijuj(Y) + �
Z
�

T �

ij(Y,X)uj(X) d�(X)

=

Z
�

U�

ij(Y,X)tj(X) d�(X);
(13)

where summation convention over repeated indexes is implied; U�

ij and T �

ij are the Green’s
displacements and tractions given in (11) and (12); uj and tj are boundary displacements and
tractions; cij is a tensor whose elements depend on the geometry at point Y; � is the boundary
of the domain; and finally, a bar across the integral sign denotes the Cauchy singular integral.
Discretization of (13) gives a linear system of algebraic equations which can be solved for
the unknowns on the boundary. One important feature of (13) is that only a Cauchy type
singularity is involved, which can be handled easily by the rigid-body motion method. For a
cracked elastic medium as shown in Figure 1(a), however, (13) itself is not enough for solving
all unknowns along the outer boundary as well as along the two sides of the crack surface
because of the geometry singularity of the crack surface [16]. As mentioned before, the most
efficient method for solving such a problem is the dual BEM [7, 8].

In the dual BEM method, the displacement boundary integral equation (13) is applied to the
outside boundary �B and to one side of the crack surface �C+ ; the traction integral equation
(14) below (assuming that Y is a smooth point on the boundary) is then applied to the other
side of the crack surface �C� (Figure 1(a))
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Cracked 2-D anisotropic media 165

Figure 1. Geometry of a cracked 2-D anisotropic domain (a), and (b) its modelling with the quadratic boundary
elements.

0:5tl(Y) + nm(Y) =
Z
�

clmik T
�

ij;k(Y, X)uj(X) d�(X)

= nm(Y)�
Z
�

clmikU
�

ij;k(Y, X)tj(X) d�(X);
(14)

where nm is the outward normal of the boundary or crack surface; clmik are the components
of the stiffness tensor of the anisotropic medium; subscript prime followed by an index means
derivative; and the double bars across the integral sign denotes a Hadamard finite-part integral
[17]. This finite-part integral is very difficult to handle. Although different methods have been
suggested to handle such an integral [18], they usually require the evaluation of a limit value
of the integrand at the singular point, which is possible only for the case where the integrand
has a simple and exact-closed form expression. If a medium is isotropic and if one assumes
a piece-wise flat crack, the finite-part integral can then be carried out by a direct analytical
integration [7, 8].

In this paper, we introduce a new BEM formulation for handling cracked anisotropic
media. By contrast with the dual BEM for isotropic media, the new BEM does not require the
double discretization on the crack surface, while it can be used to calculate the stress intensity
factors as well as displacement and stress distributions in cracked isotropic and anisotropic
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2-D media. The equations in the new BEM are formulated in such a way which possesses the
advantages of both the traditional displacement BEM and the DDM.

In the new BEM formulation, we first apply the traditional displacement integral equation
to the outside boundary only, which results in the following equation (see Figure 1(b)):

cijuj(YB) +�
Z
�B

T �

ij(YB;XB)uj(XB) d�(XB)

+

Z
�C

T �

ij(YB;XC)(uj(XC+)� uj(XC�)) d�(XC)

=

Z
�B

U�

ij(YB;XB)tj(XB) d�(XB);

(15)

where �C has the same outward normal as �C+ ; the subscript B and C denote the outside
boundary and the crack surface, respectively (Figure 1). The kernel function T �

ij in the
second integral of (15), which is the Green’s traction caused by the point forces, is the
Green’s displacement caused by the point displacement discontinuities [4, 19]. Since the
above equation is undeterminate, we then apply the traction integral equation (for Y being a
smooth point on the crack) to one side of the crack surface only (Figure 1(b)):

0:5tl(YC) + nm(YC)

Z
�B

clmikT
�

ij;k(YC ;XB)uj(XB) d�(XB)

+ nm(YC) =

Z
�C

clmikT
�

ij;k(YC ;XC)(uj(XC+)� uj(XC�)) d�(XC)

= nm(YC)

Z
�B

clmikU
�

ij;k(YC ;XB)tj(XB) d�(XB);

(16)

where the second integrand is the Green’s traction caused by the point displacement discon-
tinuities. In deriving (15) and (16), we have assumed that the tractions on both sides of the
crack surface have the same magnitude but opposite sign.

Equations (15) and (16) are enough for solving the unknown displacements or tractions
on the outside boundary (YB 2 �B) and the unknown displacement differences on the
crack surface (YC 2 �C � �C+). This new formulation possesses the best attributes of the
traditional displacement BEM (Cauchy type singularity only!) and the DDM (displacement
jumps for crack modeling!). Since we have used the displacement differences, instead of the
displacements themselves along the crack, as unknown, no double elements or nodes are
required on the crack surface. It is also noted that because of the linearity, the superposition
method can be applied to the above integral equations to handle infinite domain and gravity
body-forces cases [20]. The remaining task is now the treatment of the singularities in (15)
and (16) and the crack tip modeling.

