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Abstract. This paper presents a boundary element method (BEM) analysis of linear elastic fracture mechanics ir
two-dimensional solids. The most outstanding feature of this new analysis is that it is a single-domain method.
and yet it is very accurate, efficient and versatile: Material properties in the medium can be anisotropic as well as
isotropic. Problem domain can be finite, infinite or semi-infinite. Cracks can be of multiple, branched, internal or
edged type with a straight or curved shape. Loading can be of in-plane or anti-plane, and can be applied along tt
no-crack boundary or crack surface. Furthermore, the body-force case can also be analyzed.

The present BEM analysis is an extension of the work by Pan and Amadei (1996a) and is such that the
displacement and traction integral equations are collocated, respectively, on the no-crack boundary and on or
side of the crack surface. Since in this formulation the displacement and/or traction are used as unknowns on th
no-crack boundary and the relative crack displacement (i.e. displacement discontinuity) as unknown on the crac
surface, it possesses the advantages of both the traditional displacement BEM and the displacement discontinui
method (DDM) and yet gets rid of the disadvantages associated with these methods when modeling fractur
mechanics problems. Numerical examples of calculation of stress intensity factors (SIFs) for various benchmarl
problems were conducted and excellent agreement with previously published results was obtained.
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1. Introduction

The boundary element method (BEM) has proven to be a powerful numerical technique whict
has certain advantages over the domain-based method such as the finite element method. T
most important feature of the BEM is, as is well-known, that it only requires discretization of
the boundary rather than the domain.

Stress intensity factors (SIFs) are important in the analysis of cracked materials. They ar
directly related to the fracture propagation and fatigue crack growth criteria. The singularity
of stresses near a crack-tip and the geometry identity of the two surfaces of a crack hav
challenged all the previous numerical modeling methods, even the BEM. For handling of these
difficulties, several methods within the scope of the BEM have been suggested previously (Pe
and Amadei, 1996a; Aliabadi, 1997). The first one is the Green’s function method (Snyder
and Cruse, 1975), which has the advantage of avoiding crack surface modeling and give
excellent accuracy. It is however, restricted to fracture problems involving very simple crack
geometries for which analytical Green’s functions can be obtained. The second one is th
multi-domain technique (Blandford et al., 1981, Sollero et al., 1994, Sollero and Aliabadi,
1995). The advantage of this approach is its ability to model cracks with any geometric
shape. The disadvantage is an artificial subdivision of the original domain into several sub-
domains, thus resulting in a large system of equations. The third approach is the displaceme
discontinuity method (DDM) (Crouch and Starfield, 1983). Instead of using the Green’s
displacements and stresses from point forces, the DDM uses Green'’s functions correspondir
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to point dislocations (i.e., displacement discontinuities). This method is quite suitable for
crack problems in infinite domains where there is no no-crack boundary. However, it alone
may not be efficient for finite domain problems, since the kernel functions in DDM invovle
singularities with order higher than those in the traditional displacement BEM.

In recent years, several single-domain BEMs have been proposed for the study of cracke
media (Hong and Chen, 1988; Gray et al., 1990; Portela et al., 1992; Sollero and Aliabadi
1995a, 1995b; Sur and Altiero, 1988; Liu et al., 1990; Liu and Altiero, 1991, 1992, Ammons
and Vable, 1996; Chang and Mear, 1995). These single-domain BEMs involve two sets of
boundary integral equations (one is the displacement integral equation, and another is eithe
the traction or the stress-function integral equation), and are, in general, superior to the
aforementioned BEM's.

One of the single-domain BEMs is the so-called Dual Boundary Element Method (DBEM)
(Portela et al., 1992; Aliabadi, 1997) where the displacement integral equation is collocatec
on the no-crack boundary and on one side of the crack surface while the traction integra
equation is collocated on the other side of the crack surface. The hypersingularity involved in
the traction integral equation is evaluated analytically by assuming a piece-wise flat crack path
Extension of this DBEM formulation to the plane anisotropic crack problem was reported in
(Sollero and Aliabadi, 1995a, 1995b).

