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This paper presents an efficient and accurate method for the calculation of static Green’s functions in a
multilayered transversely isotropic or isotropic half space. The cylindrical system of vector functions and the
propagator matrix method are used to derive the Green'’s functions in the transformed domain. The
well-known exponentially growing elements in the propagator matrix are fractionated out by propagating the
matrix either upwards or downwards, depending upon the relative vertical location of the source and field
points. The Green’s functions in the physical domain are evaluated numerically by an adaptive Gauss
quadrature with continued fraction expansions. Numerical examples are presented to show that very accurate
Green’s functions.with relatively less Gauss quadrature points can be obtained. These examples also show
clearly the effect of material layering and anisotropy on the displacement and stress fields. © 1997 by Elsevier
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1. Introduction

Since many physical problems can be modeled as a lay-
ered system a lot of research has been carried out related
to layered structures. These studies cover the areas of
piezoelectricity,! thermomechanics,>* microelectronics,*>
electronomagnetics,® poroelasticity,”® viscoelasticity,” '
elastostatics,!' "' and finally, elastodynamics.!* !¢
Numerically, layered structures can be analyzed by
either the domain-discretization methods (e.g., the FEM)
or the boundary element method (BEM). The latter, how-
ever, is more suited than the former to cases where better
accuracy is required due to problems such as stress con-
centrations or where the domain of interest extends to
infinity. It is noted that when solving problems in a
layered system the beauty and main advantage of the
BEM (i.e., discretization of the problem on boundaries
only) may be lost if one approaches the problem by the
sub-domain method (i.e., discretizing along each interface
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combined with suitable continuity conditions there). An
alternative approach that can strictly preserve the BEM’s
beauty and main advantage is to apply the BEM formula-
tion to the layered system with the Green’s functions
being those in the layered system instead of being those in
a homogeneous and infinite domain. By so doing, no
discretization along each interface is necessary while each
layer is strictly discrete. Therefore the key point in the
BEM modeling of layered systems is to provide the Green’s
functions for such systems.

Previously, several approaches have been suggested for
calculating the required Green’s functions in the layered
system for the BEM:

The first method is the state-space approach (or the
mixed method of elastodynamics) as studied by Bahar,!”
Rao and Das,'® Abhyankar and Chandrashekara,'® and
Chandrashekara and Santhosh?® for the elastodynamic
case. In this method solutions are expressed by multiplica-
tion of the matrices, which are functions of the horizontal
differential operators. The involved operators can be re-
leased only for very simple side-boundary geometries (e.g.,
a rectangular plate with simply supported boundaries) or
for horizontal boundaries that extend to infinity.

The most popular approach towards a horizontally infi-
nite and layered system is, however, the transformation
method in which the Fourier or Hankel transform is used
to suppress the horizontal variables (x,y or r,8). The
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transformed coefficients can be found by solving a linear
set of first-order differential equations. The exact solu-
tions of these equations are combinations of exponential
terms of the vertical variable z (see, e.g., Pan'>'?). For
very thin layers Taylor’s series expansion can be used to
approximate the exact solutions.'"?!~2* The advantage of
this approximation is that by keeping only the linear
term®™ numerical inversion of the Fourier or Hankel
transform may be avoided; the disadvantage is that the
accuracy depends on the thickness of each thin layer, and
the results are usually not accurate enough for being used
as the Green’s functions in the BEM. One therefore
needs to resort to the exact solutions for the transformed
coefficients.

For a multilayered medium the unknown transformed
coefficients in all layers can be solved by forming a global
system directly>?® or by the finite-layer approaches such
as the flexibility matrix method, the stiffness matrix
method, or their combination.’>?’"3® When the layer
number is relatively large the global system thus formed
will become very large, and, consequently, methods of this
kind are inefficient for such multilayered media.>**

The best method towards such a medium is the propa-
gator matrix method, which was originated from the work
of Thomson,*! Haskell,*> and Gilbert and Backus.*> In
this method the transformed coefficients in different lay-
ers are related to each other by the multiplication of layer
matrices (or propagator matrices), and thus no global
system needs to be formed. What is required is to solve at
most a 6 X 6 linear system of algebraic equations for the
pure elastic case. When applying the propagator matrix
method to elastodynamics care must be taken when the
frequency is high since the elements in the layer matrix
are growing exponentially with frequency. Some special
approaches have been suggested for avoiding this loss-of-
precision problem, such as the delta matrix or compound
matrix method***> and the generalized reflection /trans-
mission coefficient method.*~*8

