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This paper is the second of a series of two papers dealing with the determi-
nation of the deformability, tensile strength and fracturing of anisotropic
rocks by diametral compression (Brazilian test) of discs of rock. It is shown
how a new formulation of the Boundary Element Method (BEM), proposed
recently by the authors, can be used to determine the stress intensity factors
(SIFs) and the fracture toughness of anisotropic rocks from the results of
diametral compression tests on initially cracked discs. Crack initiation
angles and propagation paths can also be predicted using a numerical pro-
cedure based on the BEM and maximum tensile stress criterion. Numerical
examples of calculation of mixed mode SIFs are presented for both isotropic
and anisotropic media. The calculated SIFs for the special isotropic case are
found to be in good agreement with those reported by previous authors. Dia-
metral loading tests were conducted on Cracked Straight Through Brazilian
Disc (CSTBD) specimens of a shale in order to evaluate its fracture tough-
ness, the angle of crack initiation and the path of crack propagation. It was
found that the numerical simulations of crack initiation and propagation in
the CSTBD specimens of the shale were in good agreement with the exper-
imental observations. # 1998 Elsevier Science Ltd.

INTRODUCTION

Fracture mechanics has been suggested as a possible

tool for solving a variety of rock engineering problems,

such as rock cutting, hydrofracturing, explosive frac-

turing, rock stability, etc. Rock (linear elastic) fracture

mechanics is essentially based on the extension of

Gri�th theory [1] and Irwin's modi®cation [2] to that

theory which recognizes the importance of stress inten-

sity near a crack tip. Irwin [2] introduced parameters,

called Stress Intensity Factors (SIFs), to express the

stress and displacement ®eld near a crack tip. In gen-

eral, three SIFs, called KI, KII and KIII are introduced

corresponding to three basic fracture modes, e.g. mode

I (opening mode), mode II (sliding mode) and mode

III (tearing mode), respectively. A superposition of the

three modes describes the general case of loading

(mixed mode loading). For a given cracked body

under a certain type of loading, the SIFs are known

and the stresses and displacements near the crack tip

can accordingly be determined. Hence, the problem of

linear elastic fracture mechanics reduces to the deter-
mination of the crack tip SIFs.

Various methods of determination of the SIF for
cracked Brazilian discs under pure mode I have been
proposed in the literature. Libatskii and Kovchik [3]

used an approximate integral solution, Rooke and
Tweed [4] used a Fredholm equation, Isida [5] used the
boundary collocation method, Murakami [6] used the
®nite element method and Guo et al. [7] used an ana-
lytical expression to an in®nite cracked plate. By vary-

ing the orientation of the crack relative to the loading
direction, Awaji and Sato [8] investigated the mixed
mode (I±II) crack problem using the dislocation
method and the boundary collocation procedure.
Atkinson et al. [9] used a distributed dislocation
method and Fowell and Xu [10] used the dislocation

method combined with a superimposition technique.
All the above references concur that the Brazilian disc
geometry has some major advantages over other
methods currently used in rock fracture tests, i.e., sim-
pler specimen preparation, higher failure load and
easier testing procedure. However, all the methods of

analysis mentioned above are limited to isotropic
media. Recently, Chen et al. [11] proposed a method
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to determine the mixed mode SIFs for cracked discs of
anisotropic rock under diametral loading.
In this paper, it is shown that the mixed mode SIFs

of anisotropic rocks can be determined by a new for-
mulation of the BEM based on the de®nition of the J-
integral for anisotropic materials and the relative dis-
placements at the crack tip. Numerical examples of de-
termination of the mixed mode SIFs for a Cracked
Straight Through Brazilian Disc (CSTBD) specimen
are presented for isotropic and anisotropic media.
Good agreement is found between the mixed mode
SIFs determined by the proposed method and those
reported by Atkinson et al. [9] for isotropic media. For
anisotropic cracked circular discs, the e�ect of crack
length, crack angle, anisotropic orientation and degree
of material anisotropy on the values of SIFs is also
analyzed.
The most fundamental parameter in fracture mech-

anics is called the fracture toughness indicating the re-
sistance of a material to crack propagation. Fracture
toughness is de®ned as the critical value of the SIF
when crack initiation takes place. This implies that the
fracture toughness can be obtained by experimental
procedures if the SIF is known for a given body under
a certain type and magnitude of loading. Earlier
measurements of rock fracture toughness [12±16] fol-
lowed the ASTM-E399 standard method initially
suggested for metallic materials. Because most rocks
are brittle, fatigue pre-cracking required by that
ASTM standard has been found to be very di�cult to
produce. Testing methods such as the testing of chev-
ron bend specimens and short rod specimens, have
been suggested by the ISRM [17]. Both types of speci-
mens have been widely used for determining pure
mode I fracture toughness of isotropic rocks by
Ingra�ea et al. [18] on limestone and granite, Swan
and Alm [19] and Sun and Ouchterlony [20] on Stripa
granite, Senseny and Pfei¯e [21] on sandstone and
shale, Gunsallus and Kulhawy [22] on sandstone, and
Ouchterlony [23] on granite and marble. These two
methods have several disadvantages as they require
very low failure initiation loads, relatively large
amounts of intact rock core, complicated loading ®x-
tures and complex sample preparation for the short
rod specimens [10].

These disadvantages can be overcome by conducting
a Brazilian test on a Cracked Chevron Notched
Brazilian Disc (CCNBD) or a Cracked Straight
Through Brazilian Disc (CSTBD) (Fig. 1). The advan-
tages of using the Brazilian test to determine the rock
fracture toughness are high failure load, a simple load-
ing ®xture and convenient specimen preparation [10].
In addition, it is possible to measure mode I, mode II
and mixed mode I±II fracture toughness by inclining
the initial crack in the discs at di�erent angles with
respect to the diametral load. Shetty et al. [24] and
Fowell and Xu [10] used the CCNBD geometry to
measure the fracture toughness of ceramics and rocks,
respectively. This geometry has been suggested by the

ISRM [25] for determining mode I fracture toughness

of rocks. The CSTBD has also been introduced to

determine the mixed mode I±II fracture toughness in

isotropic materials by Awaji and Sato [8], Atkinson et

al. [9], Sanchez [26] and Shetty et al. [27]. Hirose et

al. [28] studied the e�ect of material anisotropy on the

mode I SIF only using the 3D Finite Element Method

(FEM).