4. Treatments of singular integrals and crack tips

The Cauchy type singularity in the displacement equation (15) can be avoided by the rigid-
body motion method, which results in a row summation in the discretized form [20]. The
integrand on the right-hand side of (15) has only integrable singularity, which can be handled
easily by, for example, the bi-cubic transformation method [21].
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The traction equation (16), however, involves a finite-part integral. As mentioned earlier,
for isotropic materials with piece-wise flat crack assumption, the integral can be carried out
by directly analytical integration [7, 8]. For anisotropic media, however, the integrand is very
complicated and its analytical evaluation is impossible.Although the Taylor’s series expansion
method can be employed to regulate the singularity [7, 22], it requires some limit-value
evaluations of the integrand which are possible only when the integrand has an exact-closed
form expression.

In this paper, a weighted Gauss quadrature method [23] is employed to evaluate the finite-
part integral accurately. This method is quite similar to the classical Gauss quadrature [24]
and is very efficient. For the finite-part integral

I(f; s) ==

Z b

a

w(x)f(x)

(x� s)2 dx; s 2 (a; b); (17)

we first construct a set of polynomials which are orthogonal with respect tow(x)=(x� s)2, in
which w(x) is a non-negative weight function; From this set of polynomials, we then obtain
the following accurate quadrature formula

I(f; s) =
nX

j=1

gj;n(s)f(xj); (18)

where gj;n(s) are the weights with respect to the singular point s, and xj the corresponding
coordinates.

On the crack surface, some continuity conditions are required [7, 8]. These conditions can
be satisfied by using discontinuity quadratic elements [7, 8]. The node positions for these
kinds of elements are s = � 2

3 ; 0; 2
3 . For singularities at these three points, we construct the

weights and coordinates (w(x) � 1) following Tsamasphyros and Dimou’s procedure [23].
These weights and coordinates thus found have been tested for the following two finite-part
integrals:

=

Z
+1

�1

dx
(x� s)2 =

�2
1� s2 ; (19)

=

Z
+1

�1

(y2 � x2)�1=2 dx

(x� s)2 (y2 > 1)

=
s

(y2 � s2)3=2
ln

 
(y2 � s2)1=2 � s(y2 � 1)1=2

(y2 � s2)1=2 + s(y2 � 1)1=2

!
� 2(y2 � 1)1=2

(y2 � s2)(1� s2)
:

(20)

For both of these integrals, the absolute value of the difference between the exact, (19) and
(20), and the approximate (numerical quadrature (18)) values is less than 10�11.

In order to capture the square-root characteristics of the displacements near the crack tip,
we constructed the following crack tip element with tip at s = �1

ui =
3X

k=1

�ku
k
i ; (21)
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Figure 2. Different contour paths for J -integral.

where the subscript i denotes the components of the displacement and the superscript
k(= 1; 2; 3) denotes the displacements at nodes s = � 2

3 ; 0; 2
3 , respectively. The shape func-

tions �k were found to be

�1 =

"
5
3 �

q
5
3 �

2
3

p
s+ 1 +

 q
5
3 � 1

!
(s+ 1)

#,
�;

�2 =

"
1
3

q
5
3 �

5
3

q
1
3 +

4
3

p
s+ 1 +

 q
1
3 �

q
5
3

!
(s+ 1)

#,
�;

�3 =

"q
1
3 �

1
3 �

2
3

p
s+ 1 +

 
1�

q
1
3

!
(s+ 1)

#,
�;

� = 2
3

�
2�

q
1
3 �

q
5
3

�
:

(22)

5. Calculation of stress intensity factor

Previously, different techniques within the BEM scope, such as near-tip displacement extrapo-
lation, near-tip stress extrapolation [25], andJ-integral [7, 8, 26] methods, have been proposed
to calculate the stress intensity factors. Among these methods, the J-integral method is the
most accurate one [7, 8]. This method can be easily applied to either mode I or mode II
crack problem. However, it can not be directly applied to mixed mode problems. Recently,
Sollero and Aliabadi [2] proposed a decoupling procedure for calculating the mixed-mode
stress intensity factors. This approach is simple and accurate, and can be presented as follows.