When solving the corresponding static problem it is
suggested that one should directly derive the propagator
matrix exactly instead of obtaining it approximately from
its dynamic counterpart by setting the frequency close to
zero. The reasons for this are: (1) all elements in the
propagator matrix for the dynamic case are complex func-
tions, while they are usually real for the static case; (2) the
structures of the solution are different for these two cases,
and one cannot set the frequency exactly to zero in the
dynamics; and (3) for the static case one can directly
multiply each layer matrix without resorting to compli-
cated methods such as the delta matrix or the generalized
reflection /transmission coefficient method, thus saving
computational time. Direct solutions for a layered system
in elastostatics were derived by Singh,* Jovanovich et
al.,’ and Sato and Matsu’ura®' for the isotropic medium;
and by Singh,*? and Yue and Wang>? for the transversely
isotropic medium. Therefore by using the propagator ma-
trix method the transformed coefficients can be derived
exactly without solving a large global system of linear
equations. We now need to invert the transformed coeffi-
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cients to obtain the Green’s functions in the physical
domain.

Previously, several methods have been proposed for the
numerical integration of the transformed coefficients (i.e.,
the inverse transform), which include the discrete wave
number integration® 3¢ (which is similar to the FFT
method), the modal-summation technique,’”>® and vari-
ous numerical quadrature methods as discussed by
Dravinski and Mossessian® (i.e., the polynomial, spline,
Gauss, and the adaptive Clenshaw-Curtis integrations). It
is noted that most of these methods were applied to the
elastodynamic case only. For the elastostatic case the least
squares method, in which the transformed coefficients are
approximated by several exponential-polynomial terms
with their coefficients being determined by using the
method of least squares, was also suggested. This proce-
dure results in a Lipshitz-Hankel-type integral for which
an exact quadration can be found.>®>!-0

In a series of publications®!>!>%! the author intro-
duced the cartesian and cylindrical systems of vector func-
tions into the layered structure modeling with focus on
the solutions due to either surface loadings or internal
dislocations. These two vector systems are extended from
the Fourier and Hankel transforms, but they possess cer-
tain advantages over the latter transform methods. For
one thing the vector function systems can express any
integrable vector function, while the Fourier or Hankel
transforms can do so for scalar functions only. Another
advantage is that, for elastic problems with relatively
higher material symmetry, the propagator matrices in these
two vector systems are exactly the same and the problems
of axially symmetric and two-dimensional deformations
can all be included as special cases of the general
solution.'?!* This approach has been extended and ap-
plied by Ding and Shen®® and Huang®® to some geophysi-
cal problems, and by the author®® to the static and
dynamic problems in multilayered rectangular plates with
simply supported edges.

In this paper the cylindrical system of vector functions
and the propagator matrix method are employed to derive
the Green’s functions in a multilayered transversely
isotropic or isotropic half space. Similar to the loss-of-pre-
cision problem in the dynamic case when frequency is
high, overflow may occur from matrix multiplication when
the layer number is large. In order to avoid such a
problem we proposed a method in which the layer matri-
ces can be multiplied directly without any overflow, thus
the matrix propagation can still be performed very effi-
ciently. In order to numerically integrate the transformed
coefficients an adaptive Gauss quadrature with continued
fraction expansions® % was adopted and modified. Our
experience with this novel numerical quadrature shows
that this method possesses the advantage of giving very
accurate results (or the results with given accuracy re-
quirement) while using the least quadrature points®' and
thus is superior to previous numerical quadratures. Nu-
merical examples presented in this paper show clearly the
effect of material layering and anisotropy on the displace-
ment and stress fields.



