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Abstract The problem of the transient quasi-static analy-
sis of a poroelastic body subjected to a history of external
actions is formulated in terms of four boundary integral
equations, using time-dependent Green’s functions of the
‘‘free’’ poroelastic space. Some of these Green’s functions,
not available in the literature are derived ‘‘ad hoc’’. The
boundary integral operator constructed is shown to be
symmetric with respect to a time-convolutive bilinear
form so that the boundary solution is characterized by a
variational property and its approximation preserving
symmetry can be achieved by a Galerkin boundary ele-
ment procedure.

1
Introduction
Poroelasticity is concerned with heterogeneous media
consisting of an elastic solid skeleton saturated by a dif-
fusing pore fluid. Its range of application covers a variety
of important real-life problems, such as design of nuclear
reactor cores, exploitation of oil or gas deposits, simula-
tions of living bone behaviour to orthopaedical surgery
purposes, control of filtration leakage from reservoirs, and
manufacturing process design for composite materials.
Poroelasticity is now the subject of a fairly abundant lit-
erature, stemming from Terzaghi’s concept of effective
stress and Biot’s linear consolidation theory (1941, 1957,
1962). From a computational mechanics point of view,
poroelastic analysis has been conducted using either the
finite element method or the traditional (collocation)
boundary element method.

The comprehensive state-of-the-art review by Cheng and
Detournay (1993) provides abundant, clearly presented
information, updated to 1991, on constitutive models,

problem formulations, solution methodologies and geo-
technical applications. Systematic presentations of coupled
problems from the computational standpoint and of the
phenomenological theory of porous media from the con-
tinuum mechanics standpoint are contained in Lewis and
Schrefler (1987) and in the recent treatise by Coussy
(1995), respectively. Among the noteworthy publications
on poroelasticity, somehow related to the present study,
we quote here those due to Manolis and Beskos (1989),
Pan (1991), Zhang and Cowin (1995), Chiou and Chi
(1994), Chen and Dargush (1995). The last two of the
above contributions specifically concern boundary integral
equation (BIE)-boundary element (BE) methods based on
traditional approaches which make use of a single kind of
fundamental solution (mostly ‘‘single layer’’ concentrated
sources), the first two provide fundamental solutions for
both single and double layer sources.

In the last few years, novel ‘‘symmetric’’ boundary in-
tegral equation formulations have been proposed for a
number of boundary-value (BV) and boundary-initial-va-
lue (BIV) problems. Most of these formulations are based
on a suitably combined use of both ‘‘static’’ (or ‘‘single
layer’’) and ‘‘kinematic’’ (or ‘‘double layer’’) sources. On
such basis, symmetry-preserving boundary element
methods have been developed by a weighted-residual Ga-
lerkin approach and proven to be computationally ad-
vantageous in various circumstances.

Representative contributions of this research line for
time-independent problems are contained in papers by
Maier and Polizzotto (1987), Polizzotto (1988), Sirtori et al.
(1992), Bonnet and Bui (1993), Maier et al. (1993), Ba-
lakrishna et al. (1994). Basic concepts of the symmetric
Galerkin boundary element method (SGBEM), with em-
phasis of computational aspects, are lucidly presented, and
inserted within the broader BIE-BE context, in recent
books by Kane (1994) and Bonnet (1995).

This paper (anticipated in a communication of the ICES-
IABEM Conference in the Hawaii, 1995) is intended to
provide a symmetric BIE formulation for linear poro-
elasticity. The approach adopted here, presumably for the
first time in ‘‘coupled problems’’, is inspired by the sym-
metric BIE-BE approach used in elastodynamics (Maier et
al., 1991) and viscoelasticity (Carini et al., 1991). It is based
on fundamental solutions in transient isotropic poro-
elasticity which either were available in the literature
(Cheng and Predeleanu, 1987; Detournay and Cheng, 1987;
Pan, 1991; Smith and Booker, 1993) or have been gener-
ated ‘‘ad hoc’’ in the present investigation for both two-
and three-dimensional problems.
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The governing equations for transient poroelasticity
adopted herein are those for the classical fully-coupled
Biot porous medium. Time-dependent discontinuities of
total traction and pore pressure and, simultaneously, of
cumulative fluid flux (‘‘single layer’’ sources) and solid
displacements (‘‘double layer’’ sources) are considered on
the boundary of a homogeneous poroelastic body em-
bedded in an unbounded poroelastic space. Using time-
dependent Green’s functions for this ‘‘free’’ space, the
analysis of the transient response of the poroelastic body
to external actions is formulated in terms of four BIEs
governing the time histories of the boundary unknowns.
The integral operator thus generated can be proven to be
symmetric in both space and time with respect to a time-
convolutive bilinear form. A variational principle is then
derived, which characterizes the boundary solutions in
time. Boundary element discretization in space and time
by a Galerkin weighted-residual approach leads to linear
algebraic equations with a symmetric coefficient matrix.

Though not discussed herein, computational benefits of
this symmetry are reasonably expected as they have been
pointed out in other contexts (Sirtori et al. 1992, Maier et
al. 1993, Balakrishna et al. 1994, Kane 1994).

2
Problem formulation
The boundary-initial value (BIV) problem considered
herein concerns the quasi-static (no inertia effects) re-
sponse of an isotropic poroelastic body to a given history
of external actions over a time interval 0 � t � T. The
body occupies a two- or three-dimensional open domain X
with a smooth boundary C. The governing equations are
formulated as follows. Tensorial notation is adopted with
the index summation rule and with commas denoting
derivatives with respect to Cartesian space coordinates x.

Equilibrium relates total stresses rij to bulk (solid and
fluid) body forces Fi:

rij; j � Fi � 0 in X �1�

The transport law relates the fluid flux qi (or specific
discharge: volume of fluid per unit time and unit surface
normal to the i-th axis) to the pressure p and to the fluid
body force fi, according to Darcy’s law for seepage through
porous media:

qi � ÿk�p;i ÿfi� in X �2�

where k is the (constant) permeability coefficient, which
captures the combined effects of the pore geometry and
fluid viscosity. This law presumes constant fluid density q,
so that fi � qgi is an assigned constant, with gi being the
i-th gravity component.

