Water reservoir loading of long anisotropic
valleys with irregular topographies
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The nature of the stress field induced by water reservoir loading of long anisotropic valleys is considered using
an analytical method proposed earlier by the authors. The rock mass is modeled as a linearly elastic,
transversely isotropic or nearly isotropic and homogeneous continuum that deforms under a condition of plane
strain. The method is used to determine stresses in symmetric and asymmetric valleys induced by water
reservoir loading with or without gravity. Numerical examples are presented to analyze the disturbance
associated with a water reservoir on the existing gravitational stress field. They show that the presence of a
water reservoir does not much affect the horizontal and vertical gravity-induced normal stresses except near the
valley bottom. There the effect of the water reservoir is to reduce the magnitude of the gravity-induced
horizontal tensile stress and to increase the magnitude of the gravity-induced vertical compressive stress. On
the other hand water reservoir loading affects the gravity-induced shear stress in a relatively large region below
the valley. Finally a parametric study is presented on the effect of (1) water reservoir height, (2) degree of
anisotropy, and (3) orientation of anisotropy on the magnitude and distribution of stresses induced by water

reservoir loading only.  © 1996 by Elsevier Science Inc.
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1. Introduction

Surface loading of a half space has long been a topic of
interest in both pure and applied mechanics. Boussinesq
was the first to drive an elastic solution for the stresses in
a flat and isotropic half space subjected to surface point
loads.! Conway and Ithaca®® then extended this solution
to the corresponding orthotropic case where the planes of
elastic symmetry are either normal or inclined to the flat
surface. Urena et al.* and Piquer et al.’ obtained analyti-
cal solutions for the stresses in a transversely isotropic
half space subjected to surface line loads and distributed
loads, respectively. Very few analytical solutions for
stresses exist in the literature for half spaces with nonflat
surfaces. For a half space of parabolic shape, Kalinin®
obtained an analytical solution for isotropic media using
Muskhelishvili’s complex variable method,” and Liao and
Amadei® derived another solution for anisotropic media
using Lekhnitskii’s analytical function method.® More re-
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cently Pan and Amadei'® presented a new analytical
method for determining the stress field in a homogeneous,
general anisotropic and elastic half space subject to grav-
ity and surface loads under a condition of generalized
plane strain and limited by irregular (but smooth) outer
boundaries. The stresses were found to depend on three
analytical functions that can be determined using a nu-
merical conformal mapping method'!' and an integral
equation method.'?

In this paper the nature of the stress field induced by
water reservoir loading of long anisotropic valleys is con-
sidered. The rock mass is modeled as a linearly elastic,
transversely isotropic or nearly isotropic and homoge-
neous continuum that deforms under a condition of plane
strain. At the outset the new analytical method of Pan and
Amadei'® is reviewed. This method is then used to deter-
mine stresses in symmetric and asymmetric valleys in-
duced by water reservoir loading with or without gravity.
Numerical examples are presented to analyze the distur-
bance associated with a water reservoir on the existing
gravitational stress field. Finally, a parametric study is
presented on the effect of (1) water reservoir height, (2)
degree of anisotropy, and (3) orientation of anisotropy on
the magnitude and distribution of stresses induced by
water reservoir loading only.
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2. Basic equations

Consider the equilibrium of a half space with the geome-
try of Figure 1. The half space represents a rock mass with
an irregular topography that is subject to surface loads
(tractions). The medium in the half space is assumed to be
linearly elastic, homogeneous, anisotropic, and continu-
ous. An x,y, z coordinate system is attached to the half
space, such that the x and z axes are in the horizontal
plane and the y axis is pointing upward. We assume that
the geometry and elastic properties of the rock mass as
well as the surface tractions are independent of the z
direction. We also assume that the boundary curve of the
half space can be described by an analytic function y =
y(x) or in parametric form x=x(z), y =y(¢). The half
space is subject to the surface tractions ¢; (i =x, y, 2).

The problem is to find the magnitude and distribution
of the stresses induced by the surface loading of the half
space. Since the geometry of the problem is independent
of the z coordinate and the medium is homogeneous, the
stresses can be determined assuming a condition of gener-
alized plane strain, e.g., all planes normal to the z axis are
assumed to warp identically.” In the absence of body
forces, the stresses and strains must satisfy the following
equations.’

2.1 Equations of equilibrium

do,,  doy,
+ =0 (1a)
ox ay
do, do,
L+ 2 =9 (1b)
ax ay
do,, 0oy,
— =0 (1c)
ox ay
t
0
2

Figure 1. Geometry of the problem. Half space limited by a
boundary curve y=y{x), and subject to surface tractions ¢,
(i=x,y, 2).
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2.2 Constitutive relations

[e]=[allo] (2)
or

[a]=Iclle] €))
where

[e]=le,,. e, .0026,,,2¢,,,2¢, 1 4

are the strain components, and

T
lel=lo,,.0,,,0,,0,,0,, 0] (5)

are the stress components, [a] is a 6 X 6 symmetric com-
pliance matrix with 21 independent components a;; (i, j =
1-6) and [c] is the corresponding stiffness matrix with
components c;; (i, j = 1-6) and is such that [a] = [c] ' In
equations (4) ‘and (5), the superscript 7 indicates the
transpose of the matrix. In this paper the rock mechanics
sign convention that compressive stresses are positive is
adopted.

