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Abstract

Mode selection of guided waves in an elastic steel plate with thick coating layer has been studied here. E�ect of both

thick elastic coating and damping of the coating layer on the dispersion and mode shapes has been investigated and

modes that are less a�ected by elastic coating and damping have been identi®ed. For modeling the viscoelastic behavior

of the coating layer, the standard linear solid is adopted and two damping factors are introduced into the Lam�e
constants. Viscoelastic property of the coating layer causes all wave numbers to be complex. In order to ®nd the

complex wave numbers for a given frequency, a Rayleigh±Ritz type method is used to get approximate values of the

complex wave numbers and then the IMSL subroutine zanlyt is employed to re®ne roots. It is found that a thick elastic

coating introduces new dispersive modes and also, in general, changes considerably the modes of the bare steel plate,

and that damping of the coating layer has signi®cant e�ect of the dispersion and mode shapes. However, we found that

there are certain modes of the bare steel plate that are less a�ected by the thick elastic coating and damping. These

modes could be selected for the ultrasonic inspection of stress-corrosion cracks in thin-walled gas pipelines with pro-

tective coal-tar coating. Ó 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Guided waves in layered plates have been
studied extensively in recent years. The interest in
this area comes from the need to characterize de-
fects in, and mechanical properties of, layered
structures. Ultrasonic technique is highly suitable
for such characterization. For successful use of
this technique, however, a considerable amount of
analytical and experimental work needs to be done

in order to develop devices for characterizing
material degradation and sizing defects.

For an isotropic or anisotropic and homoge-
neous plate, the dispersion relation for guided
waves was studied by Mindlin and co-workers
(Mindlin, 1960; Newman and Mindlin, 1957; Kaul
and Mindlin, 1962a, b). For a bilayered isotropic
plate, Jones (1964) studied phase velocities vs.
wave numbers for various thicknesses of the top
layer. Bratton and Datta (1992) discussed further
the guided waves in such a bilayered plate and
identi®ed new modes dependent on the thickness
of the coating layer. Dispersion of waves in alu-
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minum/polymer bilayers was investigated both
theoretically and experimentally by Laperre and
Thys (1993). Wave propagation in other multi-
layered structures has also been studied. Refer-
ences can be found in the monographs edited by
Mal and Ting (1988) and Datta et al. (1990) and in
the review article by Chimenti (1997). Among the
theoretical studies, mention may be made of those
by Datta et al. (1988), Mal (1988a, b), Karunasena
et al. (1991a, b, 1994), and Shull et al. (1994).

Most studies mentioned above are limited to the
pure elastic case or when the damping is small. For
laminated composites made of polymers or for the
earth foundation, however, the e�ect of material
damping can be large. Wave propagation was
studied by Aki and Richards (1981) and Carcione
et al. (1988) for frequency-dependent viscoelastic
media and by Naciri et al. (1994a, b) for visco-
elastic and heterogeneous media. The e�ect of
material damping on guided waves was discussed
by Tanaka and Kon-No (1980) for a homogenous
plate described by a standard linear viscoelastic
model and Nkemzi and Green (1992, 1994) stud-
ied SH, as well as P-SV motion in a sandwich plate
with a viscoelastic core described by a standard
linear solid. It may be added that the leaky Lamb
wave method for obtaining material attenuation
properties of bonded structural composites has
been used in recent years (Mal et al., 1989; Xu
et al., 1990).

The purpose of this paper is to present a de-
tailed study and identify the modes that are less
a�ected by thick elastic coating with or without
damping so that they can be used for ultrasonic
inspection of stress-corrosion cracks in gas pipe-
lines. The model considered is a bilayered plate,
namely, an elastic steel plate with a thick coating
layer, which can be viscoelastic. This is motivated
by the need to model guided waves in gas pipe-
lines, which have thick tar-coating. While wave
propagation along the longitudinal direction can
be analyzed in terms of cylindrical Lamb waves
(see, e.g., Alleyne and Cawley, 1996), for guided
waves along the circumferential direction a thin-
walled pipe can be modeled as a plate when the
transmitter/receiver angle of separation is not large
(Fig. 1). In this study, the focus is on circumfer-
ential waves because they are sensitive to stress-