In this paper, a procedure for determining the frac-

ture toughness of anisotropic rocks under pure mode I

and mode II loading is presented. A shale assumed to

be transversely isotropic was selected and its fracture

toughness was determined by conducting Brazilian

tests on CSTBD specimens. It was found that, in gen-

eral, the fracture toughness of anisotropic rocks

depends on the rock properties and the initial crack

orientation.

Failure of rock construction frequently takes place

following crack growth. Understanding the behavior

of crack initiation and propagation is important for

evaluating the safety limits of cracked structures.

Crack propagation processes are frequently simulated

by an incremental crack extension analysis, based on

certain failure criterion to predict the direction of

crack initiation. For each increment of crack exten-

sion, a stress analysis is carried out, and the SIFs are

evaluated. Because of the complex geometry, which is

continuously changing during crack extension, numeri-

cal techniques are required to simulate crack propa-

gation problems. For a long time, the Finite Element

Fig. 1. Cracked Brazilian disc specimens under diametral com-
pression. (a) Cracked Chevron Notched Brazilian Disc (CCNBD),

(b) Cracked Straight Through Brazilian Disc (CSTBD).
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Method (FEM) has been used to determine the SIFs
for cracked media. Numerous researchers have
employed this method to study fracture propagation
processes [29±33]. The main disadvantage of the FEM,
when used in the context of modeling crack propa-
gation, is that the ®nite element mesh has to be
updated following each step of crack extension.
Over the past ten years, the boundary element

method (BEM) has emerged as an alternative method
for the analysis of cracked bodies. However, because
the coincidence of the crack surfaces gives rise to a
singular system of algebraic equations, the solution of
this problem can not be obtained with the direct for-
mulation of the BEM. Some special techniques have
been devised to overcome this di�culty such as the
sub-regional method [34], the displacement discontinu-
ity method (DDM) [35, 36] and the dual BEM [37±39].
A detailed discussion on these methods can be found
in Pan and Amadei [40] where an e�cient and accurate
BEM formulation was proposed.
Another objective of this paper is the study of crack

initiation and propagation in anisotropic rocks sub-
jected to Brazilian loads. A numerical procedure based
on the BEM formulation of Pan and Amadei [40] and
the maximum tensile stress criterion has been devel-
oped to predict the angle of crack initiation and the
path of crack propagation in anisotropic rocks. Crack
propagation in an anisotropic homogeneous rock disc
under mixed mode I±II loading is simulated by an
incremental crack extension with a piece-wise linear
discretization. A computer program, which can auto-
matically generate a new mesh (required for analyzing
sequentially the changing boundary con®guration) has
been developed to simulate the crack propagation pro-
cess. Some experimental observations of crack in-
itiation angles and crack propagation were obtained
by conducting diametral loading of CSTBD specimens
of a shale. It was found that the numerical analysis
could predict relatively well the direction of crack in-
itiation and the path of crack propagation. Note that
throughout this paper, a generalized plane stress defor-
mation is assumed and tensile stresses and strains are
taken as positive.

THEORETICAL BACKGROUND

Anisotropic elasticity

As discussed in Lekhnitskii [41] and in our compa-
nion paper [42], the stress and displacement ®elds in a
two-dimensional linear elastic, homogeneous, and ani-
sotropic medium can be formulated in terms of two
analytical functions, fk(zk), of the complex variables
zk=x+ mky (k= 1, 2) where, mk are the roots of a
characteristic equation

a11m4 ÿ 2a16m3 � �2a12 � a66�m2 ÿ 2a26m� a22 � 0 �1�
In Equation (1), a11, a12, . . . , a66 are the compliance
components of the medium in a global coordinate sys-
tem (x, y) attached to the medium. Lekhnitskii [41]

has shown that the roots of this equation are always
either complex or purely imaginary, two of them being
the conjugate of the two others. Let m1, m2 be those
roots and �m1, �m2 their respective conjugates. Assuming
m1 and m2 to be distinct, the general expressions for the
stress and displacement components are [41]

sx �2Re�m21f1
0�z1� � m22f2

0�z2��,
sy �2Re�f1

0�z1� � f2
0�z2��,

txy �ÿ 2Re�m1f1
0�z1� � m2f2

0�z2�� �2�
and

u �2Re�P11f1�z1� � P12f2�z2��
v �2Re�P21f1�z1� � P22f2�z2�� �3�

where

P1k �a11m2k � a12 ÿ a16mk,

P2k �a12mk � a22=mk ÿ a26 �k � 1, 2�: �4�

Boundary integral equation

The traditional displacement boundary integral
equation for linear elasticity can be expressed as [40]

cij�z0k�uj�z0k� �
�
G
Tij�zk, z0k�uj�zk� dG�zk�

�
�
G
Uij�zk, z0k�tj�zk� dG�zk� �5�

where i, j, k= 1, 2; Tij and Uij are the Green's trac-
tions and displacements given in Appendix A; cij are
quantities that depend on the geometry of the bound-
ary and are equal to dij/2 for a smooth boundary; and
zk and zk

0 are the ®eld and source points on the bound-
ary G of the domain. Discretization of Equation (5)
gives a linear system of algebraic equations which can
be solved for the unknowns on the boundary.
However, for a cracked elastic medium, Equation (5)
is not su�cient for solving all the unknowns along the
outer boundary of the problem as well as along the
two sides of the crack surfaces because of the geo-
metric singularity associated with the crack surface.