2.3 Compatibility conditions

de

(?xz _ ayz _ 0 (63)
y X
d’e 3’ 3%,

T 2= (6b)

dy? dx? dx dy

2.4 Boundary conditions on y = y(x)

0,c08(n, X) + g, ,cos(n, y) =t, (7a)
a,,co8(n, x) + g, cos(n, y) =t, (7b)
o,.cos(n, x) + g,.cos(n,y) =t, (7¢)

where cos(n, x) and cos(n, y) are the direction cosines of
the outward normal, n of the boundary curve y = y{(x).

3. Analytic solutions

Following Lekhnitskii’s complex function method,” the
stress components at each point of the half space in
Figure 1 can be expressed in terms of three analytical
functions as follows:

o, = 2Rel ui®(z)) + pi®5(z;) + pi A, @5(25)]
(8a)
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a,, = 2Re[®(z)) + P)(2,) + A, P5(25)] (8b)

0, = —2Rel 1, ®(2,) + p, P5(z,) + py A;P(25)]
(8c)

o,, = 2Rel u A ®1(z)) + p, A, P5(z,) + p; P5(25)]
(8d)

a,, = —2Re[1,®)(z;) + 1, D5(z,) + 3(z;)]  (8¢)

a,

2z T T (a13 Oix + a230yy + a340-yz

+a350xz +a360xy)/a33 (Sf)

where u;, m,, M3, Ay, Ay, and A; are complex numbers
with their values related to the compliance matrix [a].
Determination of these complex numbers has been dis-
cussed by Lekhnitskii® and Pan and Amadei.!’ Also in
equations (8a)—(8f), ®j(z,) (k = 1,2,3) denote the deriva-
tives of three analytical functions ®,(z,) with respect to
the variable z, =x + u,y, where x and y are the coordi-
nates of the point in the anisotropic medium at which the
stresses are calculated. The three functions ®,(z,) must
satisfy the traction conditions along the boundary curve
y =y(x), which, in the absence of body forces, can be
expressed as follows!”

2Rel®@,(2)) + By(2,) + A@y(2)] = [ 1,ds (%)
0
2Rel 1, ®(21) + 1, P1(23) + p3A;D4(23)]

- - fg "t ds (9b)

2Re[A,®,(z,) + A,®(z,) + By(25)] = — [0 1, ds
(9¢c)

where s is the arc length along the curve y =y(x).

Determination of the three functions ®,(z,) and their
derivatives depends mainly upon the geometry of the
boundary curve y =y(x). As shown by Pan and Amadei,'°
these functions can be determined using a numerical
conformal mapping method!! and an integral equation
method.'? Three new analytical functions ¥, (k =1,2,3)
are introduced such that

V() =Pz )Z, () (k=1,2,3) (10)

where the conformal mappings z,=Z,({,) (k=1,2,3)
that map the lower half planes bounded by z, =x(¢) +
. y(2) onto the lower flat half planes Im ¢, < 0(k=1,2,3)
are obtained by three successive conformal mappings, as
discussed in Pan et al.!* The first (mapping 1), maps the
lower half planes bounded by z, =x(¢) + w, y(¢) onto ir-
regular bounded domains w,. The second (mapping 2),
maps the irregular bounded domains w, onto unit disks
F,.. Finally, the third (mapping 3) maps the unit disks F,
onto the flat half planes {,. An example of these succes-
sive conformal mappings is shown in Figure 2 where the
topography is a symmetric valley. Also in equation (10),
(&) and Zi(£,) are the derivatives of ¥, and Z, with
respect to J.

Let ¢, be the boundary value of ;. As shown by Pan
and Amadei,'° the boundary conditions (9a)—(9¢) lead to
the following system of three singular integral equations
that can be solved for the three functions W;(t,):

! b12 ! ! b13 ’ !
bll‘lfl(Tl) + T\PZ(TZ)tZ(TI) + T\I’3(T3)t3(’r])

b —o W1, )65(t,) dt
+if 2\ )0\ ) aty
27 1 -7
by = W15 dry
b o B A
27/ 4 LT
fim) () . 1 = fi()'(e)) dt,
- 2 2w/ o =7
(11a)

!’ b22 ! '3 b23 ' '3
b21\F2(72) + —2—\1’1(71)t1(72) + _2—q’3(73)t3(72)

by =¥ (t)(1y) dr,

2mi +x t2 — Ty

b — Wit )t5(2,) dt
+_£f 3\l3)izlp ) dly

2mi /4 t,— T,

fr(0)e(7y) N 1 =, (1) dr,
2 2midie  ty—m,

(11b)