corrosion cracks, which elongate along the pipe-
axis and penetrate the pipe-wall along the radial
direction. Longitudinal waves along the pipe
would not be sensitive to such defects. To model
damping of the tar-coating, the standard linear
solid is adopted and two damping factors are in-
troduced into the Lam�e constants in such a way
that the Poisson's ratio is frequency-independent.
Although the coating material (coal-tar) may not
be accurately described by a standard linear solid,
this model forms the building block (Aki and Ri-
chards, 1981) for more complex models. This
model has the correct low and high frequency be-
havior and it satis®es the Kramers±Kr�onig rela-
tion (Aki and Richards, 1981) that must be
satis®ed by any physical model. In the literature, it
has often been the practice to assume frequency
independent viscoelastic constants. This is rather
ad hoc and may describe the material behavior in
some ®nite range of frequency, but it cannot be
physical over the entire range of frequency. Since

Fig. 1. Sensor arrangement on a gas pipe in the EMAT test set-

up.
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there is no available model to describe coal-tar, we
have chosen to describe it by a standard linear
solid. The objective is to see if the modes of the
bare steel plate that are not signi®cantly a�ected
by a thick elastic coating do not su�er large
changes in the presence of damping.

Based on the formulation derived in this paper,
programs have been written to perform parametric
study of dispersion of Lamb waves and the modal
displacements in a bilayered plate. Comparing the
solutions to the steel plate with and without thick
elastic coating, we found that thick coating causes
new dispersive modes to emerge and changes most
mode shapes of the bare steel plate. However, there
are certain modes of the steel plate that are much
less a�ected by a thick elastic coating. The e�ect of
damping on these identi®ed modes has also been
investigated. We found that its e�ect on these
modes is, in general, to increase slightly the ampli-
tude of displacements in the elastic layer; but some
of the mode shapes are preserved even in the case of
high damping. These una�ected steel plate modes
are particularly useful for the design of ultrasonic
electromagnetic acoustic transducer (EMAT) for
inspection of stress-corrosion cracks in gas pipe-
lines. The design of such an EMAT based system
for gas pipeline inspection is underway at TD Wil-
liamson. Fig. 1 shows the schematic of the system.

2. Dispersion relation

In this formulation, we follow the notation of
Bratton and Datta (1992). We let the positive x-
axis extend to the right along the interface and
positive z-axis to extend upward perpendicular to
the interface. The top and bottom layers are the
coating, which may be viscoelastic, and steel plate,
respectively. Using subscripts 1 and 2 for layer 1
(coating) and layer 2 (steel), respectively, the waves
propagating in the x±z plane can be described by
two scalar potentials for plane strain. In terms of
these two potentials, the displacements can be
derived as (Bratton and Datta, 1992):

uj
x � ik�Aj cosqj�z� hj� � Bj sinqj�z� hj��
ÿ pj�ÿCj sinpj�z� hj� � Dj cospj�z� hj��;

�1a�

uj
z � qj�ÿAj sinqj�z� hj� � Bj cosqj�z� hj��
� ik�Cj cospj�z� hj� � Dj sinpj�z� hj��;

�1b�
where j � 1; 2 refers to layers 1 and 2, respectively.
For j � 1, and 2, z belongs to the region 06z6h1

and ÿh26z60, respectively. Also in Eqs. (1a) and
(1b), the sign ) (+) is taken when j � 1 (2);
Aj;Bj;Cj and Dj are coe�cients to be determined; k
is the wave number; h1 and h2 denote the thickness
of layers 1 and 2, respectively; and ®nally qj and pj

are given by:

qj �
�������������������������
x2=C2

Lj ÿ k2

q
; pj �

�������������������������
x2=C2

Tj ÿ k2

q
�2�

with the requirement that Im�qj; pj�P0. In Eq. (2),
x is the circular frequency and CLj and CTj are,
longitudinal and transverse velocities, respectively,
and given by

CLj �
���������������������������
�kj � 2lj�=qj

q
; CTj �

�����������
lj=qj

q
�3�

with qj being the density, kj and lj the Lam�e
constants, of layer j.