Fig. 2. Geometry of a two-dimensional cracked domain.
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In the BEM formulation of Pan and Amadei [40]
for cracked anisotropic media, the displacement inte-
gral equation is collocated on the outer boundary only
and the traction integral equation on one side of the
crack only. The displacement integral equation applied
to the outer boundary results in the following form
�z0k,B$GB only, Fig. 2)

cij�z0k,B�uj�z0k,B��
�
GB

Tij�zk,B, z0k,B�uj�zk,B� dG�zk,B�

�
�
GC

Tij�zk,C, z0k,B��uj�zk,C��

ÿuj�zk,Cÿ�� dG�zk,C�

�
�
GB

Uij�zk,B, z0k,B�tj�zk,B� dG�zk,B� �6�

where GC has the same outward normal as GC+. Here,
the subscripts B and C denote the outer boundary and
the crack surface, respectively.
The traction integral equation (for zk

0 being a
smooth point on the crack) applied to one side of the
crack surfaces is �z0k,C$GC+ only)

0:5tl�z0k,C��nm�z0k,C�
�
GB

clmikTij,k�z0k,C, zk,B�uj�zk,B� dG�zk,B�

� nm�z0k,C�
�
GC

clmikTij,k�z0k,C, zk,C��uj�zk,C��

ÿ uj�zk,Cÿ�� dG�zk,C� � nm�z0k,C�
�
GB

clmikUij,k

� �z0k,C, zk,B�tj�zk,B� dG�zk,B� �7�
where nm is the unit outward normal to the contour
path; and the gradient tensors Tij,k and Uij,k denote
di�erentiation with respect to the source coordinate xk

0

or yk
0.

The Cauchy singularity in the displacement
Equation (6) can be avoided by the rigid-body motion
method. The integrand on the right-hand side of
Equation (6) has only integrable singularity which can
be resolved by the bi-cubic transformation method [44].
The hyper-singularity in the traction integral
Equation (7) is resolved by a new Gauss quadrature
formula [40] which is very similar to the traditional
weighted Gauss quadrature but with a di�erent weight.
Therefore, Equations (6) and (7) can be solved simul-
taneously for the unknown displacements or tractions
on the outer boundary and the unknown crack displa-
cement di�erences on the crack surface.

Calculation of stress intensity factors

The mixed mode stress intensity factors for anisotro-
pic media can be determined by using the J-integral
combined with a decoupling technique [40, 45]. This
technique is based on the ratio of relative crack tip dis-
placements calculated with the BEM. The contour-
independent J-integral is de®ned as [46]

Jk �
X2
i,j�1

�
G

�
1

2
sijeijnk ÿ sjiniuj,k

�
dG �8�

where k= 1, 2; G is a generic contour surrounding the
crack tip (Fig. 3); sij and eij are the stress and strain

tensors, respectively; and ni are the components of the
unit outward normal to the contour path.

Chu and Hong [47] have shown that for a cracked

two-dimensional homogeneous and anisotropic body,
the J1 and J2 integrals are related to the stress intensity

factors KI and KII by the following relations

J1 �a11K2
I � a12KIKII � a22K 2

II,

J2 �b11K 2
I � b12KIKII � b22K

2
II �9�

where aij and bij are constants related to the elastic

properties of the anisotropic medium. The detailed re-
lations between aij, bij and the elastic constants can be

found in Chu and Hong [47]. By expanding the displa-
cements near the crack tip, the ratio of relative displa-

cements is found to be [40, 45]

l � u�2 ÿ uÿ2
u�1 ÿ uÿ1

� H21KI �H22KII

H11KI �H12KII
�10�

where l is the ratio of the relative crack-tip displace-

ments obtained by the extrapolation method [40], and

H11 �Im
�
m2P11 ÿ m1P12

m1 ÿ m2

�
;

H12 �Im
�
P11 ÿ P12

m1 ÿ m2

�
;

H21 �Im
�
m2P21 ÿ m1P22

m1 ÿ m2

�
;

H22 �Im
�
P21 ÿ P22

m1 ÿ m2

�
: �11�

From Equation (10), the ratio of stress intensity fac-
tors is equal to

r � KI

KII
� lH12 ÿH22

H21 ÿ lH11
: �12�

Substituting Equation (12) into Equation (9), the mode

II SIF, KII, can be expressed as follows

Fig. 3. Contour path of J-integral.
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KII �
�������������������������������������

J1
a11r2 � a12r� a22

s
: �13�

Once KII is calculated from Equation (13), KI=rKII.
In this paper, the sign convention for the correspond-
ing SIFs (KI and KII) is shown in Fig. 4. Using the
relative crack-tip displacements, the sign of the SIFs
can then be determined.

Direction of crack initiation

In fracture mechanics, there are three criteria com-
monly used to predict the crack initiation angle: the
maximum tensile stress criterion, or s-criterion [48];
the maximum energy release rate criterion, or G-
criterion [49]; and the minimum strain energy density
criterion, or S-criterion [50]. Among them, the s-cri-
terion has been found to predict well the directions of
crack initiation compared to the experimental results
for polymethylmethacrylate [51, 52] and brittle clay [53].
Because of its simplicity, the s-criterion seems to be
the most popular criterion in mixed mode I±II fracture
studies [54]. Therefore, the s-criterion was used in this
study to determine the crack initiation angle for aniso-
tropic rocks. It is noteworthy that in order to compute
the loads required to propagate a crack, other criteria
need to be used [49, 50].
For anisotropic materials, the general form of the

elastic stress ®eld near the crack tip in the local
Cartesian coordinates x0, y0 of Fig. 5 can be expressed
in terms of the two stress intensity factors KI and KII

as follows [43]

s
x0 �

KI�������
2pr
p Re

�
m1m2

m1 ÿ m2

�
m2��������������������������������

cos y� m2 sin y
p

ÿ m1��������������������������������
cos y� m1 sin y

p ��
� KII�������

2pr
p

�Re

"
1

m1 ÿ m2

 
m22��������������������������������

cos y� m2 sin y
p

ÿ m21��������������������������������
cos y� m1 sin y

p !#
,

s
y0 �

KI�������
2pr
p Re

�
1

m1 ÿ m2

�
m1��������������������������������

cos y� m2 sin y
p

ÿ m2��������������������������������
cos y� m1 sin y

p ��
� KII�������

2pr
p Re

�
1

m1 ÿ m2

�
�

1��������������������������������
cos y� m2 sin y

p ÿ 1��������������������������������
cos y� m1 sin y

p ��
,

t
x0y0 �

KI�������
2pr
p Re

�
m1m2

m1 ÿ m2

�
1��������������������������������

cos y� m1 sin y
p

ÿ 1��������������������������������
cos y� m2 sin y

p ��
� KII�������

2pr
p Re

�
1

m1 ÿ m2

�
�

m1��������������������������������
cos y� m1 sin y

p ÿ m2��������������������������������
cos y� m2 sin y

p ��
�14�

where m1 and m2 are the roots of the characteristic
equation (Equation (1)).