In the DBEM formulation, the displacement on each side of the crack surface is collocatec
as unknown. Thus, the resulting algebraic equations are doubled along the crack surfac
which may be unnecessary for the SIF calculation. Therefore, an ideal single-domain BEM
formulation would be the one which requires discretization on one side of the crack suface
only. Such single-domain BEM formulation can be achieved by applying the displacement
integral equation to the no-crack boundary only, and the traction or the stress- function integra
equation on one side of the crack surface only. Since only one side of the crack surface i
collocated, one needs to choose either the relative crack displacement (RCD) (Sur and Altierc
1988; Ammons and Vable, 1996) or the tangential derivative of the RCD (Chang and Meat,
1995) as unknown. Although using the tangential derivative of the RCD can reduce the
singularity order in the traction integral equation, the tangential derivative of the RCD is
singular at crack-tips and kinks (Sur and Altiero, 1988). Therefore, difficulty may arise when
modeling kinked and/or branched cracks with this approach (Sur and Altiero, 1988; Chanc
and Mear, 1995).

In a recent paper, a new single-domain BEM formulation was proposed by Pan and
Amadei (1996a) for the calculation of the SIFs in cracked 2-D anisotropic materials. The new
formulation is similar to the BEM formulations of Liu et al. (1990); Ammons and Vable (1996)
for the isotropic medium in which the RCD is selected as unknown on the crack surface. As in
Liu et al. (1990), the displacement integral equation is collocated on the no-crack boundary
But on one side of the crack surface, the traction integral equation, instead of the stres:
function integral equation (Liu et al., 1990), is applied (Pan and Amadei, 1996a). While the
Cauchy integration in the displacement integral equation was evaluated analytically by the
rigid-body motion method, the hypersingularity in the traction integral equation was handled
by an accurate numerical integration similar to the Gauss quadrature (Tsamasphyros ar
Dimou, 1990; Pan and Amadei, 1996a). The most outstanding feature of this new formulatior
is that it can be applied to the general fracture mechanics analysis in anisotropic media whil
keeping the single-domain merit.

This paper is a result of the author’s continuing effort on the BEM modeling of fracture
mechancis problems. It is based on the work by Pan and Amadei (1996a), but is extended |
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several aspects to make the formulation unified and yet versatile. In the previous work by Pal
and Amadei (1996a), thé-integral was used to calculate the SIFs. This method, though very
accurate, has difficulty for handling the body-force, pressurized crack, and curved crack case:
In this paper, we proposed the extrapolation method of the RCD, combined with a new set o
crack-tip shape functions. The important feature of our extrapolation method is that it is very
flexible and yet very accurate. For the second extension, the complete Green'’s functions in
generally anisotropic half-plane have also been incorporated into our new BEM formulation
so that the half-plane, finite and infinite domains can all be considered in a unified form. As
a final extension, all the mode llI-related equations have been derived and included in the
current formulation, which can be used to analyze anti-plane problems.

Numerical examples involving different loading and geometry conditions were selected
for the calculation of the SIFs. For all cases, it was found that the SIFs by the current
single-domain BEM formulation were in excellent agreement with the previously published
analytical or numerical results.

2. BEM formulation for 2-D cracked anisotropic media

For a linear elastic medium, we express, by superposition, the total displacements, stresse
and tractions as follows

uf = ult +ul; atj—o + ol T =T+ 17, 1)

Following the procedure by Pan and Amadei (1996a,b), one can show that the total interna
displacement solution can be expressed by the following integral

+/T* X, X )it (Xs) dS(Xs) +/ * (Xps X ) il (Xry ) — (X )] A0 (Xps)
/U* (Xp, X)TH(Xs) dS(X5) +/ (Xp, X) (1] (Xs) — uf (X,)) dS(Xs)

~ [ U500, X)T] (X5) dS (Xs). )

where & and d" are the line elements on the no-crack boundary and crack surface, respec
tively, with the corresponding points being distinguished by subse@oid” (Figure 1). A
point on the positive (or negative) side of the crack is denotedby(or Xr_); U;; andT;;
are the Green's displacements and tractions which will be derived in the next section. We ad
that, in deriving (2), we have assumed that the tractions on the two faces of a crack are equi
and opposite.