The expressions for stress components in both
layers can be obtained from the displacement (1)
by using the constitutive relation (Bratton and
Datta, 1992). Then, the boundary and interface
conditions are enforced to derive the dispersion
equation. For the current problem, the boundary
conditions which must be satis®ed are: zero trac-
tions at surfaces z � �h1 and ÿh2, and the conti-
nuity of displacements and tractions at the
interface z � 0. Application of these conditions
yields eight equations with eight unknowns. Ex-
pressing four of these unknowns in terms of the
other four, the eight equations can be reduced to a
system of four equations as expressed in the fol-
lowing way (Bratton and Datta, 1992):

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

26664
37775

D1

B1

D2

B2

26664
37775 � 0; �4�

where the elements of the matrix [A] are given in
Appendix A for the sake of completeness. Equat-
ing the determinant of [A] to zero gives the dis-
persion equation relating the frequency to the
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wave number. This equation is complicated and
can only be solved numerically. In this paper, the
subroutine in IMSL library, zanlyt (IMSL, 1980) is
used to ®nd the roots (wave numbers) for a given
frequency. Close estimates of the roots were ob-
tained ®rst by the sti�ness method employed by
Karunasena et al. (1991a). They were then re®ned
by using the exact Eq. (4).

3. Results and discussion

Our analysis is carried out in two steps: step one
is to identify the modes that are less a�ected by a
thick elastic coating; and step two is to ®nd,
among them, the modes that remain less a�ected
by the damping of the coating layer.

Our formulation and programs are ®rst used to
identify the modes of the bare steel plate that
preserve their mode shapes when a thick elastic
coating is applied to the steel plate.

For a single and a bilayered elastic plate, the
parameters are taken from Bratton and Datta
(1992) with layers 1 and 2 corresponding to the
coating and steel layers, respectively (Table 1).
The material properties in the coating layer give a
longitudinal velocity CL1 � 2:50 km=s and a
transverse velocity CT1 � 1:00 km=s while those in
the elastic (steel) plate give CL2 � 5:96 km=s and
CT2 � 3:23 km=s. The dispersion curves are shown
in Fig. 2 for a 1 cm elastic (steel) with and without
a 0.3 cm elastic coating layer. Results are pre-
sented in terms of the normalized wave number
k0 � kh2 and frequency x0 � xh2=CT2. While
Fig. 2(a) is for the range of 06x0615 and
06k0615, Fig. 2(b) is for 106x0615 and 06k0660.
It is seen from these ®gures that the dispersion
curves of the bare steel plate are signi®cantly
modi®ed when a thick coating layer is applied to
the steel plate. It must be borne in mind that
guided waves in a coated plate are neither sym-

metric nor antisymmetric. These modes of the bare
steel plate are now coupled. Thus the branches do
not cross, but they come very close at certain fre-
quencies and wavelengths, a phenomenon discus-
sed before (Bratton and Datta, 1992). It is also
interesting to note that new modes are seen to
appear because of the coating. For example, at
x0 � 5 and 13, there are 3 and 8 modes in the bare
steel plate; for the coating case, there are 6 and 14

Table 1

Material properties of the layers

Layer Thickness (cm) Density ��103 kg=m3� k (GPa) l (GPa) Damping s1

Coating 0.30 1.20 5.100 1.200 0±0.5

Steel 1.00 7.86 115.19 82.003 0

Fig. 2. The dispersion of a 1 cm steel plate with and without a

0.3 cm elastic coating. Range of 06x0615 and 06k0615 in

(a) and of 106x0615 and 06k0660 in (b).
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modes. Clearly, these features pose a serious
problem for using ultrasonic waves to characterize
corrosion cracks in gas pipelines having thick
elastic protective coatings. The problem is com-
pounded by the fact that the elastic and damping
properties of coating are di�cult to measure. So
one is interested in ®nding the modes in the steel
plate that are not signi®cantly modi®ed by the
elastic coating layer. As we will show, there are
such modes even at moderately high frequencies.

Closer examination of Fig. 2(a) and (b) reveals
that certain modes of the steel plate persist even in
the presence of the thick elastic coating. For ex-
ample, Table 2 lists the wave numbers when x0 is
equal to 10 and 13 having values that are very
close to those of the steel plate with and without
elastic coating. In order to see which of these
modes in the bare steel plate preserve their shapes,
mode shapes are plotted in Figs. 3 and 4. It is seen
from Fig. 3 that for the bare steel plate the six
values of k0 at x0 � 10 correspond to the branches
a2; s2; s1; a1; s0 and a0. When a thick elastic coating
is applied then the mode shopes of a2; s2; s1; a1 and
a0 are remarkably close while the shape of the s0

mode of the steel plate has been considerably
modi®ed. For higher frequency, i.e., at x0 � 13, it
is found that the branches s1; a1 and a0 more or less
preserve their shapes. On the other hand, a2 and s2

modes su�er substantial changes. Therefore, if the
thick coating is purely elastic, the modes corre-
sponding to the branches a2; s2; s1; a1; and a0 at
x0 � 10 and those corresponding to s1; a1; a0 at
x0 � 13 can be used for the ultrasonic inspection
of a gas pipeline. The e�ect of damping in the
coating on these modes is analyzed in the follow-
ing.