Using coordinate transformation, the stress ®eld
near the crack tip in the polar coordinates (r, y) of
Fig. 5 is such that

sy �
s
x0 � s

y0
2

ÿ
s
x0 ÿ s

y0
2

cos 2yÿ t
x0y0 sin 2y,

try �ÿ
s
x0 ÿ s

y0
2

sin 2y� t
x0y0 cos 2y: �15�

If the maximum s-criterion is used, the angle of crack
initiation, y0, must satisfy

@sy
@y
� 0 �or try � 0� and

@ 2sy
@y2

<0: �16�

A numerical procedure was applied to ®nd the angle
y0 when sy is a maximum for known values of the ma-
terial elastic constants, the anisotropic orientation
angle c and the crack geometry.

Crack propagation process

In this study, the process of crack propagation in an
anisotropic homogeneous rock disc under mixed mode
I±II loading is simulated by incremental crack exten-
sion with a piece-wise linear discretization. For each
incremental analysis, crack extension is conveniently
modeled by a new boundary element. A computer pro-
gram has been developed to automatically generate

Fig. 4. Sign convention used for determining SIFs in mode I and
mode II.

Fig. 5. Crack tip coordinate system and stress components.
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Fig. 6. Process of crack propagation by increasing the number of lin-
ear elements.

Fig. 7. Geometry of a Cracked Straight Through Brazilian Disc
(CSTBD) specimen of anisotropic rock under diametral loading.

Table 1. Normalized stress intensity factors for a central slant crack in an isotropic Brazilian disc subjected to a concentrated load
(a/R= 0.5)

Atkinson et al. [9] This study

b (Rad.) KI/K0 KII/K0 KI/K0 KII/K0

0 1.387 0 1.339 0
p/16 0.970 ÿ1.340 0.960 ÿ1.275
2p/16 0.030 ÿ2.113 0.074 ÿ2.061
3p/16 ÿ0.946 ÿ2.300 ÿ0.903 ÿ2.275
p/4 ÿ1.784 ÿ2.132 ÿ1.737 ÿ2.103
5p/16 ÿ2.446 ÿ1.728 ÿ2.377 ÿ1.711
6p/16 ÿ2.885 ÿ1.188 ÿ2.826 ÿ1.197
7p/16 ÿ3.127 ÿ0.604 ÿ3.092 ÿ0.614
p/2 ÿ3.208 0 ÿ3.180 0

Table 2. Normalized stress intensity factors for a central slant crack in an isotropic Brazilian disc subjected to a concentrated load (b= 458)

Atkinson et al. [9] This study

a/R KI/K0 KII/K0 KI/K0 KII/K0

0.1 ÿ1.035 ÿ2.010 ÿ1.020 ÿ1.968
0.2 ÿ1.139 ÿ2.035 ÿ1.116 ÿ1.995
0.3 ÿ1.306 ÿ2.069 ÿ1.272 ÿ2.036
0.4 ÿ1.528 ÿ2.100 ÿ1.484 ÿ2.069
0.5 ÿ1.784 ÿ2.132 ÿ1.737 ÿ2.103
0.6 ÿ2.048 ÿ2.200 ÿ2.020 ÿ2.148
0.7 ÿ ÿ ÿ2.337 ÿ2.213

Table 3. Three sets of dimensionless elastic constants (n = 0.25)

E/E ' E/G ' n'

Case I 1/3 1/2 1 2 3 2.5 0.25
Case II 1 0.5 1.5 2.5 3.5 4.5 0.25
Case III 1 2.5 0.05 0.15 0.25 0.35 0.45
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new data required for analyzing sequentially the chan-
ging boundary con®guration. Based on the calculation
of the SIFs and crack initiation angle for each incre-
ment, the procedure of crack propagation can be simu-
lated. The steps in the crack propagation process are
summarized as follows (Fig. 6):

(1) Compute the SIFs using the proposed BEM;

(2) Determine the angle of crack initiation based on
the maximum tensile stress criterion;

(3) Extend the crack by a linear element (of length
selected by the user) along the direction determined in
step 2;

(4) Automatically generate the new BEM mesh;

(5) Repeat all the above steps until the new crack is
near the outer boundary.

NUMERICAL EXAMPLES OF STRESS INTENSITY
FACTORS

The geometry of the problem analyzed here is that
of a thin circular disc of radius R and thickness t with
a central crack of length 2a, loaded by a pair of con-
centrated and diametral compressive loads W (Fig. 7).
The outer boundary and the crack surface are discre-
tized with 28 continuous and 10 discontinuous quadra-
tic elements, respectively. The sign convention of the
corresponding SIFs in mode I and mode II is shown in
Fig. 4. The normalized SIFs, de®ned as FI and FII, are
equal to

FI � KI

K0
; FII � KII

K0
�17�

Fig. 8. Variation of FI in (a) and FII in (b) with the material orientation angle c for case I (a/R= 0.5, b = 458, E/G ' = 2.5,
n' = 0.25).
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with

K0 � W

pRt
������
pa
p

: �18�

Example 1 Ð Isotropic case

In order to compare our results with existing pub-
lished results, an isotropic and cracked Brazilian disc
with a central slant crack is considered. Two cases are
analyzed: (1) a/R = 0.5, the crack angle b varies
between 0 and p/2, and (2) b= 458, a/R varies
between 0.1 and 0.7. The two normalized SIFs, FI and
FII, calculated with the BEM program for these two
cases are compared with those obtained numerically by
Atkinson et al. [9] using the continuously distributed
dislocation method. The results are shown in Tables 1
and 2. In general, good agreement is found between
the two methods.