, bya i N bss 1o v
b31‘y3(73) + T‘PI(TI)tl(Tli) + 7W2(72)t2(73)

+ ﬁf“w Wi (e))e(t5) dty
27Tl + o0

Ef-x Wi (2,)t5(85) dis

27miJ e 1, — T4

fa(7)' (13) 1 - f(D'(25) dty
3y j’ LAt

I3 T3

2 2mi i =Ty

(11¢)

where the coefficients b;; (i,j=1,2,3) and the functions
f(t) (i=1,2,3) are given by equations (25a)-(25i) and
equations (26a)-(26c) in the Appendix. In equations
(11a)-(11c), 7 is a fixed point on the #[ —o, 4] axis and
7, (k=1,2,3) are fixed points on the ¢, (Im ¢, = 0) axes.
v'(t;) and 1,(¢) (k,j=1,2, 3) are, respectively, the deriva-
tives of ¢ and ¢, with respect to the variable tj[—oo, + o]
and are equal to

o Z(1)

t(tj)—m (123)
Z'(t. ¢ + (1)

() = () X))+ ey (12)

Zi(t) X (0 +py (1)
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Figure 2. Examples of mappings 1, 2, and 3 for k=1 and for the symmetric valley of Figure 4(a). Other parameters are: dip azimuth
B=0° dip angle ¥=45° and E/E'=G/G'=3, v=0.25, v'=0.15 (See Ref. 10).

where x'(¢) and y'(¢) are the derivatives of x and y with
respect to ¢, respectively.

The three integral equations (11a)~(11c) can be dis-
cretized and solved for the boundary values of the three
analytical functions W;(¢,) by the method proposed by
Sarkar et al.'* Then, the interior values of these analytical
functions are calculated using the Cauchy integral theo-
rem.'? Finally, the stress functions ®}(z,) are obtained
using equation (10), and the six stress components are
determined using equations (8a)—(8f). The infinite inte-
grals appearing in equations (11a)-(11¢) are determined
using an inverse mapping from the boundary of the ¢,
planes to the circumference of unit discs.!? It is also noted
that for these integrals to converge the boundary curve
(x(2), y(1)) and the surface tractions ¢; (i =x, y, z) must be
such that the following limits exist:

limit lt;s'(t)|=a;, <= (i=x,y,2) (13)
1> t+x
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It is worthy to mention that the proposed method is
very accurate and efficient. As shown by Pan and
Amedei,'’ the mapping functions z, = Z,({,) (k=1,2,3)
can be determined as accurate as 10>, When solving the
integral equations (11a)-(11c) with 200 discrete points,
the stresses can be obtained with an accuracy of 107¢,
which is usually better than the series expansion ap-
proach.’®

4. Rock mass elastic properties in local and global
coordinate systems

The half space with the geometry of Figure I is assumed
to be orthotropic in a local n,s,¢ cartesian coordinate
system attached to planes of anisotropy in the rock mass.
The orientation of that local coordinate system with re-
spect to the global x, y, z coordinate system is defined by
a dip azimuth 8 and a dip angle ¢ as shown in Figure 3.
The t-axis is located in the xz plane. The constitutive
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PLANE OF
SYMMETRY

Figure 3. Orientation of planes of symmetry {i.e., the local
n, s,t coordinate system) with respect to the global x, y, z coor-
dinate system.

equation in the n,s,t coordinate system is given by the
following equation®

1 Yen Yin 0 0 0
E, E, E
Vns 1 VIS 0 O 0
5 €, . E, E, E,
€ Py Vst 1
s -—— - = — 1] 0] 0
€, _ En Es Et
1
Yot 0 0 0 0 0
Yot G,
L s | 0 0 0 0 — o
G
0 0 0 0 0 !
G,
[ ol’tﬂ 1
Oys
oy,
Unl
0"5
or in a more compact matrix form as
[e]nst= [h][o']nst (15)

In equation (14), E,, E,, and E, are, respectively, the
Young’s moduli in the #, s, and ¢ directions, respectively.
G, G,, and G, are, respectively, the shear moduli in
planes parallel to the ns, nt, and st planes, respectively.
Finally, v;; (i, j =n,s,t) are the Poisson’s ratios that char-
acterize the normal strains in the symmetry directions j
when a stress is applied in the symmetry directions i.
Because of symmetry of the compliance matrix [A], Pois-
son’s ratios v;; and v;; are such that v;|E; = v;|E,. There-

fore nine independent elastic constants are needed to
describe the deformability of the material in the local
n, s,t coordinate system.