For the solid skeleton the geometry compatibility of
strains eij with respect to the displacement field ui is as-
sumed linear:

eij �
1
2
�ui;j � uj;i� in X �3�

For the fluid phase the mass conservation (or con-
tinuity) law involves the given source density c (injected
fluid volume per unit time and unit volume of porous
medium), the specific discharge qi and the fluid content f
(fluid volume per unit volume of porous medium):

df
dt
� qi;i � c in X �4�

The coupled constitutive laws for the solid and fluid
phase are expressed according to Rice and Cleary (1976),
in the form:

rij � apdij � 2Geij �
2Gm

1 ÿ 2m
edij in X �5�

p � ÿ

2GB�1 � mu�

3�1 ÿ 2mu�
e �

2GB2
�1 ÿ 2m��1 � mu�

2

9�mu ÿ m��1 ÿ 2mu�
f in X

�6�

where e � eii denotes the solid volumetric strain and dij
the Kronecker delta.

Five material parameters intervene in the above con-
stitution, namely: the bulk shear modulus G; the drained
and undrained Poisson’s ratios m and mu, respectively; the
Biot coefficient of effective stress a; and the Skempton pore
pressure coefficient B. Among them, only four parameters
are independent because of the following relation (see e. g.
Cheng and Predeleanu, 1987):

a �
3�mu ÿ m�

B�1 ÿ 2m��1 � mu�
�7�

The essential (Dirichlet) and natural (Neumann)
boundary conditions are formulated on two disjointed and
complementary parts of C. Namely, for the solid phase
�Cu0Ct � C�:

ui � ui�xh; t�; xh 2 Cu; rijnj � ti�xh; t�; xh 2 Ct

�8a; b�

and for the fluid �Cp0Cq � C�:

p � p�xh; t�; xh 2 Cp; qini � q�xh; t�; xh 2 Cq

�9a; b�

The initial conditions referred to herein read:

ui�xh; t� � ui; p�xh; t� � p; in X at t � 0 �10�

A stress field rij complying with the balance Eqs. (1) and
(8b) at t � 0 (instead of displacements), and/or a flux field
qi complying with the continuities equations (4) and (9b)
at t � 0 (instead of pressure), represent alternative initial
conditions which would preserve the well-posedness of the
problem.

It will be convenient in what follows to express the fluid
mass conservation in the time-integral form alternative to
Eq. (4):
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f� vi;i � f0 � Q �11�

Here, Q denotes the cumulative fluid volume injected per
unit mixture volume up to time t:

Q �

Z t

0
c dt0 �12�

In Eq. (11), f0 is the initial fluid content, which has no role
in the problem if full saturation of the solid is a priori
guaranteed throughout X. With this hypothesis, we can set
f0 � 0, namely f will be conceived henceforth as variation
of the fluid content per unit bulk volume. The time-cu-
mulative flux components

vi �

Z t

0
qi dt0 �13�

can be interpreted, and will be referred to, as ‘‘relative fluid
displacements’’.

Consistent with Eq. (11), the natural (Neumann)
boundary condition (9b) will be replaced by

v � vini � v�xh; t�; xh 2 Cv � Cq �14�

where v represents the time-cumulative outward normal
flux, i.e. the relative fluid displacement vector vi projected
on normal ni:

v �
Z t

0
qinidt0 �

Z t

0
qdt0 �15�

The linear BIV problem defined (in a ‘‘strong’’, differ-
ential form) by Eqs. (1)–(10) [with the alternatives (11)
and (14)] will be re-formulated in terms of a peculiar
system of boundary integral equations (BIE) in the next
section and this system will be shown to be self-adjoint (or
‘‘symmetric’’) in the subsequent sections.

3
A symmetric BIE formulation
In the BIV problem of Section 2, for the sake of simplicity,
the following further restrictions will be adopted hence-
forth, but might easily be relaxed without conceptually
affecting the conclusions.

(i) The solution concerns the transient response to a
perturbation of an initially stationary, time-in-
dependent state. In other terms, the initial (at t � 0)
fields satisfy the governing equations of the steady
state, so that they can be ignored, i.e. ui � 0 and p � 0
can and will be set in equations (10). This hypothesis
merely avoids cumbersome domain integrals of data
in the sequel.

(ii) The external actions act on the boundary C only,
namely: Fi � 0; fi � 0; c � 0 (and, hence Q � 0) in X.
Thus the relevant domain integral data will not show
up in subsequent developments, but could be trivially
recovered.

(iii) The domain X contains a homogeneous poroelastic
medium. The extension of the present approach to
zone-wise inhomogeneous system could be carried out
according to the path of reasoning proposed for the
GSBEM in elastodynamics by Maier et al., (1991).

Henceforth, matrix notation will be frequently adopted,
bold-face symbols denoting matrices (or vectors) and a
superscript ‘‘t’’ transposition.

Let the domain X be thought of as embedded in a
homogeneous poroelastic ‘‘free’’ space X

1
. We denote by

Cÿ and C� two (smooth) surfaces infinitely close to C: the
former inside X with unit outward normal mÿ (coincident
with the outward normal vector m to C, alternatively de-
noted by n�; the latter outside X and conceived as the
boundary of the exterior, complementary domain X

1

ÿ X,
endowed with outward normal m� � ÿmÿ � ÿm. Marking
by superscripts + and ) quantities defined over C� and
Cÿ, respectively, let the following discontinuities be de-
fined across C at all points n 2 C:

D t � t� � tÿ; D u � u� ÿ uÿ �16a�

D p � p� ÿ pÿ; D v � ÿ�v� � vÿ� �16b�

If these discontinuities are now conceived as external
actions (or ‘‘sources’’) acting on the unbounded poro-
elastic space X

1
as functions of n 2 C (‘‘source point’’ or

‘‘load point’’) and of time s�0 � s � T�, their effects in the
field point x�6� n� at time t > s, can be evaluated by su-
perposition through Green’s functions of X

1
, which are

provided in analytical form in Appendix A and discussed
in Section 4. These two-points functions or kernels will be
gathered in matrices (scalars in some cases) denoted by
Ghk. The former subscript h�� u; t; v; p� is intended to
specify the nature of the effect at �x; t�, corresponding to
solid phase displacements, total tractions, cumulative
normal flux and pore pressure, respectively. The latter
subscript k�� u; t; v; p� specify the nature of the dis-
continuity source concentrated at �n; s�, precisely: sub-
script u corresponds to the static traction discontinuity Dt
as the cause; t to the kinematic source, i.e. to displacement
discontinuity Du; v recalls the pressure jump Dp as the
cause; p refers to the jump Dv of the time-integrated
normal flux (note that each second subscript uses the
symbol of the conjugate of the relevant source quantity).