Example 2 Ð Anisotropic case

In order to evaluate the in¯uence of material aniso-
tropy on the SIFs, consider again the disc of Fig. 7.
The disc consists of an anisotropic material with a cen-
tral slant crack inclined with respect to a pair of con-
centrated diametral compressive loads. The crack angle
b is ®xed at 458 and the crack length is such that a/
R= 0.5. The material is transversely isotropic with the
plane of transverse isotropy inclined at an angle c
with respect to the x-axis. The material has ®ve inde-
pendent elastic constants (E, E ', n, n', and G ') in the
local coordinate system: E and E ' are the Young's
moduli in the plane of transverse isotropy and in a
direction normal to it, respectively; n and n' are the
Poisson's ratios characterizing the lateral strain re-
sponse in the plane of transverse isotropy to a stress
acting parallel and normal to it, respectively; and G ' is
the shear modulus in the planes normal to the plane of

Fig. 9. Variation of FI in (a) and FII in (b) with the material orientation angle c for case II (a/R= 0.5, b = 458, E/E ' = 1,
n' = 0.25).
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transverse isotropy. In this example, the angle c varies

from 08 to 1808. Three sets of dimensionless elastic

constants are considered and are de®ned as cases I, II

and III in Table 3. The numerical results are plotted in

Figs 8±10 for cases I, II and III, respectively. The

results for the isotropic case (E/E '= 1, E/G '= 2.5,

and n' = 0.25) are also shown for comparison as solid

lines in Figs 8±10. Analysis of Figs 8±10 reveals several

major trends:

(1) For cases I and II, the orientation of the planes

of rock anisotropy with respect to the horizontal plane

has a strong in¯uence on the value of the SIFs. The in-

¯uence is small for case III. This means that the e�ect

of E/E ' and E/G ' on the SIFs is more important than

that of n'.
(2) When E/E '= 1 (Figs 9 and 10, cases II and III,

respectively), the variation of the SIFs with the angle

c is periodic with a 908 period. However, this period-
icity is not observed for case I (Fig. 8).

(3) There is a greater variation in the SIFs with the
orientation angle c for materials having a high degree
of anisotropy (E/E '= 3 or 1/3; E/G ' = 0.5 or 4.5).

(4) Fig. 8 indicates that the maximum absolute
values of the SIFs occur when the material orientation
is about 608 for E/E '>1, and when the loading is per-
pendicular to the plane of transverse isotropy (i.e.
c= 08 or 1808) for E/E ' < 1.

Example 3 Ð E�ect of crack angle b when c= 08

The variation of the SIFs with the crack angle b for
cases I, II and III is considered in this example by tak-
ing a/R= 0.5, c= 08, and b to vary from 08 to 908.
The variations of the SIFs with the crack angle b are
shown in Fig. 11±13 for cases I, II and III, respect-
ively.

Fig. 10. Variation of FI in (a) and FII in (b) with the material orientation angle c for case III (a/R= 0.5, b = 458,
E/E ' = 1, E/G '= 2.5).
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Fig. 11. Variation of FI in (a) and FII in (b) with the crack angle b for case I (a/R= 0.5, c = 08, E/G ' = 2.5, n' = 0.25).

CHEN et al.: FRACTURE MECHANICS ANALYSIS OF CRACKED DISCS204



Fig. 12. Variation of FI in (a) and FII in (b) with the crack angle b for case II (a/R= 0.5, c= 08, E/E ' = 1, n' = 0.25).
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Fig. 13. Variation of FI in (a) and FII in (b) with the crack angle b for case III (a/R= 0.5, c= 08, E/E ' = 1, E/G '= 2.5).
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Fig. 14. Variation of FI in (a) and FII in (b) with the crack length a/R for case I (b= c= 458, E/G ' = 2.5, n' = 0.25).
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For all cases, the mode I SIF reaches a positive
maximum value when the crack is parallel to the
applied load (i.e., b= 08) and decreases smoothly to a
negative minimum when the crack is perpendicular to
the load (i.e., b= 908). The mode II SIF vanishes
when the crack angle b= 08 or 908 and reaches a
maximum absolute value when the crack is oriented at
about b= 308. It can be noted that E/E ' has the
greatest e�ect on the SIFs, that E/G ' has the next
greatest, and that the in¯uence of n' is almost negli-
gible. For a ®xed crack angle b, an increase in E/E ' is
accompanied with an increase in the values of FI and
FII (Fig. 11).

Example 4 Ð E�ect of crack length a/R when
b= c= 458

The in¯uence of the crack length on the mixed mode
SIFs is considered in this example. The disc is such
that b= c = 458. The crack length a/R varies from

0.1 to 0.7, and the material constants are again taken
from Table 3. The results are plotted in Figs 14±16.

A wide variation of the SIFs with the crack length is
found for cases I and II, whereas the change is small
for case III. For case I, FI approaches its value for an
isotropic medium (solid line) when the crack length
decreases [Fig. 14(a)]. The opposite trend is found for
cases II and III [Fig. 15(a) and Fig. 16(a)]. It can also
be noted that longer crack lengths are associated, in
general, with higher absolute values of the SIFs.

DETERMINATION OF FRACTURE TOUGHNESS

The mixed mode SIFs for cracked discs of anisotro-
pic rocks under Brazilian loading can be accurately
determined with the proposed BEM formulation.
Hence, the rock fracture toughness can be easily com-
puted by conducting Brazilian tests on cracked discs.
This method was applied to CSTBD specimens of a

Fig. 15. Variation of FI in (a) and FII in (b) with the crack length a/R for case II (b= c = 458, E/E '= 1, n'= 0.25).
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Fig. 16. Variation of FI in (a) and FII in (b) with the crack length a/R for case III (b= c= 458, E/E ' = 1, E/G ' = 2.5).