For known orientations of the planes of anisotropy with
respect to the x, y, and z axes, the components of the
compliance matrix [a] in equation (2) in the global x,y,z
coordinate system can be obtained from those of the
compliance matrix [4] in equation (15) by using second-
order tensor coordinate transformation rules.'® Because
of this linear relationship it can be shown that the stresses
in their dimensionless form depend on the following eight
dimensionless quantities

T Y Vs Vi s
E, E G;” G Gy

E

s s

(16)

If the medium in the local n,s,t coordinate system is
transversely isotropic in one of the three ns, nt, or st
planes, only five independent elastic constants E, E’, v,
V', and G’ are needed to describe the deformability of the
medium in the n,s,¢ coordinate system where: (i) E and
E’ are Young’s moduli in the plane of transverse isotropy
and in direction normal to it, respectively; (ii) » and +'
are Poisson’s ratios characterizing the lateral strain re-
sponse in the plane of transverse isotropy to a stress
acting parallel and normal to it, respectively; and, (iii) G’
is the shear modulus in planes normal to the plane of
transverse isotropy. For this case, the stresses in their
dimensionless form are found to depend on the following

-a,N3 a,~3

Figure 4. (a) Symmetric valley centered at x,; =0 with a,/|b,|=
1. {b) Water reservoir loading. At x=0, the water height is equal
to h, and y,=|b,.

Appl. Math. Modelling, 1996, Voli. 20, December 913
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four dimensionless terms

£ S an
E’V:-V ’—G_,

It is obvious that the stresses in their dimensionless
form also depend on (1) the orientation angles B8 and ¢
of the planes of anisotropy with respect to the global
x,y,z coordinate system (Fig. 3), (2) the coordinates of
the points at which the stresses are calculated, (3) the
geometry of the surface topography, and (4) the magni-
tudes of the surface tractions. Equations (8a)-(8f) show
that, in general, at each point in the half space, the stress
field is three-dimensional and the principal stress compo-
nents are inclined with respect to the x, y, and z axes.

The generalized plane strain solution presented above
takes a simpler form for orthotropic and transversely
isotropic materials with planes of elastic symmetry normal
to the z axis of Figure 1. This takes place (1) when the dip
azimuth B in Figure 3 is zero and the dip angle ¢ varies
between 0 and 90 degrees or (2) when the dip azimuth S
and the dip angle ¢ are both equal to 90 degrees. For
those two cases the generalized plane strain solution re-
duces to a plane strain solution, and the problem of
finding the stresses can be decomposed as two uncoupled
plane and antiplane problems, which has been discussed
in more detail by Pan and Amedei.'”

5. Water loading of a long valley

The topography of the half space in Figure 1 is assumed to
be smooth and can be expressed in parametric form as
follows

x() =t (—= <t < +®) (18a)
N
y(£) =Y y.(0) (18b)
i=1
with
ab.
()= —— (19)
y{0 (t—x)* +a?

Equations (18a), (18b), and (19) correspond to the geo-
metric superposition of i = 1, N symmetric ridges or val-
leys x(1), y,(¢) centered at x =x,. If b; is positive, equation
(19) corresponds to a ridge with height b,. If b; is negative,
equation (19) corresponds to a valley with depth |b,|. The
parameter a; controls the lateral extent of each ridge or
valley with inflection points located at x=x; ta;/y3, y =
0.75b, at which the slopes are equal to +3by3/(8a,)."”
Thus any given smooth topographies can be expressed by
choosing different positive or negative values of a;, b;, and
x; for i=1,N. As an example, Figure 4(a) shows a long
isolated symmetric valley with a,/|b,|=1 and x; =0, and
Figure 5(a) shows a long asymmetric valley obtained by
superposition of two separate symmetric valleys with

Ay

(b)

Xy

Figure 5. (a) Asymmetric valley obtained by superposition of two separate symmetric valley centered at x, and x,. The parameters
are aAby|=a, b= 1, x,/Ab,|= =1, b,Ab,|= —1 and b,/b,|= —0.5. (b)Water reservoir loading. At x=0, the valley depth is y, and the

water height is equal to A,,.
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a,/1bil = ay/\byl= —1, x1/Ibjl =1, x,/1b;l= —1, by /1b/]
= -1, and b,/|b;|= —0.5.

Consider now the water reservoir loading of a valley
with surface topography defined by equations (18a), (18b),
and (19). For a given water height A, (> 0) at x =0, the
water pressure on the valley wall is a function of y only,
and can be expressed as

Pw="—0.,8yty,—h,) (20)

where yq(> 0) is the depth of the valley at x =0, g is the
acceleration due to gravity, and p,, is the density of water.
The water pressure acts over an interval [x,,,,, X,,,.] in
the inward normal direction of the boundary curve y =
y(x). As an example, Figures 4(b) and 5(b) show the water

0.0

(o))

— /

§ Foa———
: pr—
> 08— 08 ——
-2.0
l— 1.2 —_— 2
-30

o
= ]
-20 10 o
e 1.4 1.4
=396 70 305 30
x/1b, |

reservior loading of the valleys of Figures 4(a) and 5(a)
respectively.