LetX, approach a point s on the no-crack boundary, one arrives at the following boundary
integral equation

bigt(Ys) + £ Ty (Y 5. X )u () €S (Xs)
[ T s X (Xra) = uf (X)) 0 ()

/ (Y5, X9)T!(Xs) dS(Xs)+
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: Element node
: Element end point

: Displacement equation

: Traction equation

(b)

Figure 1L Geometry of a cracked 2-D anisotropic domain in (a), and its modeling with quadratic boundary elements
in (b).

+ [ TV 5. X8) (0 (Xs) =l (Y5) S (Xs)

/ (Y5, Xs)TF (Xs) dS(Xs), 3)

whereb;; are coefficients that depend only upon the local geometry of the no-crack boundary
atYg

It is observed that all the terms on the right-hand side of (3) have only weak singularities,
thus, are integrable. Although the second term on the left-hand side of (3) has a strong
singularity, it can be treated by the rigid-body motion method. At the same time, the calculation
of b;; can also be avoided.

It is well-known, however, that for a cracked domain, (3) does not have a unique solution
(Aliabadi, 1997). For this situation, the traction integral equation (Pan and Amadei, 1996a)
can be employed. Assume thHat is a smooth point on the crack surface, the traction integral
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equation can be derived as
05T/ (Yr4) = T/ (Yr-)] + nm(Yr+)/gczmikTi§,k(YF+axs)U§(Xs) dS(Xs)
+nm(Yrs) %t Cmik T35, (Y 0y Xr) [ (Xrq.) — af(Xp-)] dE (Xpy )
= 0.5[T/ (Yr+) = T/ (Yr-)] + nm(Yrs) /S cmik Uy (Y14, X)Tf (Xs5) dS(Xss)
1 (Yr2) [ cmin T (Y, Xs)u (Xs) dS(Xs)

1 (Yr4) [ cnin Ul (Y X5) TS (Xs) dS(Xs), @)

wheren,, is the outward normal at the crack surfa¢g, andc;,,;; is a 4th order stiffness
tensor.

Equations (3) and (4) form a new pair of boundary integral equations, and they are similar tc
the single-domain BEMs of Liu et al. (1990) and Ammons and Vable (1996) for the isotropic
medium. In this new formulation, the displacement integral equation is collocated on the
no-crack boundary only; But on one side of the crack surface only, it is the traction integral
equation, instead of the stress-function integral equation, which is applied. Therefore, as i
Liu et al. (1990) and Ammons and Vable (1996), no double elements and nodes are require
along the crack surface. Furthermore, this formulation can be applied to generally anisotropi
media with the Cauchy type integral being evaluated exactly by the rigid-body motion method.
Itis also worthy to mention that the effect of the body force and/or far-field stresses have beel
included by superposing the corresponding particular solution, which makes the problem ver
similar to the one associated with the homogeneous governing equations. The only differenc
is that for the body force and/or far-field stress cases, two extra integral terms related to th
particular solution need to be added to the homogeneous integral equations. The advanta
of using (3) and (4) is that for the far-field stress case, the artificial truncation of the infinite
domain (Lee, 1995) or transferring of the far-field stress onto the problem boundary (Telles anc
Brebbia, 1981; Dumir and Mehta, 1987) can be avoided. While the former method increase:
the size of the problem and also introduces errors because of the truncation of the region, th
latter may not be suitable for cases where the boundary has a complex shape.

For problems containing crack surfaces only, i.e., cracks in an infinite or a half plane, only
(4) is required with the no-crack boundary integral terms being omitted.

The boundary integral equations (3) and (4) can be discretized and solved numerically fol
the unknown boundary displacements (or displacement discontinuities on the crack surface
and tractions. The hypersingular integral term in (4) is handled by an accurate and efficien
Gauss quadrature formulae (Tsamasphyros and Dimou, 1990; Pan and Amadei, 1996), whi
is similar to the traditional weighted Gauss quadrature but with a different weight.

In order to capture the square-root characteristics of the RCD near the crack-tip, we
construct the following crack-tip element with its tipsa —1

3
Au; =Y $pAul, (5)
k=1
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where the subscript(= 1,2,3) denotes the components of the RCD, and the superscript
k(= 1,2,3) denotes the RCD at nodes= —%, 0, % respectively. The shape functiopg are

$1 = %/é\/s +1[5—-8(s+1) +3(s + 1)7,

¢2=}

4\/3 +1[-5+18(s + 1) — 9(s + 1)?, (6)

_ 33 _ 2
$3 = 8\/5\/5+1[1 4(s+ 1)+ 3(s +1)7].