The definition of the Jk integral is [2, 27]

Jk =

Z
�

2X
i;j=1

�
1
2�ijeijnk � �jiniuj;k

�
d� (k = 1; 2); (23)

where � is a generic contour surrounding the crack tip (Figure 2); �ij and eij are the stress
and strain tensors respectively, and ni are the unit outward normal to the contour path.
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It can be shown [27] that for a cracked 2-D homogeneous and anisotropic medium free of
body forces, the above Jk integral is related to the stress intensity factors by

J1 = �11K
2
I + �12KIKII + �22K

2
II;

J2 = 11K
2
I + 12KIKII + 22K

2
II;

(24)

where �ij and ij are constants related to the elastic properties of the anisotropic medium
[2, 27]. Assuming the crack is traction free, we note from (23) that along the crack surfaces,
the J1 integral vanishes whereas the J2 integral involves a highly singular integrand. In order
to avoid this difficulty, we follow Sollero and Aliabadi’s decoupling method [2]. By expanding
the displacements near the crack tip, we find that the ratio of the displacement differences
near the crack tip is (Figure 2)

R � u+2 � u�2
u+1 � u�1

=
H21KI +H22KII

H11KI +H12KII
; (25)

where

H11 = Im
�
�2A11 � �1A12

�1 � �2

�
; H12 = Im

�
A11 � A12

�1 � �2

�
;

H21 = Im
�
�2A21 � �1A22

�1 � �2

�
; H22 = Im

�
A21 � A22

�1 � �2

�
:

(26)

Solving (25), we find the ratio of stress intensity factors as

KI

KII
=

RH12 �H22

H21 �RH11
� F: (27)

Substituting (27) into (24), and solving for KII gives the following equation

KII =

s
J1

�11F 2 + �12F + �22
: (28)

Once KII is obtained from (28), KI then follows from (27).

6. Numerical examples

Three illustrative examples were selected to test our new BEM formulation. The latter was
implemented into a BEM program written by the authors. All examples assume plane stress.
The first example corresponds to a finite crack (a = 0:25) in an infinite medium under
a uniform far-field stress � in the y-direction (Figure 3). The material is isotropic with a
Young’s modulusE = 4 (in dimensionless) and a Poisson’s ratio � = 0:25 (Since the Green’s
functions in (11) and (12) are singular in the isotropic limit, a small difference of the Young’s
moduli in thex1 and x2 directions is given [3]). For this infinite problem with a single crack, we
need (16) only. The crack surface was discretized using 10 discontinuous quadratic elements.
The crack opening displacements (in dimensionless)�uy = uy(x; 0+)�uy(x; 0�) are given
in Table 1. In this table, the second and third columns are the results obtained with the new
BEM formulation assuming no crack tip elements (method I) and crack tip elements given
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170 E. Pan and B. Amadei

Figure 3. A finite crack in an infinite and isotropic medium under a uniform far-field stress in y-direction.

Table 1. Crack opening displacements for a single crack in an infinite and
isotropic medium

X �uy (Method I) �uy (Method II) �uy (Exact)

0.241667E+00 0.743954E�01 0.639519E�01 0.640096E�01
0.225000E+00 0.113923E+00 0.108657E+00 0.108972E+00
0.208333E+00 0.141119E+00 0.138338E+00 0.138193E+00
0.191667E+00 0.163109E+00 0.160783E+00 0.160511E+00
0.175000E+00 0.180967E+00 0.178633E+00 0.178536E+00
0.158333E+00 0.195693E+00 0.193459E+00 0.193470E+00
0.141667E+00 0.208148E+00 0.206001E+00 0.205987E+00
0.125000E+00 0.218586E+00 0.216510E+00 0.216506E+00
0.108333E+00 0.227308E+00 0.225294E+00 0.225308E+00
0.916667E�01 0.234553E+00 0.232589E+00 0.232588E+00
0.750000E�01 0.240409E+00 0.238485E+00 0.238485E+00
0.583333E�01 0.244987E+00 0.243093E+00 0.243099E+00
0.416667E�01 0.248376E+00 0.246504E+00 0.246503E+00
0.250000E�01 0.250606E+00 0.248748E+00 0.248747E+00
0.833333E�02 0.251710E+00 0.249860E+00 0.249861E+00

by (21) and (22) (method II). The last column is the exact solution [28]. It is noted from this
table that introduction of the crack tip elements greatly improves the results. This conclusion
can be further verified by calculating the corresponding stress intensity factors.

For the example of Figure 3, the exact normalized stress intensity factor, KI=�
p
(�a) is 1.

Numerically, we calculated this stress intensity factor by the J-integral method with different
circles as shown in Figure 2. For all these calculations, the circle was divided into four quarters
and a 6 points open-type Newton-Cotes formula [29] was applied to each quarter. Again, the
results in Table 2 show clearly that addition of the crack tip elements dramatically improves
the accuracy.