The surface tractions in the x, y, and z directions
corresponding to the water pressure defined in equation
(20) are equal to

- —h N 2p (t —x;
[X= pwg(y'+y0 w) 22 al z(t xl) .
s'(1) i=1 [(t—xi)2+a,~2]
(21a)
—p.8(y+yo—h,)
t, = ) (21b)
t,=0 (21¢)
(b)
03/

N i — —
(dy v ——]
0.4 —/‘;"’__/
0.8 0.8 -
—1.2 12
00 70 _z0 30

x/1b, |

Figure 6. Stress contours of a,,/pglb,| in a strongly transversely isotropic rock mass (E/E'=G/G’=3, v=0.25, v'=0.15, and =0°)
induced by gravity and water reservoir loading of a symmetric valley with the geometry of Figure 4(a). The density ratio between rock
and water p/p, =2.8. The normalized water height h,/Ab,|=0, 0.25, 0.5, and 0.75 in (a), (b}, (c}, and (d), respectively.
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From equations (21a)—(21c), it follows that

t (s ()= —p,g(y +y,—h,) (22a)
t()s'(t) = —p,g(y +y,—h,)

N 2p(t —x;
x|2X Lzﬂ—z (22b)
i=1 [(t—xi) +af]

which are two terms entering into the expressions of f,(¢),
f(t), and f;(¢) in equations (11a)-(11c) and defined in
equations (26a)—(26¢) in the Appendix. Note that in equa-
tions (21a)-(21c) and equations (22a)—(22b), s'(¢) is the
derivative of the arc length s(¢) with respect to the vari-
able t. The latter varies between x,,;, and x,,,, as the
water pressure p,, is nonzero in this interval only. For a
given reservoir height 4, x,,;, and x,,,. are solutions of

-1.0

y/I1b,!

-2.0

-3.0

-1.0

y/1b,1

-2.0

B ¥ E— 70 3.0

X/ 1b, |

the following equation

y(x)=(h,~y,)=0 (23)

6. Numerical examples

To illustrate the theory presented above, numerical exam-
ples are presented in Figures 6—16 on the effect of water
reservoir loading on the stress distribution below symmet-
ric and asymmetric valleys with or without gravity. The
stress distributions are presented using contour diagrams
of dimensionless stresses o,./pglbl, o,,/pglb,| and
a,,/pglb,| where p is the rock density and |b| is a
reference valley depth. When gravity is accounted for, the
stresses induced by water reservoir loading are added to
the gravitational stresses obtained by Pan et al.'* and Pan

0.0 1.0 2.0 3.0
x/1b,l

Figure 7. Stress contours of a,,/pglb,| in a strongly transversely isotropic rock mass (£/E'=G/G'=3, v=0.25, »'=0.15, and ¢=0°)
induced by gravity and water reservoir loading of a symmetric valley with the geometry of Figure 4{a). The density ratio between rock
and water p/p,,=2.8. The normalized water height h,A6,/=0, 0.25, 0.5, and 0.75 in (a), (b}, (c), and (d), respectively.
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and Amadei."” The geometry of Figure 4(a) is adopted in
the numerical examples show in Figures 6—14, and the
geometry of Figure 5(a) is used in the examples shown in
Figures 15 and 16. The density ratio between rock and
water is taken equal to p/p, = 2.8. In case of symmetry of
the topography as well as of the rock mass properties, only
the right halves of the plots of stress contours are pre-
sented. The rock mass in the half space is assumed to be
either isotropic or transversely isotropic. In the trans-
versely isotropic case, the planes of transverse isotropy are
taken parallel to the z-axis ( 8 =0° in Figure 3), and the
elastic constants are selected within the following restric-
tions!8

E,E.G,G'>0 (242)
O<sv<1 (24b)

x/1b,|

1 272 >0 (24¢)
v v E > C
Note that since the anisotropic solution summarized in
this paper cannot be reduced directly to the isotropic
solution,!® a nearly isotropic material with E/E' =G /G’
=1, v=0.25, »"=0.24, and = 0° is adopted. Note also
that for the orientation of the anisotropy as well as the
type of surface loading considered here, the rock mass
deforms in plane strain. At each point in the rock mass
below the valley, two of the three principal stresses are in
the plane normal to the valley axis and the third principal
stress is parallel to that axis.

Figures 6, 7, and 8 show, respectively, contour diagrams
of dimensionless stresses o,,/pglb,l, o,,/pglb;| and
a.,/pglb,| induced by gravity and water reservoir loading
of a long symmetric valley with the geometry of Figure
4(a). The rock mass has horizontal planes of transverse

x/1b 1

Figure 8. Stress contours of a,,/pglby| in a strongly transversely isotropic rock mass (E/E'=G/G'=3, v=0.25, »'=0.15, and y=0°}
induced by gravity and water reservoir loading of a symmetric valley with the geometry of Figure 4{a). The density ratio between rock
and water p/p, = 2.8. The normalized water height h,Ab,|=0, 0.25, 0.5, and 0.75 in {(a), (b}, (c), and (d), respectively.
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isotropy (¢ = 0°) and its elastic properties are such that
E/E =G/G =3, v=0.25, and v' = (.15. The normalized
water height 4, /|b,| is equal to 0, 0.25, 0.5, or 0.75. Thus
Figures 6(a), 7(a), and 8(a) show respectively, the con-
tours of dimensionless stresses a,,/pglb,l, o,,/pglb,| and
a,,/pglb;| induced by gravity only.!> Comparison of Fig-