2. Green’s functions in the transformed domain

We consider a semi-infinite elastic medium made up of
p — 1 parallel, homogeneous, transversely isotropic (or
isotropic) layers lying over a homogeneous, transversely
isotropic (or isotropic) half space. The layers are num-
bered serially with the layer at the top being Layer 1 and
the half space being Layer p. We place the cylindrical
coordinates at the free surface, and the z-axis is drawn
down into the medium. The kth layer is bounded by the
interfaces z = Zg_ 15 % Evidently we have z;=0and z,

= H, where H is the depth of the last interface. We now
introduce the following cylindrical system of vector func-
tions'> 13

L(r,0;A,m)=e,5(r,0; A,m)

f a
M(r,();)\,m)=( "o +e0r )S(r& Am) (D)

d a
N(r,8;A,m) = (e,;{9 - e,,—)S(r, 0;A,m)

ar

with

S(r,0;A,m)=——1J,(Ar)e'™® )

‘/__

where J,(Ar) is the Bessel function of order m with
m =0 corresponding to the axially symmetric deforma-
tion.

We emphasize again that the cylindrical system of
vector functions is an extension of the Hankel transform
and can be directly applied to a vector function. Since the
above cylindrical system (1) forms an orthogonal and
complete space, any integrable vector function can be
expressed in terms of it. In particular, for the displace-
ment and traction vectors, we have

u(r,0,z)=3 wa [U(2)L(r, 8) + Uy, (z2)M(7,6)

+ Uy (2IN(r, )11 dA

T(r,0,z) = g,e, + 0y,€, + 0,,€ 3)

zZzZ7 2z

o

- Zf [T,(2)L(r, 6) + T, (z)M(r, 8)
m 20
+ Ty (2N(r,8)]AdA

Substituting equation (3) into the equations of equilib-
rium and the constitutive relations we obtained two inde-
pendent sets of simultaneous linear differential equations
for U,,U,,,T,, Ty, and Uy, Ty, respectively.'>'* The ho-
mogeneous solutions for these two sets can be easily
derived and can be expressed in the following compact
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forms:

[EN(D] =[Z"(DIK']

[E"(D]=[Z" (DI K] @
where
[END] ={U(2), AU (2), T, (2) /A, T}, ()} 5)
[E"(2)] = {Uy(2), Ty (2) /A
are the expansion coefficients, and
[K']={ci.c,c5,¢4) )

(K] = {cs,cq)

are constants to be determined. The solution matrices
[Z(2)] and [Z/(2)] in equation (4) can be found in other
papers by the author.'>!?

With the homogeneous solutions (4) we can construct
the following propagating relation, which relates the ex-
pansion coefficients at the top of layer k to those at the
bottom of this layer:

[El(zk41)] = [aI][EI(Zk)]

7
[E(z )] =[a"IE"(z)] @

where z,_; and z; are the depths of the top and bottom
interfaces of layer k, and the matrices [a’] and {a/] are
called propagator matrices (or layer matrices), with their
elements being listed in Pan.!>1

We now assume, without loss of generality, that there
is a point force located along the z-axis at the depth
z=h,ie.,

8(r)8(8)6(z—h)
fj(r,6,2)= n;;

r i’

j=r,0,z

where (n,,ny,n,) are the direction cosines of the unit
force vector in the cylindrical coordinates (r, 8, and z). It
can be shown that this point force will cause the following
discontinuity for the expansion coefficients of the traction
vector:

—n,
T (h—0)=—=;

AT, =T, (h+0) — = m=10
2w
*n,+in,
ATy =Ty (h+0) = Ty(h—-0)= _ZAT;
=+1 (9
mxiny
ATy=Ty(h+0) -~ Ty(h-0) = Ik
m=+1
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where i=+v—1, (nx,ny,nz) are the (x,y,z)-direction
cosines of the unit force vector in the space-fixed carte-
sian coordinates, with x- and y-directions being taken,
respectively, along =0 and 6= m/2 of the cylindrical
coordinates.