Table 4. CSTBD specimen characteristics

Sample b (deg.) D (in.) t (in.) 2a (in.) a/R

c= 08 SA1-1 0 2.76 0.327 0.795 0.288
SA1-2 0 2.76 0.350 0.827 0.300
SA2-1 28.2 2.76 0.374 0.772 0.280
SA2-2 28.2 2.76 0.343 0.795 0.288

c= 458 SB1-1 0.8 2.76 0.354 0.787 0.285
SB1-2 0.8 2.76 0.327 0.780 0.283
SB2-1 27.6 2.76 0.366 0.764 0.277
SB2-2 27.6 2.76 0.374 0.756 0.274

c= 908 SC1-1 0 2.76 0.417 0.821 0.297
SC1-2 0 2.76 0.402 0.848 0.307
SC2-1 25.9 2.76 0.371 0.795 0.288
SC2-2 25.9 2.76 0.366 0.807 0.292

(1 in=25.4 mm).
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shale assumed to be transversely isotropic with the

plane of transverse isotropy parallel to the apparent

shale layers. The geometry of the testing specimens is

shown in Fig. 7.

Determination of the fracture toughness of the shale

®rst requires determination of its elastic constants.

This was done using the results of Brazilian tests on

uncracked discs. Details of the methodology to deter-

mine the elastic constants using Brazilian tests can be

found in the companion paper [42].

Experimental procedure

Core samples with a diameter D= 2.76 in. were
(70.10 mm) obtained from a block of shale by drilling
in a direction parallel to apparent planes of rock ani-
sotropy. Disc specimens with a thickness-to-diameter
ratio t/D of about 0.13 were prepared. Their end faces
were ¯at to within 0.01 in. (0.25 mm) and parallel to
within 0.258. A circular diamond saw with a diameter
of 0.88 in. (22.35 mm) and a thickness of 0.01 in.
(0.25 mm) was used to cut the required chevron notch.
The notch was made with two cuts on both sides of

Fig. 17. Variation of normalized SIFs with the crack angle b for c= 08.

Table 5. Elastic constants of the shale

E (�106 psi) E ' (�106 psi) n n' G ' (�106 psi)
Shale 2.95 2.41 0.462 0.339 0.97

(106 psi=6.89 GPa).

Fig. 18. Variation of normalized SIFs with the crack angle b for c= 458.
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the disc along the designed crack orientation direction
on the same diametral cutting plane. A check was
made to ensure that the cutting was done exactly at
the center of the disc surface and in a direction per-
pendicular to the disc surfaces. Then, using a tiny line
saw with a thickness of 0.017 in. (0.43 mm) to cut
down the V-shaped convex parts, the CSTBD speci-
mens were made. After preparation, the CSTBD speci-
mens had a crack with a thickness less than 0.02 in.
(0.51 mm) and a ratio between the crack length and
the disc radius a/R of about 0.3. A total of 12 CSTBD
specimens were prepared with di�erent values of the
dip angle c of the planes of rock anisotropy (c= 08,
458, 908), and with di�erent values of the angle b
between the crack and the loaded diameter. The test

specimen characteristics are listed in Table 4. It is

noteworthy that the crack initiation angle from a

notch will in general di�er from the one from a sharp

crack. However, for a notch with a small tip radius (r/

a < 0.02), this di�erence is negligible [55].

All specimens were brought to failure under a line

load (Fig. 7) at a slow deformation rate of 0.02 in/min

(0.51 mm/min.) by using a 100 kips (450 kN) MTS

loading system. The testing requires only the recording

of the maximum load; no load-displacement record

was made during the testing. The procedure used to

determine the fracture toughness of the shale in mode

I (KIC) and its fracture toughness in mode II (KIIC)

was as follows:

Fig. 19. Variation of normalized SIFs with the crack angle b for c= 908.

Table 6. Values of pure mode crack angles bI and bII for c= 08, 458 and 908

c= 08 c = 458 c= 908

bI (deg.) 0 0.8 0
bII (deg.) 28.2 27.6 25.9

Table 7. Measured failure load Wf and calculated values of KIC and KIIC

Sample b (deg.) Wf (lb.) FI, FII KIC, KIIC (lb./in.3/2) Average (lb./in.3/2)

c= 08 SA1-1 0 549 FI=1.156 KIC=500.3 KIC=568.3
SA1-2 0 726 FI=1.167 KIC=636.4
SA2-1 28.2 662 FII=ÿ 1.792 KIIC=ÿ 805.7 KIIC=ÿ 821.5
SA2-2 28.2 618 FII=ÿ 1.803 KIIC=ÿ 837.3

c= 458 SB1-1 0.8 707 FI=1.089 KIC=557.8 KIC=495.5
SB1-2 0.8 509 FI=1.090 KIC=433.2
SB2-1 27.6 517 FII=ÿ 1.791 KIIC=ÿ 639.3 KIIC=ÿ 619.9
SB2-2 27.6 500 FII=ÿ 1.787 KIIC=ÿ 600.5

c= 908 SC1-1 0 723 FI=1.031 KIC=467.6 KIC=542.0
SC1-2 0 664 FI=1.039 KIC=456.0
SC2-1 25.9 602 FII=ÿ 1.795 KIIC=ÿ 749.7 KIIC=ÿ 767.9
SC2-2 25.9 562 FII=ÿ 1.801 KIIC=ÿ 717.2

(1 lb=4.45 N; 1 in.=25.4 mm)
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(1) Determine the elastic properties of the rock using
Brazilian tests [42];
(2) Use the BEM to calculate the normalized SIFs

(FI and FII). The input geometry (c, b, and a/R)
should obviously be the same as that in the exper-
iments;
(3) Conduct diametral loading of a CSTBD speci-

men with a certain crack angle b and record the failure
load; and
(4) Calculate the fracture toughness using

Equations (17) and (18).
After each Brazilian test, the direction of crack in-

itiation and the path of crack propagation were
recorded. These experimental observations were com-

pared with numerical predictions as described in the
following section.

Experimental results for pure mode I and mode II

The mode I fracture toughness and mode II fracture
toughness of the shale were determined with the afore-
mentioned procedure when the material inclination
angle c was 08, 458 and 908. The shale was modeled as
transversely isotropic with the plane of transverse iso-
tropy parallel to the rock layers. The ®ve elastic con-
stants determined by diametral loading of uncracked
discs [42] are listed in Table 5.