The arguments of the above influence functions will be
omitted later for brevity, unless needed to avoid ambi-
guity. They read: �x; n; t ÿ s; �;
), where � becomes n
and/or 
 becomes m whenever Ghk depends also on the
outward normal n in x (it does for h � t and v) and/or the
outward normal m in n (it does for k � t and v, i.e. for
concentrated jumps of displacements and pressure across
C in n).

Adopting the above symbology, we can express formally
the announced superposition for each one of the four
kinds of effects in the free space X

1
due to discontinuity

sources of the four kinds specified by Eqs. (16a) and (16b)
and distributed on C. This effect superposition can be cast
into the following concise form:
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Equation (17) concerning the poroelastic space X
1

is
linked to the BIV problem formulated in Section 2 for the
actual system in X � X0C, if the following provisions are
taken.

(a). The effects on the l.h.s. of Eq. (17) are evaluated on
x 2 Cÿ and identified with the four actual boundary fields,
each one of which is known or unknown on disjointed
complementary parts of C, according to the boundary
conditions (8), (9a) and (14). Only the given fields (barred
symbols) and the relevant parts of C are preserved on the
l.h.s. of Eq. (17), which thus is reduced to the vector of
data shown below on the r.h.s of Eq. (18).

(b). The external domain X
1
ÿ X is imposed to be un-

perturbed: namely, in the expressions (16a) and (16b) of
the discontinuities all the former addends (marked by + as
concerning C�) are set to zero. The latter addends (minus,
on Cÿ) in Eqs. (16a) and (16b) are identified with the given
fields (barred symbols) on the relevant portions of C ac-
cording to conditions (8), (9a) and (14), and with the
unknown fields on their corresponding complements of C.

By means of the above interventions in Eq. (17), one
arrives at the following system of integral equations which
governs the solution, on the boundary alone, to the BIV
problem of Section 2, subject to the weak restrictions
adopted at the beginning of the present Section:

u on Cu

ÿt on Ct

ÿv on Cv

p on Cp

2

6

6

6

4

3

7

7

7

5

�x;t�

�

Z t

0

Z

Ck

Guu ÿGut ÿGuv ÿGup

ÿGtu Gtt Gtv Gtp

ÿGvu Gvt Gvv Gvp

Gpu ÿGpt ÿGpv ÿGpp

2

6

6

6

4

3

7

7

7

5

t on Cu

u on Ct

p on Cv

v on Cp

2

6

6

6

4

3

7

7

7

5

�n;s�

dCds

�

Z t

0

Z

Ck

Guu ÿGut ÿGuv ÿGup

ÿGtu Gtt Gtv Gtp

ÿGvu Gvt Gvv Gvp

Gpu ÿGpt ÿGpv ÿGpp

2

6

6

6

4

3

7

7

7

5

t on Ct

u on Cu

p on Cp

v on Cv

2

6

6

6

4

3

7

7

7

5

�n;s�

dCds

�18�

The subscript k which identifies the space-integration
domain Ck, in Eq. (18) and elsewhere later, is meant to
equal the second (column) subscript (u; t; v; p in turn) of
the integrand kernels Ghk.

Denote by Y the vector which collects unknowns on the
r.h.s. of Eq. (18); by L the relevant integral operator, by D a
vector which gathers all data, i.e. the difference between
the original boundary data on the l.h.s. of Eq. (18) and
their integral transforms on the r.h.s.. Thus the BIE (18)
can be compactly rewritten in the form:

LY�n; s� � D�x; t� �19�

where 0 � s � t � T, and x 2 Ch; n 2 Ck, with subscripts
h and k specified in Eq. (18).

The operator L is said to be symmetric if it satisfies the
condition

< Y 0

; LY >�< Y; LY 0

>; 8Y;Y 0

�20�

where Y and Y 0 are two arbitrary vectors of variable fields
defined on their respective parts of C like in Eq. (18), and
< Y 0

; LY > denotes a convolutive bilinear form (con-
volutive with respect to time t) associated to the operator
L, namely:

< Y 0

; LY > �

Z

Ch

Z T

0
Y 0t
�x;T ÿ t�LY�n; t�dtdCx

�21�

Here in Ch subscript h � u; t; v; p equals the first (row)
index of the integrand kernel Gkh according to Eq. (18).

Symmetry of L in the above sense will be proven in
Section 5, after focusing in the next Section on some basic
properties of the Green’s functions which are contained in
L according to Eq. (18).