Using these discontinuities the propagating relation (7)
and the zero-traction condition at the surface of the
layered half space (i.e., at z=0), the column matrices
[K'], and [K"] can be determined. Therefore the expan-
sion coefficients in equation (5) at any depth (e.g., for
z > h in layer k, ie., z; | <z <z,) can be derived exactly
as:

LE'(2)]
=lai(z =z, )laf, 3+ [a; ]
[z} k"]
[EY(2)] 1o
=lai/(z =z, Dllaf, 11+ [a]) ]
x[Z(H]IK"]

As mentioned earlier overflow may occur from the
multiplication of matrices in equation (10). Take the
isotropic case for example: It can be shown that the result
of multiplication of the propagator matrix [a]] or [af
from layer & to layer p — 1 is proportional to exp{ \(H —z)}
which is exponentially growing, while the column matrix
[K'] or [K']is proportional to exp{ — A(H — h)}. To over-
come this problem we introduce two new propagator
matri%es [b;] and [b}'], which are related to the old ones
by61,7

CHEAES A}
=[bl(z, —z;_ Dlexp{A(z, —z,_ )}
[alil(zk -z )l

= [b{'(z, — 2z, _ Dlexp{A(z; — 2, _ )}

an

where A is the variable introduced in the cylindrical
system of vector functions (1). Since in the new propaga-
tor matrices no element is exponentially growing, there
will be no overflow problem for a multilayered half space
having any number of layers. The exponentially growing
term on the right-hand side of equation (11) is canceled
out by exp{—A(H —h)} in [K'] or [K"]. Therefore in
terms of these new propagator matrices the solutions for
the expansion coefficients (10) can be recast into

[EN(D)] =exp{—Ad,}[b}(z —z,_]
b1+ - |s! |[EN(H)
X[ k 1] [ » 1][ ] (12)

[E(2)] = exp{ - Ad, [ 6] (z — z,_ )]

X[bf 1+ [BIL | LEM(HD]
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where [E/(H)] and [E''(H)} are known column matrices
of the expansion coefficients at z=H, and d,, is a
constant related to the vertical distance between the field
point level z and the source point level 4. It is noted that
equation (12) is applicable to the case when the field point
is below or at the source level, i.e., z >k and that the
matrices [b’] and [b"] propagate from the homogeneous
half space (z =H) upwards. For the case when the field
point is above the source level, similar expressions can be
derived in which the matrices [6] and [b] will propagate
from the surface (z = 0) downwards. Once the expansion
coefficients are determined they can be substituted into
equation (3) to get the displacement and traction vectors.
The remaining stress components can be calculated using
expressions similar to equation (3).'> 13

3. Green’s functions in the physical domain

The Green’s functions obtained above in the transformed
domain need to be integrated numerically to find the
physical domain solutions. Since we have expressed the
solutions in terms of the cylindrical system of vector
functions the individual components of the Green’s func-
tions will be in the cylindrical coordinates. We found that,
of the total 27 Green’s components, only 15 integrals need
to be evaluated.

It is noted that the integrands in the infinite integrals
for the Green’s functions involve the Bessel function,
which is oscillatory and goes to zero slowly when its
variable approaches infinity. Thus the common numerical
integral methods, such as the trapezoidal rule or Simpson’s
rule,”! are not suitable for the current integration. Al-
though the Gauss quadrature has the advantage of giving
high accuracy while using few integral points it usually
requires recomputation of all the integrands when the
order is changed.”

In this paper an adaptive Gauss quadrature, developed
by Patterson®®® and implemented by Chave® into a
FORTRAN program for the numerical integration of the
Hankel transform, is adopted and modified for the evalua-
tion of the Green’s functions in multilayered half spaces.

We first express the infinite integral for each Green’s
function as a summation of partial integration terms:

o N
[ D10 dh= T [, 20,000 dA
0 n=1 An

(13)

In each subinterval a three-point Gauss rule is applied to
approximate the integral. A combined relative-absolute
error criterion is used to check the results. If the error
criterion is not gsatisfied, new Gauss points are added
optimally so that only the new integrand values need to be
calculated. This procedure continues until the selected
error criterion is satisfied.



It is well known that direct summation is feasible only
for rapidly convergent integrals. In order to accelerate the
convergence for a slowly convergent series a continued
fraction expansion approach is also employed.® It was
verified® that although the continued fraction algorithm
is only slightly effective for rapidly convergent series, for
slowly convergent ones, the summation behavior is quite
dramatic.