With the specimen geometry and the elastic con-
stants of the shale known, a BEM analysis was con-

Fig. 20. Variation of crack initiation angle y0 with the crack angle b. Plexiglass plate subjected to uniaxial tension.
Experimental results of Erdogan and Sih [48] and numerical predictions.

Fig. 21. Variation of crack initiation angle y0 with the crack angle b. Prismatic sample of kaolinite clay subjected to uniaxial
compression. Experimental results of Vallejo [53] and numerical predictions.
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ducted to determine the variation of the normalized
SIFs (FI and FII) with the angle b between the crack
and the loading direction (see Fig. 7). The results of
the BEM analysis are shown in Figs 17±19 when
c= 08, 458 and 908, respectively. These three ®gures
can then be used to determine the angle bI corre-
sponding to pure mode I (KII=0) and the angle bII
corresponding to pure mode II (KI=0). The values of
bI and bII for c= 08, 458 and 908 are listed in
Table 6.
From the failure loads recorded by laboratory test-

ing of discs oriented with an initial crack inclined at bI
or bII, the critical SIF or fracture toughness in mode I
(KIC) and that in mode II (KIIC) could be determined.
The values of the failure load Wf and the fracture
toughness for the shale are reported in Table 7 when
c= 08, 458 and 908. The negative sign of KIIC in
Table 7 is associated with the adopted sign convention
of the mode II SIF (see Fig. 4).

CRACK INITIATION ANGLES AND PROPAGATION
PATHS

Comparison of numerical predictions of crack initiation
angles with experimental results

In order to check the validity of our crack predic-
tion procedure, the tests of Erdogan and Sih [48] were
reproduced numerically with our new BEM formu-
lation. Erdogan and Sih conducted uniaxial tension
tests on isotropic Plexiglass sheets 9� 18� 0.188 in.
(229� 457� 4.8 mm) in size containing a 2 in.
(50.8 mm) long central crack. The crack orientation
angle b between the crack plane and the tensile stress
was varied. Figure 20 shows the variation of the crack
initiation angle y0 with the crack angle b determined
numerically and experimentally. A good agreement is
found between the experimental results of Erdogan
and Sih [48] and our numerical predictions.

Another veri®cation was done using the experimen-
tal results of Vallejo [53]. The latter conducted uniaxial
compression tests on cracked prismatic specimens of
kaolonite clay 3� 3� 1 in. (76.2� 76.2� 25.4 mm) in

Table 8. Comparison between crack initiation angles predicted numerically and observed experimentally in the tests on CSTBD specimens of
shale

Sample b (deg.) Experimental measurements (deg.) Num. results (deg.)

Tip-A Tip-B average

c= 08 SA1-1 0 ÿ1.0 0 ÿ0.5 0
SA1-2 0 ÿ0.5 0 ÿ0.3 0
SA2-1 28.2 78.6 70.5 74.6 71.87
SA2-2 28.2 79.0 76.4 77.7 71.78

c= 458 SB1-1 0.8 3.8 2.2 3.0 0.99
SB1-2 0.8 3.5 7.0 5.3 1.06
SB2-1 27.6 68.7 64.0 66.4 70.50
SB2-2 27.6 67.8 73.5 70.7 70.46

c= 908 SC1-1 0 0 ÿ3.8 ÿ1.9 0
SC1-2 0 2.0 0 1.0 0
SC2-1 25.9 67.5 63.3 65.4 69.44
SC2-2 25.9 70.9 62.2 66.6 69.49

Tip-A and Tip-B are de®ned in Fig. 7.

Fig. 22. Mixed mode cracking problem. (a) Rectangular plate with a
central inclined crack subjected to uniaxial tension, (b) square plate

with a central inclined crack subjected to uniaxial compression.
Fig. 23. Numerical simulation of crack propagation (b= 438). Plate

of titanium subjected to uniaxial tension.
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size containing a central crack 0.98 in. (24.9 mm) in

length. Several tests were carried out by varying the

crack angle b between the crack plane and the com-

pressive stress. Figure 21 shows a comparison between

the crack initiation angles measured experimentally

and those predicted numerically. Again, a good agree-

ment is found between the two approaches.

Our crack prediction procedure was then used to

predict the crack initiation angles in the diametral

compression tests of CSTBD specimens of shale for

the three values of the inclination angle c= 08, 458
and 908 considered in the tests. Table 8 gives a com-

parison between the crack initiation angles measured

experimentally and those predicted numerically with
the BEM method. Good agreement is found between
the two sets of crack initiation angles. It can be seen
that our numerical procedure based on the BEM can
predict well the crack initiation angle in cracked discs
of anisotropic rocks under diametral loading.

Comparison of numerical predictions of crack propa-
gation paths with experimental results

In order to check the validity of the proposed BEM
for predicting the crack propagation paths, both iso-
tropic rectangular and square plates with a central
inclined crack subjected to uniaxial tension and com-

Fig. 24. Propagation of a crack at the center of a plate of titanium under uniaxial tension. Comparison between experimen-
tal results of Pustejovsky [56] and numerical predictions.

Fig. 25. Propagation of a crack at the center of a plate of granite
subjected to uniaxial compression. Comparison between experimental

results of Ingra�ea [55] and numerical predictions.

Fig. 26. Propagation of a crack at the center of a CSTBD specimen
with c= 08 and b = 08. Comparison between experimental obser-

vations and numerical predictions for specimen SA1-1.

CHEN et al.: FRACTURE MECHANICS ANALYSIS OF CRACKED DISCS214



pression are considered [see Fig. 22(a) and (b)]. These
mixed-mode cracking problems have been studied ex-
perimentally by Ingra�ea [55] and Pustejovsky [56].
Comparison of crack propagation paths by the pro-
posed BEM with the experimental results is discussed
in this section.