0.0

(a)

7
-1.0 \

y/1b, |

-2.0

-3.0

-1.0

y/1b,|

-2.0

-3.0
0.0

x/1b, |
Figure 9. Stress contours of o,,/pglbil, o,,/pglb4l. and o,/
pglb,l, respectively in (a), (b), and (c), in a nearly isotropic rock
mass (E/E'=G/G'=1, v=0.25, v'=0.24, and ¢=0°) induced by
the water reservoir loading only of a symmetric valley with the
geometry of Figure 4{a). The normalized water height h,/b,/=
0.5 and the density ratio between rock and water p/p,=2.8.
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ure 6(a) with 6(b)-6(d) and Figure 7(a) with 7(b)-7(d)
indicates that the presence of the water reservoir does not
affect much the gravity-induced normal stresses o,/ pglb,|
and o,,/pglb,|, except near the valley bottom. There the
effect of the water reservoir is to reduce the magnitude of
the gravity-induced horizontal tensile stress (Figures
6(a)-6(d)) and to increase the magnitude of the gravity-
induced vertical compressive stress (Figures 7(a)-7(d)).
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Figure 10. Stress contours of a,,/pglb,l. o, /pglb,l. and a,/
pglbyl, respectively in (a), (b), and (c), in a strongly transversely
isotropic rock mass (E/E'=G/G'=3, v=0.25, and »'=0.15) in-
duced by the water reservoir loading only. The planes of trans-
verse isotropy are horizontal (y=0°. The topography, water
height, and density ratio are the same as those in Figure 9.
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On the other hand comparison of Figure 8(a) with
8(b)-8(d) indicates that the water reservoir affects the
gravity-induced shear stress o,,/pglb,|in a relatively large
region below the valley. Water reservoir loading increases
the magnitude of the gravity-induced shear stress near the
valley bottom and reduces its magnitude elsewhere.
Figures 9-12 show contour diagrams of dimensionless
stresses a,,/pglbyl, o, /pglb,| and o,,/pg|b;| induced by
water reservoir loading only of a symmetric valley with the
geometry of Figure 4(a). The water height in the reservoir
is fixed and is such that h,/|b,| = 0.5. The rock is either

nearly isotropic or transversely isotropic with horizontal,
vertical, or inclined planes of transverse isotropy.

Figures 9(a)-9(c) show contour diagrams of dimension-
less stresses in a nearly isotropic rock mass with E/E’ =
G/G =1,v=0.25,v'=0.24, and = 0°. A concentration
of compressive stress o,,/pglb;| develops near the valley
wall (0.08 at x/|b,|=0.35 and y/|b;|= —0.89 in Figure
9(a)). Also, as expected, the maximum value of g,,/pglb;|
is reached at the valley bottom and is equal to the water
pressure at that point (0.18 at x/|b,| =0 and y/|b;|= —1
in Figure 9(b)). For the shear stress a,,/pglb,|, a maxi-
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Figure 11. Stress contours of g,,/pglb,| 0,,/pglb,l, and o, /pglb,|, respectively in (a}, {b), and (c), in a strongly transversely isotropic
rock mass (£/E'=G/G'=3, v=0.25, and »'=0.15) induced by the water reservoir loading only. The planes of transverse isotropy are
inclined (¢/=45°). The topography, water height, and density ratio are the same as those in Figure 9.
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Figure 12. Stress contours of o,,/pglb,|, o,,/pglbyl, and o,/
pglb,l. respectively in (a), (b), and (c), in a strongly transversely
isotropic rock mass (E/E'=G/G'=3, v=0.25, and v'=0.15} in-
duced by the water reservoir loading only. The planes of trans-
verse isotropy are vertical (y=90°). The topography, water
height, and density ratio are the same as those in Figure 9.

mum appears at a point below the valley wall (—0.04 at
x/1byl=0.5 and y/Ib,|= —1.2 in Figure 9(c)). Finally it is
interesting to note that for the horizontal stress o, /pglb,|
a tensile region develops in the valley side starting at the
water level (Figure 9(a)).