The original FORTRAN program was written for one
Hankel transform each time. In our case evaluation of 15
infinite integrals is required in order to obtain the total
Green’s displacements and stresses. Thus direct applica-
tion of the original adaptive Gauss quadrature would
result in a lot of computational time because of the
multiplication of the propagator matrices involved. How-
ever we noticed that the integrand f(A,z) in equation
(13), which represents one of the expansion coefficients in
equation (12), is actually the result of the multiplication of
the propagator matrices. Since for a given layered half
space the propagator matrix depends only upon the inte-
gral variable A the original program can therefore be
modified in such a way that for all the Green’s compo-
nents the multiplication of the propagator matrices needs
to be evaluated only once for a given Gauss quadrature
point A. It is apparent that such a modification to the
original adaptive Gauss quadrature saves a lot of compu-
tational time when calculating all the Green’s displace-
ments and stresses.

4. Numerical results

Several numerical examples were selected to verify the
formulation presented above and to show the effect of
material layering and anisotropy on the deformation and
stress fields. Results are presented in nondimensional
forms and are discussed below.

4.1 Comparison with exact closed-form solutions

The Green’s functions in a layered half space can be
verified by letting each layer have identical elastic con-
stants and by comparing the results with those from
Mindlin’s solutions™ for the isotropic case and Pan and
Chou’s solutions™ for the transversely isotropic case.

We assumed a half space composed of three layers with
identical elastic properties (i.e., Model 1 in Table 1). The
interfaces of the layers are at z=1.5 and 2.5 (Figure 1).

Table 1. Elastic properties for three models in a three-layered
half space

Model 1 Model 2 Model 3
E v E v E v
Layer 1 1.0 0.3 1.0 0.3 1.0 0.3
Layer 2 1.0 0.3 20 03 5.0 0.3

Layer 3 1.0 0.3 40 03 25.0 03
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Figure 1. Geometry of a three-layered halif-space.

While the point source is located at (0,0, 2), the field point
can be anywhere in the half space. For both isotropic and
transversely isotropic cases it was found that the Green’s
displacements and stresses obtained by the present nu-
merical method agreed with the exact closed-form solu-
tions up to at least seven significant digits, an excellent
comparison that could seldom be achieved with previous
numerical methods.

4.2 Comparison of results for a half space having
different number of layers

We have also argued that our method can be used for
multilayered half spaces composed of any number of
layers. As a test we divided a homogeneous half space
randomly into 50 layers with interfaces at z =0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.55, 1.6,
1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2.0, 2.05, 2.1, 2.15, 2.2,
2.25,23, 24, 25, 2.6, 2.7, 2.8, 2.85, 2.9, 3.0. It was found
that the Green’s functions in this 50-layered half space
were exactly the same as those in the 3-layered system
(Figure 1), which are almost identical to the exact solu-
tions. This comparison indicates that the current method
is stable with respect to the layer number. This is another
advantage of the present method over some previous ones
by which a homogeneous system with different layer num-
ber predicts different results.”

4.3 Effect of material layering

Having verified our formulation we now study the effect
of material layering on the Green’s displacements and
stresses. We take the three-layered isotropic half space of
Figure 1 as an example. Three models are chosen for this
purpose with their elastic properties being given in Table
1. While Model 1 actually represents a homogeneous half
space, Models 2 and 3 are true layered half spaces having
piecewise increasing rigidity with depth. In the following
presentation the superscript attached to the Green’s dis-
placements or stresses indicates the direction of the point
force.
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Figure 2. Variation of horizontal displacement components u;
in {a) and u? in (b) along the x-axis on the free surface (0 —
5,0,0). The point force is located at (0,0, 2) in the three-layered
half space of Figure 1.

Figures 2(a) and 2(b) show, respectively, variation of the
horizontal displacements u} and u; along the x-axis on
the free surface (0 — 5,0, 0). The point source is located at
(0,0,2). As is shown clearly in these figures, increasing
Young’s modulus decreases the deformability of the lay-
ered system. This observation also applies to the vertical
displacements u* and u? shown in Figures 3(a) and 3(b),
respectively, where the point source is also located at
0,0,2).