Experimental measurements of crack growth in an
isotropic titanium Ti±6Al±4V plate were made by
Pustejovsky [56]. In these experiments, a crack initially
inclined with respect to the applied stress was allowed
to grow under tensile loading [see Fig. 22(a)]. The

reported material properties of the specimens were
E= 16� 106 psi (112 GPa), n = 0.29, and the ultimate
tensile strength Tu=135 ksi (945 MPa). The specimens

were 3� 8� 1/8 in. (76.2� 203.2� 3.2 mm) in size and
were cut using a carbide cuto�-wheel to give a initial
crack length 2a = 0.53 in (13.5 mm). One of the test
specimens (de®ned as specimen CSG-04) had a crack
angle b= 438. A numerical simulation of crack propa-
gation paths in that specimen was conducted with the
BEM using 32 continuous quadratic elements for the
outer boundary and 10 initial discontinuous elements

Fig. 27. Propagation of a crack at the center of a CSTBD specimen
with c= 458 and b = 0.88. Comparison between experimental ob-

servations and numerical predictions for specimen SB1-2.

Fig. 28. Propagation of a crack at the center of a CSTBD specimen
with c = 908 and b= 08. Comparison between experimental obser-

vations and numerical predictions for specimen SC1-1.

Fig. 29. Propagation of a crack at the center of a CSTBD specimen
with c = 08 and b = 28.28. Comparison between experimental ob-

servations and numerical predictions for specimen SA2-1.

Fig. 30. Propagation of a crack at the center of a CSTBD specimen
with c = 458 and b = 27.68. Comparison between experimental ob-

servations and numerical predictions for specimen SB2-2.
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for the crack boundary. The result of the numerical

simulation is shown in Fig. 23. It is noted that the sub-

sequent crack path is slightly curved and nearly per-

pendicular to the applied load. This observation is
consistent with the results of Yan and Nguyen-

Dang [39] using the dual BEM. Comparison of simu-

lated crack propagation paths with the experimental

observations of Pustejovsky [56] in the vicinity of the

crack tip is shown in Fig. 24. A good agreement is
found between the experimental results and the nu-

merical prediction.

Another numerical simulation of crack propagation

was made for a square sheet with a central inclined

crack under uniaxial compression with the geometry of
Fig. 22(b). Ingra�ea [55] conducted compression tests

on initially cracked granite specimens 4� 4� 0.75 in.

(101.6� 101.6� 19.1 in) in size containing an initial

crack with a length of 0.4 in. (10.2 mm). The crack

angle b was ®xed at 458. The mechanical properties of

the granite were E = 9.01� 106 psi (63 GPa),
n= 0.243, and its ultimate compression strength was

qu=38,500 psi (269 MPa). The crack propagation path

was simulated using the BEM with 20 continuous el-

ements on the outer boundary and 10 initial discon-

tinuous elements on the crack boundary. Figure 25
shows a comparison between the crack propagation

path observed experimentally and that simulated nu-

merically. Again, a good agreement is found between

these two approaches.

In order to verify further the validity of the BEM
procedure for cracked anisotropic materials, the crack

propagation path in the CSTBD specimens of shale

was numerically predicted and compared with the

actual laboratory observations. Details of specimen

dimensions, testing procedure, crack geometry, and

photographs after failure can be found in the doctoral
thesis of Chen [57]. All crack propagation paths tend
to be parallel to the loading direction and to approach
the loading points. The BEM was also used to simu-
late crack propagation in the CSTBD specimens. The
outer boundary and crack surface were discretized
with 28 continuous and 20 initial discontinuous quad-
ratic elements, respectively. Figures 26±31 show the
observed and predicted crack propagation paths for
specimens SA1-1, SB1-2, SC1-1, SA2-1, SB2-2, and
SC2-1, respectively. Good agreement is found between
the two approaches. It is therefore concluded that the
proposed BEM procedure can simulate well the angles
occurring in the process of crack propagation for both
isotropic and anisotropic materials.

CONCLUSIONS

This paper shows that the mixed mode stress inten-
sity factors of anisotropic rocks under diametral load-
ing can be successfully determined by the BEM. The
e�ect of crack length, crack angle, anisotropic orien-
tation and degree of material anisotropy on the values
of SIFs was also discussed. Thus, rock fracture tough-
ness can be computed by diametral loading of Cracked
Straight Through Brazilian Disc (CSTBD) specimens.
This was demonstrated by testing CSTBD specimens
of a shale under pure mode I and mode II loading
with rock layers inclined at c= 08, 458 and 908 from
the horizontal.

A new BEM procedure based on the maximum ten-
sile stress failure criterion was developed to predict the
crack initiation direction and the crack propagation
path in anisotropic rock discs under mixed mode load-
ing. A good agreement was found between crack in-
itiation angles and propagation paths predicted with
the BEM and experimental observations reported by
previous researchers on isotropic materials. Numerical
simulations of crack initiation and propagation in the
CSTBD specimens of a shale were also found to com-
pare well with the experimental results. It is concluded
that, in general, the fracture toughness of anisotropic
rocks depends on the rock properties and the orien-
tation of the crack direction.
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APPENDIX A

Green's Functions

For concentrated point forces acting at zk
0 (zk

0=x0+mky
0) in an in®-

nite plate, the Green's tractions, Tij, and displacements, Uij, are

equal to [45]

Tij�zk, z0k� �2Re
�
Qj1�m1nx ÿ ny�Ai1=�z1 ÿ z01�

�Qj2�m2nx ÿ ny�Ai2=�z2 ÿ z02�
� �A:1�

and

Uij�zk, z0k� � 2Re
�
Pj1Ai1 ln�z1 ÿ z01� � Pj2Ai2 ln�z2 ÿ z02�

� �i, j � 1, 2�:
�A:2�

In Equations (A.1) and (A.2), nx and ny are the outward normal vec-

tors of the ®eld point, and Q11=m1, Q12=m2, and Q21=Q22=ÿ 1.

The complex coe�cients Ajk are solutions of the following equation

1 ÿ1 1 ÿ1
m1 ÿm1 m2 ÿm2
P11 ÿP11 P12 ÿP12

P21 ÿP21 P22 ÿP22

2664
3775

Aj1

Aj1

Aj2

Aj2

2664
3775 �

dj2=�2pi �
ÿdj1=�2pi �

0
0

2664
3775 �A:3�

where djk is the Kronecker's delta.
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