The effect of anisotropy on the contour diagrams of
a,./rglbil, a,,/pglb,l, and a,,/pglb,| induced by reser-
voir loading only of the same valley as in Figures 9(a)-9(c)
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is shown in Figures 10-12. The rock is now strongly
anisotropic (E/E'=G/G' =3, v=0.25, v' =0.15) with
horizontal (¢ = 0°), inclined (¢ =45°) and vertical (i =
90°) planes of transverse isotropy in Figures 10, 11, and
12, respectively. Comparison of Figures 10(a)-10(c) with
9(a)-9(c) shows major differences in the a,,/pglb,| stress
contour diagrams. The concentration of compressive stress
a,,./pglblis 0.12 at x/|b,|=0 and y/|b,|= —1 (Figure

0.0
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-1.0
- 0.07
N i
=
-20r 0.00
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g
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-390 .0 2.0 3.0
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Figure 13. Stress contours of g,,/pglb,| a,,/pglb,, and o,/
pglb,l. respectively in (a), (b), and (c), in a strongly transversely
isotropic rock mass (E/£'=G/G'=3, v=0.25, v'=0.15, and y=
90°) induced by the water reservoir loading only of a symmetric
valley with the geometry of Figure 4(a). The normalized water
height A,/16,/=0.25 and the density ratio between rock and
water p/p,=2.8.
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10(a)), instead of 0.08 at x/|b,| = 0.35 and y/|b,| = —0.89
for the nearly isotropic case (Figure 9(a)). Also more
horizontal tension develops in the valley side above the
water level for the anisotropic case with a maximum value
of a,,/pgl|b,| equal to about 0.04 at x/|b,|=1 and y/Ib,|
= —0.49 (Figure 10(a)), compared to 0.01 at x/|b,|=1.12
and y/|b)|= —0.44 for the nearly isotropic case (Figure
9(a)).

-1.0 2)

y/1b, !

x/1b,1

Figure 14. Stress contours of a,,/pglb,|, o,,/pglbyl, and o, /
pglb,l, respectively in (al, (b}, and {c), induced by the water
reservoir loading with normalized water height h,Ab,/=0.75.
The topography, elastic properties, and density ratio are the
same as those in Figure 13.

Another interesting feature that can be derived from
Figures 10, 11, and 12 is the effect of the orientation of
the anisotropy on the distribution of stresses induced by
water reservoir loading only. At the valley bottom (x/{b,|
=0and y/|b,|= —1), the horizontal stress o, /pglb,| is
tensile and equal to —0.06 when the planes of transverse
isotropy are vertical (Figure 12(a)), but is compressive and
equal to 0.12 when the planes of transverse isotropy are
horizontal (Figure 10(a)). Less tension develops in the
valley sides above the water level when the anisotropy is
vertical than when it is horizontal. Also the maximum
value of o,,/pglb,| is on the valley wall and equal to
—0.05 at x/lb;|=021 and y/lb;j= —0.96 when the
anisotropy is vertical (Figure 12(c)), instead of being away
from the valley walls and equal to ~0.04 at x/|b,|= 0.6
and y/|b,|= —1.2 when the anisotropy is horizontal (Fig-
ure 10(c)). Finally when the planes of transverse isotropy
are inclined, the stress distributions are no longer sym-
metric with respect to the y-axis, as can be seen in Figure
11(a)-11(c). For instance, the horizontal stress o,,/pg|b,|
reaches its maximum value on the left-hand wall of the
valley (Figure 11(a)), instead of at the bottom of the valley

_ I R
3'93.0 -2.0 -1

X/ 1b,1
Figure 15. Stress contours of g,,/pglbl. o, /pglb;l and Tl
pglb,l, respectively in {a), (b), and (c), in a strongly transversely
isotropic rock mass (E/E'=G/G'=3, v=0.25, »'=0.15, and y=
90°) induced by gravitational loading only of an asymmetric
valley with the geometry of Figure 5(a).
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when the planes of transverse isotropy are horizontal or
vertical (Figures 10(a) and 12(a)).

The effect of the water reservoir height on the distribu-
tion of dimensionless stresses o,,/pglb,l, o,,/pglb,| and
o,,/pg|b,| induced by water reservoir loading of a sym-
metric valley with the geometry of Figure 4(a) is shown in
Figures 12—14. The rock mass is transversely isotropic with
elastic properties such as E/E' =G/G =3, v=0.25, v'
=0.15, and it has vertical planes of transverse isotropy.
The water height in the reservoir is such that 4, /|b,|=
0.25, 0.5, and 0.75 in Figures 13, 12, and 14, respectively.
These figures indicate that, in general, for a given topog-
raphy and given rock mass properties, the overall distribu-
tions of stress due to water reservoir loading are similar
regardless of the water height. At a given point in the rock
mass, however, the magnitude of the stresses increases
with the water height.