It is well known that there is a singularity when the
field point is coincident with the source point. The behav-
ior of this singularity can also be affected by the material
layering. Figures 4(a), 4(b), and 4(c) show, respectively,
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Figure 3. Variation of vertical displacement components v, in
{a) and u? in (b) along the x-axis on the free surface (0 — 5,0,0).
The point force is located at (0,0,2) in the three-layered half
space of Figure 1.

variation of the displacement components u3, u;, and u;
along the vertical line (0.05,0,0 — 5). The point source is
again located at (0,0,2). These figures show similar pat-
terns when the Young’s modulus varies; their amplitudes,
however, are greatly affected by the increasing rigidity of
the layered system and are dominated by the material
properties in the source layer. To give a quantitative
description of this behavior Tables 2 and 3 list, respec-
tively, the values of u} and ul. In these two tables the
field and source points are on the same vertical line, i.e.,
the source point is located at (0,0, 2) while the field point
varies as (0,0,1.5 — 2.5). Both tables indicate that when
the field point is close to the source point the displace-
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Figure 4. Variation of displacement components u; in (a), u}
in (b), and u in (c} along the vertical line (0.05,0,0 — 5). The
point force is located at (0,0, 2) in the three-layered half space of
Figure 1.

ment amplitude increases dramatically and its value is
roughly inversely proportional to the Young’s modulus in
the source layer. For instance at (0,0,1.995) we have
ut=26.64 for Model 1. Dividing this value, respectively,
by the Young’s modulus of Models 2 and 3 in the source
layer (i.e., E =2 and 5) we get u} = 13.32 and 5.33, which
are very close to the results listed in Table 2 for Models 2
and 3, respectively. Furthermore a comparison of Table 2
with Table 3 indicates that the vertical displacement has
larger amplitude than that of the horizontal one. This is
caused by the zero-traction condition on the flat surface
z=0.

Green’s functions in multilayered half spaces: E. Pan

0.00

1.00

2.00
N
[}
3.00 L
' E(\VE(2VE(3)=
n‘ 1M 4
} - -~ 1A
4.00 -
" —_ - /B2
U
; A
5.00 1 l 1 I 1
0.00 1.00 2.00 3.00

Figure 4. Continued.

Although the Green’s displacements close to the singu-
lar (source) point for different models are quite different
the Green’s stresses in the vicinity of the singular point
are almost unaffected by the material layering. Tables 4
and 5 list, respectively, values of stresses o2 and o’
around such a point. It is observed from these tables that
close to the singular point (i.e., (0,0,1.995) or (0,0,2.005))
the stress values are nearly the same for different models.
Again a comparison of Table 4 with Table 5 for the values
close to the singular point indicates that the normal stress
component in the z-direction has greater amplitude than
that in the x-direction, which is again caused by the
zero-traction condition on the flat surface z=0.

We have also studied the effect of layering on the
stress components when the field and source points are
relatively far away from each other. Figures 5(a) and 5(b)
show, respectively, the variation of the stresses o5 and
0,2 along the vertical line (1,0,0 — 5). The point force is
again located at (0,0,2). As can be observed from these
figures the material layering has a significant influence on
the stresses. This is shown clearly in Figure 5(a) for the
horizontal stress distribution where a material property
jump causes discontinuous stress at the interface, with its
discontinuity amount proportional to the difference of the
Young’s moduli in the adjoined layers of the interface.

4.4 Effect of material anisotropy

As we mentioned earlier our formulation and program
can also be used for multilayered transversely isotropic
half spaces. As an example we choose a homogeneous,
transversely isotropic half space but artificially divide it
into a three-layered system as shown in Figure 1. The
material properties in each layer are identical with the
values £E=1.0, E'=10.0, v= "= 0.3, and G’ = 1.0, where
E and E’ are Young’s moduli in the plane of transverse
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Table 2. Values of uy for the three different layered models

Model 1 Model 2 Model 3

z, 1/1/1 1/2/4 1/5/25
1.500 0.3092922D+ 00 0.1567211D+00 0.5931307D - 01
1.750 0.5725805D + 00 0.2785454D + 00 0.1058214D + 00
1.900 0.1369105D+ 01 0.6696070D+ 00 0.2597709D+ 00
1.995 0.2663971D+02 0.1330040D+ 02 0.5310457D + 01
2.005 0.2663962D+ 02 0.1329988D + 02 0.5310072D+ 01
2.100 0.1367202D+ 01 0.6590794D+ 00 0.2520319D+ 00
2.250 0.5678187D+ 00 0.2517105D+00 0.8607987D - 01
2.500 0.2997415D+ 00 0.1048024D+00 0.2153797D - 01

The source is located at (0,0, 2) and the field point varies as (0,0, 1.5 — 2.5).