Our numerical tests have shown that solutions of (3) and (4) based on these new shag
functions are more accurate than those based on the shape functions previously derived |
Pan and Amadei (1996a).

For the SIF calculation, we employ the extrapolation method of the RCDs, which requires
the analytical expression of the crack-tip displacements in terms of the SIFs. We assume, fc
simplicity, that there is a plane of material symmetry normal tosth@xis (orzs-axis is a
two-fold symmetry axis). Thus, there is no coupling of displacemenmtith the components
uq anduy. For this case, the relation of the RCDs at a distanisehind the crack-tip and the
SIFs can be found as (Sih et al., 1965; Sollero and Aliabadi, 1993; Pan and Amadei, 1996a)

[ 2r
AU]_:Z ?(H]_]_KI +H12K||)7

[ 2r
Aup =2 ?(H21K| + H22K||), (7)

2 -1
Aug = 2\/—7” Im (*) Ky,
m €45 + [43Ca4

whereH,; are coefficients depending on the material properties (Pan and Amadei, 1996a). I
denotes the imaginary part of a complex variable or funciignandc,s are the elements of
the elastic stiffness matrix; ang is the third root of (9) below.

On the crack-tip element, equating the RCDs from the numerical calculation (5) to the
analytical expression (7), one then obtains a set of algebraic equations from which the SIF
K, K, andKj, can be solved.

On the discretization of the boundary integral equations (3) and (4), it is noted that the
Green’s displacements and stresses (and their derivatives) and the particular solutions
displacements and stresses (tractions) need to be provided. This is discussed in the next tv
sections.

3. Green’s functions in anisotropic full- and half-planes

The complex variable function method has been found to be very suitable for the study of
2-D anisotropic elastic media (Lekhnitskii, 1963). The Green’s functions for point sources in
such an infinite medium have been studied by several authors, notably by Lekhnitskii (1963)
Eshelby et al. (1953) and Stroh (1958). For an anisotropic half-plane, the Green’s functions
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were studied by Suo (1990) using the one-complex-variable approach, and by Ting and co
workers (Ting, 1992; Ting and Barnett, 1991; Wei and Ting, 1994) based on the Stroh tenso
method. We here follow the one-complex-varaible approach introduced by Suo (1990).

With three complex analytical functiorf(z;), one can, in general, express displacements
and stresses as (Lekhnitskii, 1963; Suo, 1990; Pan and Amadei, 1995)

u; = 2Re |723: A’L]f](zj)] ,

=
3

02 = 2Re [Z Lz’jfjl‘(zj)] ; (8)

i=1

3
o1; = —2Re [Z Lijﬂjf]l‘(zj)] .

=1

Inthese equations,; = =+ ;y. Re denotes the real part of a complex variable or function; and
pi(j = 1,2,3) are three distinct complex roots with positive imaginary part of the following
equation

la(p)la(p) — 15(n) = 0, 9)

where the complex functions, I3, andl, are given in Lekhnitskii (1963). Also in (8), the

elements of the complex matricfls] and[A] are functions of the compliance tensgy and

their expressions can be found in Lekhnitskii (1963), Suo (1990), or Pan and Amadei (1996a)
For a concentrated force acting at a source paifity®), the complex functions in (8) can

be expressed as (Suo, 1990)

3

Fi(5) = 3 5 DePeln(z; — ), (10)
k=1

wherez9 = z° + 11;4° Py (k = 1,2,3) is the magnitude of the point force in thedirection;
and

_A-lp-1,.71-1
D=A"*B *+B )™, 1)
B =iAL 1,
wherei = \/—1, the overbar indicates complex conjugation and supersetipindicates
matrix inversion.
For a half-plane problem, we let the medium occupy the lower half-plang 0) and
y = 0 correspond to the traction-free flat surface. The Green’s functions corresponding to the

half-plane domain can be derived using the one-complex-variable approach (Suo, 1990; Pc
etal., 1997). For displacements, these Green'’s functions are

. 1 3 3 .
Ukl = 7 Re{z Alj [Djk 1n(zj — Zjo) — Z Eszzk ln(zj — ??)] } s (12)
j=1

=1
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with
E=L"C (13)

and for tractions, they are

1 3 Wing — N 3 WMy — Ny —
Tp==Re{ Y Lij |=——5"Djp — Y EBji=———"Di| ¢ , (14)
m =1 A =1 Zj = %

with n, andn, being the outward normal components at the field pginy). In (12) and
(14), the indiceg and 1 take on the range of 1-3.