4
Reciprocal properties of the Green’s functions
for the poroelastic space
The linear, coupled constitutive law for poroelastic mate-
rials, Eqs. (5) and (6), exhibits the following reciprocal
property of Betti type (see, e.g. Cheng and Predeleanu,
1987):

r1
ije

2
ij � p1f2

� r2
ije

1
ij � p2f1

�22�

u

t

v

p

2

6

6

6

4

3

7

7

7

5

�x;t�

�

Z t

0

Z

C

Guu�x; n; t ÿ s;�;
� Gut�x; n; t ÿ s;�; m� Guv�x; n; t ÿ s;�; m� Gup�x; n; t ÿ s;�;
�

Gtu�x; n; t ÿ s;n;
� Gtt�x; n; t ÿ s;n; m� Gtv�x; n; t ÿ s; n; m� Gtp�x; n; t ÿ s;n;
�

Gvu�x; n; t ÿ s;n;
� Gvt�x; n; t ÿ s;n; m� Gvv�x; n; t ÿ s;n; m� Gvp�x; n; t ÿ s;n;
�

Gpu�x; n; t ÿ s;�;
� Gpt�x; n; t ÿ s;�; m� Gpv�x; n; t ÿ s;�; m� Gpp�x; n; t ÿ s;�;
�

2

6

6

6

4

3

7

7

7

5

Dt

Du

Dp

Dv

2

6

6

6

4

3

7

7

7

5

�n;s�

dCds

�17�
172



where superscripts 1 and 2 denote two independent sys-
tems of field quantities. More meaningfully, it reflects the
path-independent (i.e. conservative, holonomic, thermo-
dynamically reversible) nature of the poroelastic material.
In other terms, the above property implies the exact-dif-
ferential character of the work increment:

dW � rijdeij � pdf �23�

The constitutive reciprocity expressed by Eq. (22) leads to
a Betti-like theorem and to other far-reaching consequences
in linear poroelasticity theory. In particular, it provides the
basis for the proof, given below, of the reciprocal property of
the Green’s functions concerned herein.

Starting from Betti’s reciprocal property (22) and con-
sidering the unbounded domain X

1
, Pan (1991) showed

that, for given discontinuities on C of solid and fluid
displacements (Dui�n; s� with normal mk�n�, and Dv�n; s�,
respectively), the consequent solid displacements at (x; t�
can be expressed by the following representation formula:

uj�x; t� �
Z

C

Z t

0
�ÿDui�n; s�r

j
ik�x; n; t ÿ s�mk�n�

�Dv�n; s�pj
�x; n; t ÿ s��dsdCn

�24�

In this equation rj
ik and pj are the total stress and pressure,

respectively, at �x; t�due to an instantaneous point force (or,
equivalently, to a concentrated, traction discontinuity) of
unit impulse in the j-direction at �n; s�. From Eq. (24) one
immediately obtains the Green’s functions for solid dis-
placements corresponding to the unit discontinuity source
Dui�n; s� with normal mk�n�, and Dv�n; s�, respectively:

uik
j �x; n; t ÿ s� � ÿrj

ik�x; n; t ÿ s� �25a�

uv
j �x; n; t ÿ s� � pj

�x; n; t ÿ s� �25b�

The Green’s functions for the point force, i.e., those on the
r.h.s of Eqs. (25a) and (25b) can be found in Cheng and
Predeleanu (1987) or Pan (1991). By observing the analytical
expressions of those Green’s functions (see Appendix A)
and exchanging in them the positions of the source and field
points, one notices that:

uik
j �x; n; t ÿ s� � rj

ik�n; x; t ÿ s� �26a�

uv
j �x; n; t ÿ s� � ÿpj

�n; x; t ÿ s� �26b�

Equation (26b) can be re-interpreted in terms of the in-
fluence functions used for effect superpositions in Sec. 3
and re-written in the notation adopted there. Thus
Eq. (26b) yields the following reciprocity relation between
matrix-valued kernels in the former terms on the r.h.s.of
Eq. (18), i.e. in the integral operator L:

Gt
up�x; n; t ÿ s;�;
� � ÿGpu�n; x; t ÿ s;�;
� �27�

Equation (26a) can be multiplied on both sides by mk�n� to
give

uik
i �x; n; t ÿ s�mk�n� � rj

ik�n; x; t ÿ s�mk�n� �28�

which is equivalent to the further relation between two
other matrix-valued kernels in Eq. (18):

Gt
ut�x; n; t ÿ s;�; m� � Gtu�n; x; t ÿ s; m;
� �29�

The formulae gathered in Appendix A and paths of rea-
soning similar to the above ones which led to Eqs. (27) and
(29) can be followed to derive reciprocity relations for each
pair of off-diagonal kernels (hk and kh) of the former matrix
in Eq. (18) and for the kernels on its main diagonal, namely.

Gt
hk�x; n; t ÿ s;�;
� � Gkh�n; x; t ÿ s;�;
�;

h; k � u; t; v; p
�30�

5
Symmetry of the boundary integral operator L
and variational property on the boundary
In the bilinear form Eq. (21), following Maier et al. (1991),
let us rearrange the integration sequences and make use of
the Heaviside function H�t ÿ s� (� 1 for s < t; � 0 for
s > t; 0 � H � 1 for s � t�. Thus the time convolutive
form of Eq. (21) can be expressed alternatively as follows:

< Y 0

; LY >�

Z T

0

Z T

0
�

�

�H�t ÿ s�dsdt �31�

where the symbol ��� in the integrand means:

�

�

� �

h

Z

Cu

Z

Cu

t0t�x;T ÿ t�Guut�n; s�

ÿ

Z

Cu

Z

Ct

t0t�x;T ÿ t�Gutu�n; s�

ÿ

Z

Cu

Z

Cv

t0t�x;T ÿ t�Guvp�n; s�

ÿ

Z

Cu

Z

Cp

t0t�x;T ÿ t�Gupv�n; s�

ÿ

Z

Ct

Z

Cu

u0t�x;T ÿ t�Gtut�n; s�

�

Z

Ct

Z

Ct

u0t�x;T ÿ t�Gttu�n; s�

�

Z

Ct

Z

Cv

u0t�x;T ÿ t�Gtvp�n; s�

�

Z

Ct

Z

Cp

u0t�x;T ÿ t�Gtpv�n; s�

ÿ

Z

Cv

Z

Cu

p0�x;T ÿ t�Gvut�n; s�

�

Z

Cv

Z

Ct

p0�x;T ÿ t�Gvtu�n; s�

�

Z

Cv

Z

Cv

p0�x;T ÿ t�Gvvp�n; s�

�

Z

Cv

Z

Cp

p0�x;T ÿ t�Gvpv�n; s�

�

Z

Cp

Z

Cu

v0�x;T ÿ t�Gput�n; s�
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ÿ

Z

Cp

Z

Ct

v0�x;T ÿ t�Gptu�n; s�

ÿ

Z

Cp

Z

Cv

v0�x;T ÿ t�Gpvp�n; s�

ÿ

Z

Cp

Z

Cp

v0�x;T ÿ t�Gppv�n; s�
i

dn dx

�32�

In Eq. (32), like Eq. (34) below, the dependencies of the
Green’s function Ghk or Ghk [e.g.: Ghk�x; n; t ÿ s;�;
�] are
omitted for brevity.