The second example is a kinked crack in an isotropic and infinite medium under a uniform
far-field stress in the y-direction (Figure 4). As for the first example, we need (16) only. Since
this is a mixed mode problem, the decoupling technique [2] needs to be used, (27) and (28). In
this example, the inclined crack branch (b= 0:2a) is inclined at 45 degrees to the horizontal
direction. We used 6 and 10 discontinuous quadratic elements for the inclined branch and
horizontal crack section, respectively. The normalized stress intensity factors at tips A and B
are presented in Table 3 along with the results from Mews [30], Sih [31] and Murakami [32].
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Table 2. Normalized stress intensity factors for a single crack in
an infinite and isotropic medium

Circle KI=�
p
(�a) (Method I) KI=�

p
(�a) (Method II)

1 0.9767 1.000406
2 0.9750 0.999461
3 0.9744 0.999792
4 0.9746 1.000005
5 0.9752 0.999995
6 0.9756 1.000003

Clearly, very accurate results are obtained with the authors’ program based on the new BEM
formulation.

As a third and final example, an anisotropic, and finite rectangular plate with a central crack
inclined at 45 degrees to the horizontal direction is considered (Figure 5). The plate is under
uniform tension in the y-direction. The ratios of crack length to width, and of height to width
are a=w = 0:2 and h=w = 2:0, respectively. The material is of glass-epoxy with properties
E1 = 48:26 GPa; E2 = 17:24 GPa; �12 = 0:29, and G12 = 6:89 GPa [2]. The direction of the
fibers was rotated from	 = 0 to	 = 180 degrees. The two normalized stress intensity factors
were calculated with the present BEM program using 10 discontinuous quadratic elements
on the crack surface and 32 quadratic elements on the outside boundaries. Table 4 shows the
results obtained by the authors’ new BEM formulation as well as those by Gandhi [33] with
a mapping-collocation technique, and by Sollero and Aliabadi [2] with a subregional BEM.
Again, excellent agreement is obtained.

Figure 4. A kinked finite crack in an infinite and isotropic medium under a uniform far-field stress in y-direction.

Table 3. Normalized stress intensity factors for a kinked crack in an infinite and isotropic
medium

KA
I =�

p
(�a) KA

II =�
p
(�a) KB

I =�
p
(�a) �KB

II =�
p
(�a)

Mews [30] 0.7512 0.0204 0.4479 0.4213
Sih [31] 0.7522 0.0212 0.4513 0.4223
Murakami [32] 0.7517 0.0212 0.4520 0.4214
Present 0.7520 0.0213 0.4523 0.4233
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Figure 5. An anisotropic and finite rectangular plate with a central crack inclined 45 degrees to horizontal direction
under a uniform tension in y-direction.

Table 4. Normalized stress intensity factors for a central inclined crack in an anisotropic
and finite rectangular plate

KI=�
p
(�a) KII=�

p
(�a)

	 Sollero and Present Gandhi [33] Sollero and Present Gandhi [33]
Aliabadi [2] Aliabadi [2]

0 0.510 0.519 0.522 0.500 0.504 0.507
45 0.512 0.516 0.515 0.508 0.505 0.505
90 0.525 0.537 0.513 0.507 0.532 0.509

105 0.527 0.507 0.517 0.504 0.502 0.510
120 0.525 0.520 0.524 0.502 0.508 0.512
135 0.519 0.532 0.532 0.504 0.511 0.511
180 0.510 0.519 0.522 0.500 0.504 0.507

7. Conclusions

A new BEM formulation has been proposed for fracture mechanics analysis of cracked 2-
D anisotropic elastic media. In this new approach, the displacement and traction integral
equations are collocated on the outside boundary (no-crack boundary) only and on one side
of the crack surface only, respectively. Therefore, no double elements and nodes are required
along the crack surface. Furthermore, since the new BEM formulation uses displacements or
tractions as unknowns on the outside boundary and displacement differences as unknowns
along the crack surface, it combines the best attributes of the traditional displacement BEM
and the DDM. While the Cauchy singularity in the displacement equation is avoided by the
common rigid-body motion method, the hyper-singularity in the traction equation is handled
by introducing a new Gauss quadrature formulae which is very similar to the traditional
weighted Gauss quadrature but with a different weight. To calculate the mixed mode stress
intensity factors, the authors employ the decoupling technique developed in [2]. A new set
of crack tip elements is also introduced, which can dramatically improve the accuracy of the
stress intensity factors.
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The new BEM program can handle 2-D anisotropic, finite as well as infinite domain
problems with any kind of crack geometry. To verify the new program, three examples
including infinite as well as finite domains, isotropic as well as anisotropic media, straight as
well as kinked crack geometry shapes were run. All these examples show excellent agreement
with previously published results in the literature. Since the present method is simple, and can
also be used for curved cracks, it will be straightforward to extend the new BEM formulation
to analyze fracture propagation in 2-D anisotropic media. This is currently under investigation
by the authors, and the results will be reported in a separate paper.
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