It is worthy to mention that the Green'’s functions in (12) and (14) can be used to solve both
in-plane (plane stress and strain) and anti-plane problems in anisotropic half- or full-planes (fo
the full-plane case, the Green'’s functions are those given by the first summation terms in (12
and (14) (Pan and Amadei, 1996a)). Although the isotropic solution cannot be analytically
reduced from the Green’s functions (12) and (14), one can approximate it numerically by
selecting a very weak anisotropic (or nearly isotropic) medium (Sollero et al., 1994; Pan anc
Amadei, 1996a).

4. Particular solutions of gravity

As we mentioned in Section 2, it the particular solutions corresponding to the body force of
gravity can be derived in an exact closed-form, the single-domain BEM formulation presentec
in this paper can then be applied to solve the body force problem. For the gravity force,
the exact closed-form solutions can be obtained in a similar way as for the corresponding
half-space case (Amadei and Pan, 1992). These solutions were derived most recently by P
etal. (1997), and we present here only the final results of the displacements and stresses.
Assuming that the gravity has componeptsand g,, respectively, in thez- and y-

directions, the particular solutions of dispalcements can be found as (Pan et al., 1997)

ub = a1pg.r® + bipgyy?,
ub = azpg.1° + bapgyy?, (15)
u? =0,
where coefficienta; andb; depend on the elastic stiffness and their expressions are given in

the Appendix A of Pan et al. (1997).
Similarly, the particular stresses can be expressed as (Pan et al., 1997)

Euth [d11 d127

oby dp1 dpo

obs | = | day dao lp gmw] : (16)
o3 dsy dsp Py

Lol,]  Lder deo

Again,d;; depend on the elastic coefficients and their expressions are given in the Appendix A
of Pan et al. (1997).
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Table 1 SIFs for a circular-arc crack in an infinite domain.

Numer. Exact (Tada et al., 1985)
«Q K|/a\/7ra K||/O'\/7ra K|||/T\/7ra K|/a\/7ra K||/O'\/7ra K|||/T\/7ra
30° 0.5547 0.3299 0.6873 0.5501 0.3304 0.6830
45 0.4662 0.5145 0.7879 0.4574 0.5112 0.7769

5. Numerical examples

The aforementioned Green’s functions and the particular solutions have been incorporated int
the boundary integral equations presented in Section 2, and the results have been programmi
In this section, a number of benchmark examples are selected to verify the program and t
show the efficiency, accuracy and versatility of the present BEM formulation for problems
related to the calculation of the SIFs in anisotropic media. For the isotropic case, the Young'
modulus was assumed Bs= 40(GPa) and the Poisson’s raticuas: 0.25; For the anisotropic
case, the elastic constants will be specified in the particular example. A plane stress conditio
will be assumed unless otherwise specified. Whenever possible, we have also included tr
SIF K, for the future reference.

EXAMPLE 1. A curved crack in an infinite domain.

Shown in Figure 2 is a circular-arc crack under a far-field tensile strassl anti-plane shear
stressr. The arc is located symmetrically with respect to thaxis and has a radius The

half angle of the arc is.. We used only 20 discontinuous quadratic elements to discretize the
curved crack surface. The numerically calculated SIFs:fee 30° and 4%, as well as the
exact closed-form solutions (Tada et al., 1985), are listed in Table 1. As can be observed fron
Table 1 that the numerical results are in good agreement with the exact closed form solutions

EXAMPLE 2. Multiple or branched cracks in an infinite domain.