Table 3. Values of u for the three different layered modeis

Model 1 Model 2 Model 3

z, 1711 1/2/4 1/5/25
1.500 0.5172449D+ 00 0.2588582D+ 00 0.1056065D+ 00
1.750 0.9244662D+ 00 0.4423150D+ 00 0.1706281D+ 00
1.900 0.2162221D+ 01 0.1047322D+ 01 0.4068943D+ 00
1.995 0.4147129D+02 0.2069340D + 02 0.8261901D+01
2.005 0.4147106D+02 0.2069240D+ 02 0.8261147D+01
2.100 0.2157676D+ 01 0.1027284D+ 01 0.3917459D+ 00
2.250 0.9130880D+ 00 0.3913187D+00 0.1319671D+00
2.500 0.4943902D+00 0.1616025D+00 0.3178332D - 01

The source is located at (0, 0, 2} and the field point varies as (0,0,1.5 — 2.5).

Table 4. Values of g% for the three different layered models

Model 1 Model 2 Model 3

z; 111 1/2/4 1/5/25
1.600 —0.9929406D — 0Ot —0.4207813D+00 —0.7784081D+ 00
1.750 —0.3700344D+00 ~0.4275166D+00 —0.4757160D+00
1.900 —0.2278941D+01 —0.2310295D+ 01 —0.2330077D+01
1.995 —0.9094616D+ 03 —0.9094895D+ 03 —0.9095055D+ 03
2.005 0.9094521D+03 0.9094242D+03 0.9094082D+ 03
2.100 0.2269355D+ 01 0.2237154D+01 0.2217291D+01
2.250 0.3601049D+ 00 0.3021920D+00 0.2591364D+ 00
2.500 0.8806802D — 01 -0.2012315D+00 —0.4450335D+ 00

The source is located at (0, 0, 2) and the field point varies as (0,0, 1.5 — 2.5).

Table 5. Values of ¢,} for the three different layered models

Modei 1 Model 2 Model 3

z, 1/1/1 1/2/4 1/5/25
1.500 0.7404441D+ 00 0.5025475D+ 00 0.2595299D+ 00
1.750 0.3063320D+ 01 0.2838989D+ 01 0.2611179D+01
1.900 0.1929913D+02 0.1910030D + 02 0.1890487D0+02
1.995 0.7730357D+04 0.7730164D+ 04 0.7729977D+ 04
2.005 —0.7730408D+ 04 —0.7730602D+ 04 —0.7730789D + 04
2.100 —0.1935036D+ 02 —0.1954814D+ 02 —-0.1973691D+02
2.250 —0.3114926D+ 01 —0.3335968D+ 01 —0.3545096D+ 01
2.500 —0.7933940D+00 —0.1034185D+01 -+0.1269552D+ 01

The source is located at {0, 0, 2) and the field point varies as (0,0, 1.5 — 2.5).
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Figure 5. Variation of stress components ¢,% in (a) and a2 in
XX zz

(b) along the vertical line (1,0,0 — 5). The point force is located
at (0,0, 2) in the three-layered half space of Figure 1.

isotropy and in a direction normal to it, respectively, v
and »' are Poisson’s ratios, characterizing the lateral
strain response in the plane of transverse isotropy to a
stress acting parallel and normal to it, and G’ is the shear
modulus in planes normal to the plane of transverse
isotropy.

For the source point located at (0,0,2) we calculated
the displacement and stress distributions at the free sur-
face and compared the results with those from the isotropic
model (i.e., Model 1 in Table 1). For the convenience of
presentation the transversely isotropic and isotropic cases
are denoted, respectively, by the Tl-case and the I-case.

Figures 6(a) and 6(b) show, respectively, the surface
deflection contours of uZ? for the I- and TI-cases caused
by a vertical point force. As can be easily observed these
contours have similar patterns (the deformation is axially
symmetric with a maximum deflection at the center that is
at the same vertical line with the source point) but the

Green’s functions in multilayered half spaces: E. Pan

TI-case predicts a much smaller amplitude than the I-case
(e.g., at the center we have u; = 0.24828 for the I-case and
0.10037 for the TI-case).