After having identi®ed the modes that are less
a�ected by a thick elastic coating, we now come to
the second step, namely, to ®nd among them, the

modes that are still not appreciably a�ected by the
damping properties of the coating layer. Since the
damping properties of the coating are not easily
measured and they also are variable (depending on
the environment), it is assumed here that the
coating behaves like a standard linear solid
(Nkemzi and Green, 1992, 1994). While a stan-
dard linear solid may not be able to represent the
true behavior of real viscoelastic materials, it does,
however, exhibit the four most common features
of a viscoelastic solid: instantaneous elasticity,
creep, stress relaxation, and creep strain. For the
standard linear solid, the Lam�e constants in the 0.3
cm coating layer are assumed to be

k1�x0� � k1

1ÿ ix0s1

1ÿ ix0s2

; l1�x0� � l1

1ÿ ix0s1

1ÿ ix0s2

; �5�

where k1 and l1 are the elastic moduli in the ab-
sence of damping (Table 1). s1 and s2 are nor-
malized damping factors, i.e., sj � tjCT2=h2 with t1

and t2 being the creep and stress relaxation times,
respectively (Nkemzi and Green, 1992, 1994). This
model implies that the Poisson's ratio is frequency-
independent. While this assumption is not neces-
sary in the analysis, this is made to keep the
number of parameters minimum.

In order to perform a parametric study, we
varied s1 � 0:000, 0.005, 0.025, 0.050, and 0.500,
while s2 was taken as s1=5 (Nkemzi and Green,
1992). 1 The ®rst case corresponds to the pure
elastic behavior. It is worth noting that introduc-
tion of the complex moduli means that all wave
numbers, solutions of Eq. (4) for a given fre-
quency, are complex. Therefore, we need both the
real and imaginary parts of the wave numbers to
determine the dispersion characteristics.

The e�ect of damping was studied for all the
modes that were identi®ed in the foregoing to be
much less a�ected by the elastic coating. It is found
that in general the imaginary part of k0 (Im�k0�)
increases with increasing damping s1. For instance,
Table 3 shows the e�ects of damping on the
branch 3 �a1� when x0 � 13. For this particular
pair of frequency/wave number, the real part of k0

Table 2

Wave numbers k0 for frequency x0 � 10 and 13 of a 1 cm steel

plate with and without a 0.3 cm elastic coating

x0 h1 k0

10 0.0 3.98, 4.26, 5.76, 7.89, 10.66, 10.89

10 0.3 4.00, 4.29, 5.76, 7.88, 10.47, 10.82

13 0.0 6.79, 7.06, 8.96, 11.77, 13.99, 14.07

13 0.3 6.19, 6.82, 7.33, 9.22, 11.79, 13.30, 14.34
1 This choice is arbitrary and is consistent with the require-

ment that s1 > s2.
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(Re�k0�) also increases with increasing damping s1.
It is quite interesting to note that for the foregoing
identi®ed modes, especially for those at x0 � 13,
the amplitude of the mode displacement in the
steel layer generally increases with increasing
damping. However, damping does not modify the
mode shapes much.

As an illustration, Fig. 5 shows the variation of
the mode shape for relatively low damping (i.e.,
s1 � 0:000, 0.005, 0.025, 0.050) for the a1 mode at
x0 � 13, while Fig. 6 shows comparison of the a1

mode shapes at x0 � 13 for a higher damping case
(i.e., s1 � 0:5). As can be observed from these

®gures, the a1 mode remains similar. It was found
that s1 and a0 modes were also relatively una�ected

Fig. 5. Mode shapes �a1� of real �ux� for a 1 cm steel plate with a

0.3 cm viscoelastic coating. The normalized frequency is x0 �
13 and k0 values correspond to those listed in Table 3. The

damping factor s1 varies as 0.000, 0.005, 0.025, 0.050.

Fig. 6. Mode shapes �a1� of ux and uz for a 1 cm steel plate with and without a 0.3 cm viscoelastic coating. The normalized frequency is

x0 � 13 and k0 values correspond to those listed in Table 3. The damping factor s1 is taken to be 0.0 and 0.5.