Figure 3 shows a scheme of two cracks under a far-field tensile sti@sg anti-plane shear
stressr. While the first crack is horizontal, the second one is inclinetdt6the horizontal
direction. Both cracks have the same lengtha®d their centers are separated at a distance
such that the ratio®/d = 0.9. We used only 10 discontinuous quadratic elements for each
crack surface. The results for the normalized SIFs at the crack-tips A, B, C and D are given ir
Table 2. This problem was solved previously by Chen (1995) using a singular integral equatior
method. As shown in Table 2 that the present numerical results are in excellent agreemel
with those obtained by chen (1995).

Shown in Figure 4 is a branched crack under a far-field tensile sires®l anti-plane
shear stress. The main crack has a lengthand each branch has a lendthwith ratios
b/a = 0.6 and 0.05. The branches are located symmetrically on both sides of the main cracl
and inclined atoe = 45° to it. It is noteworthy that at the junction of the branch cracks,
the RCD and the integration of the traction should satisfy, respectively, the continuity and
equilibrium conditions derived by Ammons and Vable (1996). However, collocations at the
branch point can be avoided using discontinuous elements. Here, we used 10 discontinuot
quadratic elements for the main crack surface, 6 elements for each branclb shen0.6,
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11

Figure 2 A curved (circular-arc) crack under a far-field tensile steessid anti-plane shear stress
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Figure 3 Two cracks under a far-field tensile stresand anti-plane shear stress

and only 1 element for each branch wtiga = 0.05. The numerical results for this problem
were documented in Murakami (1987) and were also solved recently by Ammons and Vable
(1996) using their single-domain BEM formulation. In Table 3, the SIFs at the crack-tips A
and B are given for the two ratios éfa and compared to those obtained by Ammons and

Vable (1996) and documented in Murakami (1987).
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Table 2 SIFs for two cracks in an infinite domain.

K{'/oyma Ki'|oyma Ki/ry/ma KP[oyma Ki/oyma Ki/t/7a

Present 1.0312 —0.0300 1.0160 1.0757 —0.0395 1.0269
Chen (1995) D311 —0.0300 — 1.0757 —0.0394 —
KCJoyma K |oyma K§/|rma KP[oyma KPJoyma KE/r/ma
Present 0.3109 .B149 0.4830 0.3089 0.4525 0.5580
Chen (1995) 0.3101 0.5149 — 0.3086 0.4525 —

° B
o
A e ~
le |
) 2c l
1 ®

®
Figure 4 A branched crack under a far-field tensile stresnd anti-plane shear stress

Table 3 SIFs for a branched crack in an infinite domain.

K{*/o\/mc Kii/Ty/me KP[oy/me Ki|oyme Kii[Ty/me

Present 1.0299 1.1137 0.4974 0.4846 0.7194
b/a =0.6 Murakami, (1987) 1.029 — 0.497 0.485 —

Ammons and Vable, (1996) 1.027 — 0.496 0.484 —

Present 1.0056 1.0140 0.5862 0.2989 0.7852
b/a = 0.05 Murakami, (1987) 1.006 — 0.593 0.297 —

Ammons and Vable, (1996) 1.004 — 0.593 0.297 —
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EXAMPLE 3. Cracks in a half-plane.

Figure 5 shows an internal vertical crack in a half-plane under a far-field tensile staess
anti-plane shear stressThe crack length is?and its center is at a distané&om the traction-

free flat surface such that the ratidd = 0.5. Twenty discontinuous quadratic elements were
used to discretize the crack surface. This problem was solved by Noda and Matsuo (1993
using a singular integral equation method with continuously distributed dislocations. The SIFs
at the crack tips A and B are given in Table 4 which shows clearly that our numerical results
are very close to those obtained by Noda and Matsuo (1993).

Figure 6 shows an internal horizontal crack in a half-plane under a uniform presande
anti-plane sheay along the crack surface. The crack length is 2a and the distance of the crack
to the traction-free flat surface is Again, we used 20 discontinuous quadratic elements to
discretize the crack surface. Itou (1994) solved the problem using an integral equation metho
combined with the Fourier transform. In Table 5, the SIFs are given for various rattgs: of
and compared to those obtained by Itou’s (1994).

EXAMPLE 4. Edge cracks in a finite domain.