Figures 7(a) and 7(b) show, respectively, the surface
deflection contours of u] for the I- and TI-cases caused
by a horizontal point force. For this displacement compo-
nent the deformation is antisymmetric with respect to the
y-axis and symmetric with respect to the x-axis. Compared
to the I-case the TI-case predicts not only smaller ampli-
tude of the surface deflection, but also a different contour
pattern (e.g., the maximum amplitude for this displace-
ment is u} = 0.029 at (x, y) = (—1.5,0) for the I-case and
0.009 at (x, y) =(—0.5,0) for the TI-case).

y-axis
o
3

~2.00~

~3.00+

*W\
-B.

600 -400 -300 -200 -100 000 100 200 300

x-axis
Figure 6. Displacement contours of v at the free surface
caused by a vertical point force at (0,0, 2) in the three-layered
half space of Figure 1. (a) is the isotropic case, and {b) is the
transversely isotropic case.
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Figure 7. Displacement contours of u) at the free surface
caused by a horizontal point force at (0,0, 2) in the three-layered
half space of Figure 1. (a) is the isotropic case, and (b) is the
transversely isotropic case.

A third contour comparison is for the surface horizon-
tal displacement u* as shown in Figures 8(a) and 8(b),
respectively, for the I- and TI-cases. The deformation is
symmetric with respect to both the x- and y-axes. We
noticed that for this component the maximum amplitudes
for the I- and TI-cases are very close (u}=0.128 at
(x,y)=1(1.0,0) for the I-case and 0.136 at (x, y) = (0.5,0)
for the TI-case). This is due to the fact that in the
horizontal direction both the I- and TI-cases have the
same Young’s modulus £ =1.

We have also compared the stress contours. While
Figures 9(a) and 9(b) show, respectively, the stress con-
tours of o for the I- and TI-cases caused by a point
force in the horizontal direction, Figures 10(a) and 10(b)
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show, respectively, the stress contours of o2 for the I-
and TI-cases caused by a point force in the vertical
direction. On observation of these figures we noticed that
all these contours have the x- or y-axis as either their
symmetric or antisymmetric axis, but the stress patterns
and magnitudes are different because of the effect of
anisotropy. For instance for o,% along the positive x-axis
there is a maximum (0.010 at x =0.5) and a minimum
(—=0.015 at x = 3.0) for the I-case (Figure 9/a/), but only a
minimum (-0.026 at x=1.5) for the Tl-case (Figure
9[b]). For the stress contours of a2 (Figures 10{a] and
10[b]) we noticed that, although their patterns are similar,
the non-zero domain is concentrated in a smaller region
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Figure 8. Displacement contours of u) at the free surface
caused by a horizontal point force at (0,0, 2) in the three-layered
half space of Figure 1. (a) is the isotropic case, and (b} is the
transversely isotropic case.
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Figure 9. Stress contours of o, at the free surface caused by

a horizontal point force at (0,0, 2) in the three-layered half space

of Figure 1. (a) is the isotropic case, and (b) is the transversely
isotropic case.

for the TI-case than for the I-case. This is again a clear
effect of material anisotropy.

5. Conclusions

In this paper we derived the formulation for the calcula-
tion of the three-dimensional Green’s functions in multi-
layered transversely isotropic or isotropic half spaces. The
formulation is based on the cylindrical system of vector
functions combined with the propagator matrix method.
The Green’s solutions are expressed in terms of infinite
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integrals involving Bessel functions and are numerically
integrated by an adaptive Gauss quadrature with continu-
ous fraction expansions. Numerical examples presented in
this paper show that the proposed method is both accu-
rate and efficient; at the same time, the effect of material
layering and anisotropy has been clearly shown through
these examples. While the numerical results may have
applications in different areas where layered structures
are involved the Green’s functions developed in this paper
will be implemented to the author’s three-dimensional
BEM code’® to study problems involving complicated ge-
ometry and loading conditions in layered systems.
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Figure 10. Stress contours of ¢,% at the free surface caused
by a vertical point force at (0,0, 2) in the three-layered half space
of Figure 1. (a) is the isotropic case, and (b} is the transversely
isotropic case.
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