Similarly, for < Y; LY 0

> we have:

< Y; LY 0

>�

Z T

0

Z T

0
�

�0

�H�t ÿ s�ds dt �33�

where:

�

�0

� �

h

Z

Cu

Z

Cu

tt
�x;T ÿ t�Guut0�n; s�

ÿ

Z

Cu

Z

Ct

tt
�x;T ÿ t�Gutu

0

�n; s�

ÿ

Z

Cu

Z

Cv

tt
�x;T ÿ t�Guvp0�n; s�

ÿ

Z

Cu

Z

Cp

tt
�x;T ÿ t�Gupv0�n; s�

ÿ

Z

Ct

Z

Cu

ut
�x;T ÿ t�Gtut0�n; s�

�

Z

Ct

Z

Ct

ut
�x;T ÿ t�Gttu

0

�n; s�

�

Z

Ct

Z

Cv

ut
�x;T ÿ t�Gtvp0�n; s�

�

Z

Ct

Z

Cp

ut
�x;T ÿ t�Gtpv0�n; s�

ÿ

Z

Cv

Z

Cu

p�x;T ÿ t�Gvut0�n; s�

�

Z

Cv

Z

Ct

p�x;T ÿ t�Gvtu
0

�n; s�

�

Z

Cv

Z

Cv

p�x;T ÿ t�Gvvp0�n; s�

�

Z

Cv

Z

Cp

p�x;T ÿ t�Gvpv0�n; s�

�

Z

Cp

Z

Cu

v�x;T ÿ t�Gput0�n; s�

ÿ

Z

Cp

Z

Ct

v�x;T ÿ t�Gptu
0

�n; s�

ÿ

Z

Cp

Z

Cv

v�x;T ÿ t�Gpvp0�n; s�

ÿ

Z

Cp

Z

Cp

v�x;T ÿ t�Gppv0�n; s�
i

dn dx �34�

Taking into account for the Greezn’s functions the
symmetric properties in space (for any t ÿ s) pointed out
in Section 4, i.e. G t

up�x; n; t ÿ s;�;
�

� ÿG t
pu�n; x; t ÿ s;�;
�, etc., it can be easily shown that

this expression is exactly equal to that given in Eq. (31).
Therefore, the symmetry property of the operator L in the
sense of Eq. (20) (namely < Y; LY 0

>�< Y 0

; LY >, for
any Y and Y 0) is arrived at.

As a consequence, the boundary source distributions Dt
(on Cu � T), Du (on Ct � T), and Dp (on Cv � T), Dv (on
Cp � T), which solve the transient poroelastic problem in
its integral formulation are characterized by the statio-
narity of the functional

F�Y�x; t�� �
1
2
< LY;Y > ÿ < D;Y > �35�

This statement is proved by the simple traditional path
of reasoning which follows. The variation of this functional
reads:

dF �

1
2
< LdY;Y > �

1
2
< LY; dY >

�

1
2
< LdY; dY > ÿ < D; dY > �36�

By virtue of the symmetry property, the first variation
becomes

d�1�F �< LY ÿ D; dY > �37�

Thus, the stationarity of F, namely,

d�1�F � 0; for any dY �38�

is both necessary and sufficient for Eq. (19) to be verified, i.e.
for Y to represent the boundary solution of the poroelastic
problem.

6
Discretization in space and time
The unknown boundary fields of tractions t, solid
displacements u, pressure p and fluid displacement v, can
now be modeled over the time interval T and on the re-
levant boundary portions Cu;Ct;Cv and Cp, respectively,
subdivided into BE:

t�x; t� � N t�x; t�Xt ; u�x; t� � Nu�x; t�Xu �39a�

p�x; t� � Np�x; t�Xp ; v�x; t� � Nv�x; t�Xv �39b�

where Nh and Xh denote matrices of interpolation func-
tions and vectors of governing variables, respectively, with
h = t, u, p, v.

Let the above discretization be substituted into Eq. (18)
and let the four BIEs in Eq. (18) be enforced in the Ga-
lerkin weighted-residual sense, i.e. using as weights the
same shape matrices N t;Nu;Np and Nv on Cu;Ct;Cv and
Cp, respectively. Thus, Eq. (18) generates the system of
linear algebraic equations:

Auu Aut Auv Aup

Atu Att Atv Atp

Avu Avt Avv Avp

Apu Apt Apv App

2

6

6

4

3

7

7

5

Xt

Xu

Xp

Xv

8

>

>

<

>

>

:

9

>

>

=

>

>

;

�

Du

Dt

Dv

Dp

8

>

>

<

>

>

:

9

>

>

=

>

>

;

�40�
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having set e.g.:

Auu �

Z T

0

Z

Cu

N t
u�x;T ÿ t�

�

Z t

0

Z

Cu

Guu�x; n; t ÿ s;�;
�

� N t�n; s�dndsdxdt �41a�

Aut �ÿ

Z T

0

Z

Cu

N t
u�x;T ÿ t�

�

Z t

0

Z

Ct

Gut�x; n; t ÿ s;�; m�

� N t�n; s�dndsdxdt �41b�

Du �ÿ

Z T

0

Z t

0

Z

Cu

Nt
u�x;T ÿ t�

�

�

Z

Ct

Guut�n; s�dnds

ÿ

Z

Cu

Gutu�n; s�dnds

ÿ

Z

Cp

Guvp�n; s�dnds

ÿ

Z

Cv

Gupv�n; s�dndt ÿ u�x�

�

dxdt �42�

and similarly for the other submatrices Aij of coefficients
and for the other subvectors Di of data, �i � t; v; p; j �
u; t; v; p�.