Figure 7 shows an edge crack in a rectangular plate which is subjected to a uniaxial #&ension
The geometry of the problemis such thgty = a/w = 0.5. This problem was solved before

by Civelek and Erdogan (1982), and recently by Portela et al. (1992), using their DBEM with
the J-integral method. Here we used 25 quadratic elements for the no-crack boundary ant
5 discontinuous quadratic elements for the crack surface. Our result and those obtained &
Civelek and Erdogan (1982) and Portela et al. (1992) are listed in Table 6, which indicates
that these results are very close to each other.

Shownin Figure 8 is a scheme of double edge cracks emanating from a hole in a rectangule
plate which is subjected to a uniaxial tensionThe geometry of the problem is such that
2h/w = a/r = 1 and 2r + a) = w/2. We used 32 quadratic elements for the no-crack
boundary and 5 discontinuous quadratic elements for each crack. Chang and Mear (199!
solved the problem by forming a single-domain BEM formulation in which the tangential
derivatives of the RCDs, instead of the RCDs themselves, were used as unknowns. OL
normalized SIF and that determined by Chang and Mear (1995) are given in Table 7 whick
again shows excellent agreement between these two SIFs.

EXAMPLE 5. Aninclined crack in an anisotropic and finite domain.

Figure 9 shows an anisotropic and finite rectangular plate with a central crack inclihed 45
to the horizontal direction under a uniaxial tensioin the y-direction. The ratios of crack
length to width, and of height to width asgdw = 0.2 andh/w = 2, respectively. The material

is of glass-epoxy with the elastic propertiBs = 48.26 GPa,F, = 17.24 GPay;, = 0.29
andG12 = 6.89 GPa (Gandhi, 1972). The direction of the fibers was rotated §fem0° to

1) = 18C°. This problem was solved by Gandhi (1972) using a modified mapping collocation
technique, by Sollero and Aliabadi (1995a) using the DBEM formulation, and recently by Pan
and Amadei (1996a) using the single-domain BEM formulation which is similar to the one
presented in this paper. In both (Pan and Amadei, 1996a) and (Sollero and Aliabadi, 1995a
the J- integral method was used to evaluate the SIFs. Here, as in Pan and Amadei (1996a
we used 10 discontinuous quadratic elements on the crack surface and 32 quadratic elemer
on the no-crack boundary. But instead of using ihdntegral, we used directly the crack
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Figure 5 An internal vertical crack in half-plane under a far-field tensile stseard anti-plane shear stress
Table 4 SIFs for a vertical crack in a half-plane under a far-field stress.

K{'/oyma  Kii/rv/ma  KFP[oyma  Kii/tv/Ta

Present 1.0920 1.0487 1.0546 1.0287
Noda and Matsuo (1993) 1.0913 — 1.0539 —

Table 5 SIFs for a horizontal crack in half-plane under pressure.

Itou (1994) Present
h/a  Ki/pyma  Ki/pvma  Ki/p\y/ma  Ki/py/ma  Kn/q/ma
2.0 1.1634 0.0367 1.1643 0.0367 1.0291
1.0 1.5110 0.1849 1.5130 0.1849 1.0922
0.4 2.9051 0.9939 29176 0.9962 1.3025

Table 6 SIFK,/o+/ma of an edge crack in a finite domain (Figure 7).

Present Civelek and Erdogan (1982) Portela et al. (1992)

2.992 3.010 3.021

Table 7 SIFK,/o+/7(r + a) of an edge crack in a
finite domain (Figure 8).

Present Chang and Mear (1995)

1.5636 1.5627
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Figure 6. An internal horizontal crack in a half-plane under a uniform prespusad anti-plane shear stregs
along the crack surface.
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Figure 7. An edge crack in a rectangular plate which is subjected to a uniaxial temsion

displacement relations (5—7). The normalized SIFs for this mixed mode problem are given ir
Tables 8 and 9. As indicated by Tables 8 and 9 that the SIFs calculated by the present methc
are closest to the accurate results obtained by Gandhi (1972).

EXAMPLE 6. A crack in a finite domain under an anti-plane loading.