Table 3

Wave number k0 on branch 3 (a1) for frequency x0 � 13 of a 1

cm steel plate with a 0.3 cm viscoelastic coating

Damping Re(k0) Im(k0)

0.000 11.7933 0.0000

0.005 11.7945 0.0255

0.025 11.7948 0.0470

0.050 11.7966 0.0504

0.500 11.8048 0.0513
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by damping. This study indicates that at high
frequency, the a0, a1 and s1 modes would be the
choice for inspection of stress-corrosion cracks in
gas pipelines.

4. Conclusion

A parametric study of the e�ect of thick elastic
coating with and without damping on the guided
wave modes in a bilayered plate was conducted.
Although both layers could be modeled as visco-
elastic media, this study focused on the case where
only the coating layer was viscoelastic. Since the
damping properties of the coating are not easily
measured and they also are variable, the standard
linear model was used to describe the viscoelastic
properties of the coating layer. Two damping
factors were introduced into the Lam�e constants in
such a way that the Poisson's ratio was taken to be
frequency-independent. The relevant dispersion
equation was derived and programs based on it
were written. In order to ®nd the complex wave
numbers for a given frequency, the sti�ness
method coupled with the IMSL subroutine zanlyt
was employed.

For the steel plate with a thick elastic coating,
our results show that a thick elastic coating would
introduce new modes, which are mainly con®ned to
the coating layer, and also a�ect most mode shapes
of the bare steel plate. However, certain modes are
una�ected by the thick elastic coating. It was found
that in the range 106x0613, s1; a1; and a0 modes of
the bare steel plate are similar in shape to those of
the steel plate with a thick elastic coating layer.
Thus, these modes would be most suitable for ul-
trasonic inspection of gas pipelines with thick
elastic coating. Furthermore, if the coating layer is
viscoelastic, the material damping then a�ects
some of the identi®ed modes, but not signi®cantly.
Thus, it would be possible to use these modes for
ultrasonic characterization of stress-corrosion
cracks in the steel layer of a coated plate.
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Appendix A

Elements of the matrix [A] in Eq. (4):

A�1; 1� � ÿ 2k2p1

p2
1 ÿ k2

cos�q1h1� ÿ p1 cos�p1h1�;

A�1; 2� � ÿik sin�q1h1� � 2ikq1p1

p2
1 ÿ k2

sin�p1h1�;

A�1; 3� � 2k2p2

p2
2 ÿ k2

cos�q2h2� � p2 cos�p2h2�;

A�1; 4� � ÿik sin�q2h2� � 2ikq2p2

p2
2 ÿ k2

sin�p2h2�;

A�2; 1� � 2ikq1p1

p2
1 ÿ k2

sin�q1h1� ÿ ik sin�p1h1�;

A�2; 2� � q1 cos�q1h1� � 2k2q1

p2
1 ÿ k2

cos�p1h1�;

A�2; 3� � 2ikq2p2

p2
2 ÿ k2

sin�q2h2� ÿ ik sin�p2h2�;

A�2; 4� � ÿq2 cos�q2h2� ÿ 2k2q2

p2
2 ÿ k2

cos�p2h2�;

A�3; 1� � ÿl1

4k2q1p1

p2
1 ÿ k2

sin�q1h1� � �p2
1

�
ÿk2� sin�p1h1�

�
A�3; 2� � 2ikq1l1�cos�q1h1� ÿ cos�p1h1��;

A�3; 3� � ÿl2

4k2q2p2

p2
2 ÿ k2

sin�q2h2�
�

� �p2
2ÿk2� sin�p2h2�

�
;

A�3; 4� � ÿ2ikq2l2�cos�q2h2� ÿ cos�p2h2��;
A�4; 1� � ÿ2ikp1l1�cos�q1h1� ÿ cos�p1h1��;

A�4; 2� � l1 �p2
1 ÿ k2� sin�q1h1�

�
� 4k2q1p1

p2
1 ÿ k2

sin�p1h1�
�
;
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A�4; 3� � 2ikp2l2�cos�q2h2� ÿ cos�p2h2��;

A�4; 4� � l2 �p2
2 ÿ k2� sin�q2h2�

�
� 4k2q2p2

p2
2 ÿ k2

sin�p2h2�
�
:
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