Alternatively, the discretization (39) of the unknown
boundary fields gathered in Y can be introduced into the
functional F, Eq. (35), and the stationarity (38) of this
functional can be enforced with respect to the nodal vari-
ables in vector X governing those fields through Eqs. (39).
Such an alternate path leads to the linear algebraic equation
system (40), which can be compactly rewritten as:

AX � D �43�

It can be easily seen that the coefficient matrix A in
Eq. (40) or (43) turns out to be symmetric, i.e.,
Auu � At

uu;Aut � At
tu etc., so that A � At, as a consequence

of the reciprocity relations between Green’s functions for
the poroelastic space pointed out in Sec. 4. It is worth
noting that matrix A is not definite in sign, i.e. the sta-
tionarity corresponds to a saddle point (not to a mini-
mum) of F, which is a nonconvex quadratic function
(functional before modeling) of the boundary unknowns.

A noteworthy specialization of field modeling Eq. (39)
consists of splitting the shape function matrices Nh into
products of matrices of shape functions in space and time
separately (the latter N 00

h being a block-diagonal matrix,
where each diagonal block pertaining to a node in space
consists of a row of shape functions for each one of the
relevant nodes over the time interval T).

Nh�x; t� � N 0

h�x�N
00

h�t� h � t; u; p; v �44�

Unstructured BE meshes in space and time (over C� T)
imply laborious procedures of geometric data preparation.
However, they have the advantage of refining only in the
vicinity of locations xk and instants tk where and when
detailed information on the system response is needed.

The variable separation (44) alleviates the mesh gen-
eration process by reducing its dimensionality, but may
entail redundant output since refinement in space dictated
by events in certain time subintervals are often un-
necessary in others.

The time interval T can be regarded either as encom-
passing the whole phenomenon of interest, or as a time
step in a step sequence. In the latter case, clearly, the size
of each step in the sequence should be kept much smaller
than that of the single problem in the former case. Also in
the latter (time-stepping) approach re-initialization at the
starting instant of each time step implies a burden possibly
compensated for by the preservation of the coefficient
matrix along a sequence of equal steps.

The above computational alternatives and relevant cost-
benefit comparative assessments are beyond the present
purposes. They are, however, similar to those available in
the literature with reference to (uncoupled) BIV problems
of, say, linear dynamics and transient heat conduction (see
e.g.: Manolis and Beskos, 1989; Wiebe and Antes, 1991;
Dominguez, 1992; Bonnet, 1995).

The integrations of coefficient matrices, like those in Eq.
(41), are preferably to be carried out analytically for ac-
curacy, in view of the singularities of the kernels involved.

The Green’s functions in Gtt , see Eq. (A11), and Gtp, see
Eq. (A14), are ‘‘hypersingular’’ (singular like rÿ3 in 3-D)
and, hence, require special ‘‘ad hoc’’ provisions. The pe-
culiar aspects and difficulties of the double integrations
implied by the present formulations are common to all
symmetric Galerkin BEMs and will not be examined here. In
fact, they have been investigated in recent books (Kane, 1994;
Bonnet, 1995) and in several publications surveyed there,
though with reference to uncoupled BV and BIV problems.

7
Conclusions
A variational formulation has been developed herein for
the transient linear poroelastic analysis centered on ‘‘di-
rect’’ boundary integral equations (‘‘direct’’ in the sense
that the unknowns are actual physical quantities). These
equations have been generated so that the integral op-
erator (which transforms unknown boundary fields into
data condensing external actions and initial values) turns
out to be symmetric with respect to a bilinear form con-
volutive in time. Use was made of double-layer sources
(discontinuities of solid displacements and of fluid pres-
sure, concentrated in space and time) and the analytical
expressions of all the employed time-dependent Green’s
functions for the two- and three-dimensional isotropic
homogeneous poroelastic space have been gathered from
the literature or generated ‘‘ad hoc’’. Various boundary
element discretizations based on the above variational
formulation have only briefly been envisaged herein and
will be investigated elsewhere. However, it seems reason-
able to expect that such discretizations of the present
coupled (two-phase) time-dependent problem will provide
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the computational benefits of symmetry, pointed out by
recent work for uncoupled single-phase problems (see e.g.:
Sirtori et al., 1992; Maier et al., 1993; Balakrishna et al.,
1994; Kane, 1994; Bonnet, 1995).

Appendix

A
Time-dependent Green’s functions
for the isotropic poroelastic space
It appears useful to provide below, with uniform notation,
the analytical expressions of all the time-dependent
Green’s functions (or ‘‘fundamental solutions’’) for the
‘‘free isotropic poroelastic space’’ X

1
, which are employed

in the present symmetric formulation (Section 3) of
transient isotropic poroelastic analysis. In view of the re-
ciprocity properties discussed in Section 4, only 10 of the
16 kernels Ghk (or Ghk) in the matrix of Eq. (18) need to be
specified, since the reciprocity relations of Sec. 4 confer
symmetry to that matrix.

Most of these two-point functions are available in the
literature (often in different formulations) and the relevant
sources are specified in the reference list. The Green’s
functions which could not be found in the literature have
been derived ‘‘ad hoc’’. Their detailed generation is pre-
sented in Appendix B.