An off-center crack in a finite plate subjected to a uniform anti-plane shésrshown in
Figure 10. The geometry is such theatw = a/h = 0.5. We used 10 discontinuous quadratic
elements for the crack surface and 20 quadratic elements for the no-crack boundary. Fc
e/w = 0.5, the normalized SIK}, /7/ma obtained with the current BEM formulation is
1.154, which is close to 1.178 obtained by Ma and Zhang (1991) using an integral equatior
method. Foe/w = 0, i.e., the central crack case, the SIF obtained with the present method is
given in the second row of Table 10 and compared to those in Liu and Altiero (1992) and Ma
(1988). As can be observed from Table 10 that these results are very close to each other.
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Figure 8 Double edge cracks emanating from a hole in a rectangular plate which is subjected to a uniaxial tensior
ag.

Figure 9 An anisotropic and finite rectangular plate with a central crack inclinéd@#he horizontal direction
under a uniaxial tensios.

Table 8 SIF K,/o+/ma for an internal crack in a finite domain.

0 Sollero and Aliabadi Pan and Amadei Gandhi Present
(1995a) (19964a) (2972)
0° 0.517 0.519 0.522 0.5228
45 0.513 0.516 0.515 0.5153
90° 0.515 0.537 0.513 0.5133
105 0.518 0.507 0.517 0.5165
1200 0.526 0.520 0.524 0.5240
135  0.535 0.532 0.532 0.5316

180 0.517 0.519 0.522 0.5228
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Table 9 SIF K} /o+/ma for an internal crack in a finite domain.

0 Sollero and Aliabadi Pan and Amadei Gandhi Present
(1995a) (19964a) (1972)
0° 0.506 0.504 0.507 0.5076
45 0.502 0.505 0.505 0.5048
90° 0.510 0.532 0.509 0.5090
107 0.512 0.502 0.510 0.5107
12C¢ 0.513 0.508 0.512 0.5117
137 0.514 0.511 0.511 0.5111
180 0.506 0.504 0.507 0.5076
y
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Figure 10 An off-center crack in a finite plate subjected to a uniform anti-plane shear stress

le N
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Figure 11 A central crack in a finite plate with fixed edges parallel to the crack. The crack surface is subjected to
a uniform anti-plane shear stregs
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Table 10 SIFs for the anti-plane case.

Present  Ma (1988; 1989) Liu and Altiero (1992)

Ky /Tv/Ta 1.1276 1.130 1.127
K /qy/ma 0.9231 0.923 0.920

Table 11 SIFK, /(h/w)?pgw+/ma for the body force case.

Present Leung and Su (1995)
Fixed 0.4813 0.48
Simple 4.0430 4.42

Figure 11 shows a central crack in a finite plate with fixed edges parallel to the crack. The
geometry is suchthat/b = a/h = 0.5. The crack surface is subjected to a uniform anti-plane
shear. In the third row of Table 10, the SIF obtained with the present BEM formulation is
given and compared to those in Liu and Altiero (1992) and Ma (1989).

EXAMPLE 7. A crack under the body force of gravity.

Figure 12 shows an edge crack in a finite domain subjected to the body force of gravity
with fixed end support in (a) and simple support in (b). The geometry of the problem is such
thath/w = 4 anda/w = 0.5. A plane strain condition was assumed for this example. We
used 10 discontinuous quadratic elements for the crack surface and 48 quadratic elements f
the no-crack boundary. The normalized SIFs are given in Table 11 and are compared to thos
obtained by Leung and Su (1995) using the finite element method.

6. Conclusions

The single-domain BEM formulation proposed recently by Pan and Amadei (1996a) has bee
extended in this paper to the general fracture mechanics analysis in cracked 2-D anisotrop

1% 11

S
@
0w v

Figure 12 An edge crack in a finite domain subjected to the body force of gragyitith fixed end support in (a)
and simple support in (b).
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elastic media. Instead of using theintegral for the calculation of the SIFs, the author
proposed the extrapolation method of the relative crack displacement combined with a new
set of crack-tip shape functions. As such, the body force, pressurized crack, and curved crac
cases can all be easily studied in a unified and versatile way. Extensions have also been ma
for the anti-plane and half-plane cases.

Numerical examples of the calculation of the SIFs for various benchmark problems were
conducted and excellent agreement with previously published results was obtained.

Since the present method is simple, efficient, accurate and versatile, the author believes th
the single-domain BEM formulation presented in this paper could be a powerful numerical
tool which can find applications to various fracture mechanics problems in 2-D anisotropic
media. Some of the related problems are currently under investigation by the author and resul
will be submitted in a separate paper.
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