Finally Figures 15(a)-15(c) show contour diagrams of
dimensionless stresses a,,/pglb,l, o,,/pglb,l, and o, /
pglb,l induced by gravitational loading only on an asym-
metric valley with the geometry of Figure 5(a). For com-
parison, Figures 16(a)-16(c) show the corresponding stress

y/ib,i

y/ bl

- 1 1
3'93.0 -2.0 -1.0

x/ byl

Figure 16. Stress contours of o,,/pglb,. o,,/pglbyl, and o,/
pglb,l, respectively in (a), (b), and (c), in a strongly transversely
isotropic rock mass (£/E'=G/G'=3, v=0.25, »'=0.15, and y=
90°) induced by gravity and water reservoir loading of an asym-
metric valley with the geometry of Figure 5(a). The normalized
water height at x=0 is Ah,/Ab,[=0.5, and the density ratio
between rock and water p/p,=2.8.
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contour diagrams when the valley is subject to both water
reservoir loading and gravity with h,/lb,|=0.5 at x=0.
The rock mass is transversely isotropic with elastic proper-
ties such as E/E' =G/G' =3, v=025, and »' =0.15,
and it has vertical planes of transverse isotropy. As for the
symmetric valley of Figure 4(a), addition of the water
reservoir has little effect on the gravity-induced horizontal
and vertical normal stresses o,./pglbl and o, /pglbl
except near the valley walls, but it affects more the
magnitude and distribution of the shear stress a,,/pglb,|.

7. Conclusions

In this paper the analytical method proposed by Pan and
Amadei' was used to determine stresses below long
valleys in rock masses subject to water reservoir loading.
The effect of gravity on the stresses was also taken into
account by superposition by using a solution already pub-
lished by the authors. The method applies to valleys with
smooth, symmetric, and asymmetric topographic surfaces
of realistic shapes in generally anisotropic, orthotropic,
transversely isotropic, or nearly isotropic rock masses.
Asymmetric topographic surfaces are obtained by super-
position of multiple long and symmetric ridges and valleys.

Water reservoir loading of a long valley (with or with-
out gravity) creates at each point in the rock mass a stress
field that is in general three-dimensional. The principal
stresses are inclined with respect to the plane normal to
the valley axis when the planes of anisotropy are inclined
with respect to the valley axis. On the other hand for rock
masses with planes of transverse isotropy parallel to or
normal to the valley axis, two of the three principal
stresses are in the plane normal to that axis and the third
principal stress is parallel to that axis.

Numerical examples presented herein indicate that the
presence of a water reservoir does not much affect the
horizontal and vertical gravity-induced normal stresses
except near the valley bottom. There, the effect of the
water reservoir is to reduce the magnitude of the gravity-
induced horizontal tensile stress and to increase the mag-
nitude of the gravity-induced vertical compressive stress.
On the other hand water reservoir loading affects the
gravity-induced shear stress in a relatively large region
below the valley. Water reservoir loading increases the
magnitude of the gravity-induced shear stress near the
valley bottom and reduces its magnitude elsewhere.

It was also shown in this paper that under water
reservoir loading alone, the stress contours are compli-
cated and depend greatly on the degree and orientation of
rock mass anisotropy, as well as the geometry of the
topography. For a given topography and given rock mass
properties, the overall distributions of stress due to water
reservoir loading only are similar regardless of the water
height. At a given point in the rock mass, however, the
magnitude of the stresses increases with the water height.

The general observations made in this paper may find
application in the study of reservoir-induced seismicity !-20
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which would require knowledge of the effective stress
distribution below valleys. Effective stresses can be deter-
mined from the total stresses obtained with the analytical
method discussed herein and by conducting a seepage
analysis of the problem of interest.
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Appendix

Coefficients b;; and functions f(t) in equations (11a)-
(11c):

by, = (I-L_z_ #1)(m" D= (uy— P«3))‘_3()‘_2_ A
(25a)

2= Gy = 1) 0 — 1) = (uy — AR5 - Ay)
(25b)

by = (ﬁ;_ P«s))\3(m_ D
=y = )2 0505 - 1) (25¢)

20T (m‘ 1)(#_1_ W) — ( —A ))‘3(#1 “s)
(25d)

by = (m_ 1)(#_1_ p) — (A=A )’\3(1-% ©3)
(25e)

5= A= DAy — py) — KA — DAy = py)
(25)

31 = Ay = ) A — pa) = (AjA; = Dy — )

(259)
_()‘1 2)(;1,1 py)— ( )\)(Nq ©o)

(25h)
—()H 2)(#«1 Ky) — ( /\2)(#1 “a)

(251)

Fi0) =[50 = 1) = (uy — )X A58, (1)5' (1)

+ (A= Dt ()s' (1)

= (uy — u)A5t, (0)s' (1) (26a)
£ =[p A= D = (uy = w)X X0t (0)s' ()

+ A5 — D (0)s' (1)

—(uy — u)A,(0)s'(¢) (26b)

150 = 5 R ~ R = w2l (05 (1)

+ O =2t (1)s' (1) — (uy — )t (£)s' (1)
(26¢)

If there is a plane of symmetry normal to the z axis,
equations (25) and (26) reduce to
by =p— iy (27a)
b=ty 1, (27b)
b;;=0 (27¢)
by =py — (27d)
by =m — (27¢)
by; =0 (276)
by =py — 1y (27g)
by =0 (27h)
by; =0 (271)
and
filt) = =gt (£)s'(t) — £, (2)s'(2) (28a)
[0) = —pt (s’ (1) —1,(1)s'(2) (28b)
f3(0) = — (uy — p)e, ($)s'(8) (28¢c)
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