Superscript 2 and 3 on symbol G will denote two-di-
mensional (2-D) plane-strain and three-dimensional (3-D)
situations, respectively; whenever possible to cover both
cases by a single expression, use will be made of super-
script m, being understood that either m � 2 or m � 3. We
represent by r � x ÿ nj j the distance between the field
point x and the souce point n; by d the Dirac distribution;
by x an integration variable (length). The constant c is the
generalized consolidation coefficient (Rice and Cleary,
1976) defined by:

c �
2kGB2

�1 ÿ m��1 � mu�
2

9�1 ÿ mu��mu ÿ m�
�A1�

A.1: Guu�x; n; t ÿ s;�;
� = displacement at �x;t) of the
solid skeleton in coordinate direction i, due to a unit static
discontinuity source at �n; s� in the direction j (modified
from Cheng and Predeleanu, 1987):

G2ij
uu �

1
8pG�1 ÿ mu�

d�t ÿ s��ÿ�3 ÿ 4mu�dij ln�r� � rirj�

�

c�mu ÿ m�
4pG�1 ÿ mu��1 ÿ m�r2 �dij�1 ÿ eÿz

�

ÿ 2rirj�1 ÿ eÿz
ÿ zeÿz

��

�A2�

G3ij
uu �

1
16pG�1 ÿ mu�r

d�t ÿ s�
h

�3 ÿ 4mu�dij

� rirj

i

�

c�mu ÿ m�
2G�1 ÿ mu��1 ÿ m�

���

z
p

���

p
p

r

� �3

�

h

rirjeÿz
�

dij ÿ 3rirj

r3

Z r

0
eÿ

x2
4c�tÿs�x2dx

i

�A3�

having set:

z �
r2

4c�t ÿ s�
; ri �

xi ÿ ni

r
�A4�

A.2: Gut�x; n; t ÿ s;�; m� = displacement at �x, t) in di-
rection i, due to a unit discontinuity of the k-th displace-
ment component as source across a surface element of
normal m at �n; s� (Pan, 1991):

Gmik
ut �

d�t ÿ s�

4p�2r�mÿ2
�1 ÿ mu�r

h

�1 ÿ 2mu�

� �ÿrimk � dikrm � rkmi� � mrirkrm

i

�

c�mu ÿ m�f m

2p�2r�mÿ2
�1 ÿ mu��1 ÿ m�

h

rimk � dikrm � rkmi

ÿ �m � 2�rirkrm�gm ÿ

zeÿzri�mk ÿ rkrm�

cr�t ÿ s�

i

�A5�

where m � 2 and m � 3 for 2-D plane-strain and 3-D
cases, respectively; and where it has been set:

rm � rimi ; f 2 � 1 ; f 3 �
r

������������������

pc�t ÿ s�
p �A6�

g2 �
2�1 ÿ eÿz

ÿ zeÿz
�

r3 ; g3 �
ÿeÿz

2cr�t ÿ s�

�

3
2cr4

�t ÿ s�

Z r

0
eÿ

x2
4c�tÿs�x2dx �A7�

A.3: Guv �x; n; t ÿ s;�; m� = displacement in direction j at
�x,t), due to a unit pressure jump across a surface of
normal m, concentrated at �n; s� (modified from Cheng and
Predeleanu (1987), and obtained by making use of the
symmetry property of the Green’s functions):

G2j
uv �

3c�mu ÿ m�
4pGB�1 ÿ m��1 � mu�

h mj ÿ 2rmrj

r2
�eÿz

ÿ 1�

ÿ

rmrjeÿz

2c�t ÿ s�

i

�A8�

G3j
uv �

ÿ3c�mu ÿ m�

16pGB�1 ÿ m��1 � mu�c�t ÿ s�
������������������

cp�t ÿ s�
p

� rmrjeÿz
�

mj ÿ 3rmrj

r3

Z r

0
eÿ

x2
4c�tÿs�x2dx

� �

�A9�

A.4: Gup�x; n; t ÿ s;�;
� = displacement in direction i at
�x,t), due to a time-integrated flux discontinuity as a unit
source concentrated at �n; s�(Pan, 1991):

Gmi
up �

B�1 � mu�ri

3p�2r�mÿ1
�1 ÿ mu�

h

d�t ÿ s� ÿ
fmz eÿz

t ÿ s

i

�A10�

A.5: Gtt�x; n; t ÿ s; n, m) = traction in direction i on a
surface with normal n at �x,t), due to a unit kinematic
discontinuity source at �n; s� across a surface of normal m
(Pan, 1991):

176



Gmik
tt �

G

2p�2r�mÿ2
�1 ÿ mu�r2

�ÿm�m � 2�rirnrkrm

� mmu�mirnrk � mjnjrirk � dikrnrm � nkrirm�

� m�1 ÿ 2mu��nirkrm � mkrirn� � �1 ÿ 2mu�

� �mink � dikmjnj ÿ �1 ÿ 4mu�nimk�d�t ÿ s�

�

cG�mu ÿ m�fm

p�1 ÿ m��1 ÿ mu��2r�mÿ2

n

nirkrm � mkrirn�

� dikrmrn � nkrirm � mirnrk

� mjnjrirk � �m ÿ 2�nimk ÿ �m � 4�rirnrkrm

ÿ2z�ni ÿ rirn��mk ÿ rkrm��
eÿz

4c2
�t ÿ s�2

ÿ ��m � 2��nirkrm � mkrirn � dikrnrm

� nkrirm � mirnrk � njmjrirk� ÿ nimk ÿ dikmjnj

ÿ nkmiÿ�m � 2��m � 4�rirnrkrm�
gm

r

o

�A11�

where

rn � rini �A12�

A.6: Gtv �x, n; t ÿ s; n, m) = traction component k at �x,t),
due to a pressure jump concentrated at �n; s� with normal
m (from Pan, 1991, using the symmetric property of the
Green’s functions):

Gmk
tv �

ÿkGB�1 � mu�fm

3p�2r�mÿ2
�1 ÿ mu�

h

�nkrm � mkrn � mjnjrk

ÿ �m � 2�rmrkrn�gm ÿ

zeÿzrm�nk ÿ rkrn�

cr�t ÿ s�

i

�A13�

A.7: Gtp �x, n; t ÿ s; n, 
) = traction in direction i at �x,t)
with normal n, due to a unit discontinuity source of time-
integrated flux at (n; s) (Pan, 1991):

Gmi
tp �

GB�1 � mu�

3p�2r�mÿ2
�1 ÿ mu�r2

n

�ni ÿ m ritn�d�t ÿ s�

� ��m ÿ 1�ni ÿ 2z�ni ÿ rirn��
fm zeÿz

t ÿ s

o

�A14�

A.8: Gvv ( x, n; t ÿ s; n, m) = time-integral of flux at �x,t)
across a surface of normal n, due to a unit pressure jump
source at �n; s� across a surface of normal m (See
Appendix B):

G2
vv �

ÿ9c�1 ÿ mu��mu ÿ m�

4pGB2
�1 ÿ m��1 � mu�

2

hnjmj ÿ 2rmrn

r2

� �eÿz
ÿ 1� ÿ

rmrneÿz

2c�t ÿ s�

i

�A15�

G3
vv �

9c�1 ÿ mu��mu ÿ m�

16pGB2
�1 ÿ m��1 � mu�

2c�t ÿ s�
������������������

cp�t ÿ s�
p

� �rmrneÿz
�

njmj ÿ 3rmrn

r3

Z r

0
eÿ

x2
4c�tÿs�x2dx� �A16�

A.9: Gvp �x, n; t ÿ s; n, 
) = time-integrated flux at �x,t)
with normal n, due to a unit time-integrated flux source at
�n; s� (Pan, 1991):

Gm
vp �

rnfmzeÿz

p�2r�mÿ1
�t ÿ s�

�A17�

A.10: Gpp �x, n; t ÿ s; �;
) = pressure at �x,t) due to a unit
time-integrated flux jump concentrated at �n; s� (Pan,
1991):

Gm
pp � ÿ

fmeÿz
�m ÿ 2z�

8pk�2r�mÿ2
�t ÿ s�2 �A18�

It is worth stressing that each of the above kernels can be
interpreted as describing the response in terms of one kind
of quantity (e.g. displacement) of X

1
to an imposed dis-

continuity concentrated in space and time. As usual, such
concentration can be conceived as a limiting process
which leads to modelling a discontinuity by Dirac dis-
tributions in space d�x ÿ n� and in time d�t ÿ s�.

B
Generation of Green’s function GVV
for the isotropic poroelastic space
As shown by Pan (1991), the j-th component uj of the solid
displacement at �x,t) can be represented by the following
integral:

uj�x; t� �
Z

Cn

dC
Z t

0
ds
n

�

rik�n; s�u
j
i�x; n; t ÿ s�

� ui�n; s�r
j
ik�x; n; t ÿ s�

�

mk

ÿ

�

v�n; s�pj
�x; n; t ÿ s�

� p�n; s�vj
�x; n; t ÿ s�

�

o

�B1�

Here the quantities with superscript j denote effects at �x,t)
due to an instantaneous point force of unit impluse in the
j-direction at �n; s�, and it has been set:

vj
�x; n; t ÿ s� � vj

i�x; n; t ÿ s�mi�n� �B2�

Let us assume that the static quantities are dis-
continuous while the kinematic quantities are continuous
across C, namely:

Dt � t� � tÿ 6� 0; Dp � p� ÿ pÿ 6� 0 �B3�

Du � u� ÿ uÿ � 0; Dv � ÿ�v� � vÿ� � 0 �B4�

Integrating Eq. (B1) along the two sides of C with condi-
tions (B3) and (B4) and assuming that the normal to C be
the same as that to Cÿ, we arrive at the following integral
expression for the solid displacements:

uj�x; t� �
Z

Cn

dC
Z t

0

h

Dti�n; s�u
j
i�x; n; t ÿ s�:

� Dp�n; s�vj
�x; n; t ÿ s�

i

ds �B5�

This equation implies that:
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uDti
j �x; n; t ÿ s� �uj

i�x; n; t ÿ s�;

u
Dp

j �x; n; t ÿ s� �vj
�x; n; t ÿ s� �B6a; b�

Equation (B6a) expresses the equivalence of a point force
and a point traction in the sense that the solid displace-
ment uDti

j in the j-direction due to a point traction-jump in
the i-direction is the same as the solid displacement uj

i in
the i-direction due to a point force in the j-direction.
Equation (B6b) states that the solid displacement uDp

j in the
j-direction due to a point pore pressure jump is equivalent
to the relative fluid displacement vj in the outward normal
direction due to a point force in the j-direction.

Since the point-force Green’s function for the relative
fluid displacement is available (Cheng and Predeleanu,
1987; see also Eqs. (A8) and (A9) in Appendix A), we can
easily obtain the expression of the solid displacements due
to a point pore pressure jump. These expressions read, for
two- and three-dimensional situations, respectively:

for 2-D : uDp
j �x; n; t ÿ s�

�

3c�mu ÿ m�
4pGB�1 ÿ m��1 � mu�

h dij ÿ 2rirj

r2 �eÿz
ÿ 1�

ÿ

rirjeÿz

2c�t ÿ s�

i

mi �B7a�

for 3-D : uDp
j �x; n; t ÿ s�

�

ÿ3c�mu ÿ m�

16pGB�1 ÿ m��1 � mu�c�t ÿ s�
������������������

cp�t ÿ s�
p

�

h

rirjeÿz
�

dij ÿ 3rirj

r3

Z r

0
eÿ

x2
4c�tÿs�x2dx

i

mi �B7b�

For a problem without fluid injection (i.e., Q = 0), the
relative fluid displacement due to a pore pressure jump
can be related to the above solid displacements; in fact
(Pan, 1991):

vDp
j �x; n; t ÿ s� � ÿ

3�1 ÿ mu�

B�1 � mu�
uDp

j �x; n; t ÿ s� �B8�

Substituting Eqs (B7a,b) into Eq (B8) and projecting the
result onto the normal direction, we arrive at the Green’s
function Gvv (for 2-D and 3-D, respectively):

for 2-D : vDp
�x; n; t ÿ s�

�

ÿ9c�1 ÿ mu��mu ÿ m�

4pGB2
�1 ÿ m��1 � mu�

2

h dij ÿ 2rirj

r2 �eÿz
ÿ 1�

ÿ

rirjeÿz

2c�t ÿ s�

i

minj �B9a�

for 3-D : vDp
�x; n; t ÿ s�

�

9c�1 ÿ mu��mu ÿ m�

16p GB2
�1 ÿ m��1 � mu�

2c�t ÿ s�
������������������

cp�t ÿ s�
p

�

h

rirjeÿz
�

dij ÿ 3rirj

r3

Z r

0
eÿ

x2
4c�tÿs�x2dx

i

minj �B9b�
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