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Abstract

This paper presents a single-domain boundary element method (BEM) analysis of fracture mechanics in 2D anisotropic piezoelectric
solids. In this analysis, the extended displacement (elastic displacement and electrical potential) and extended traction (elastic traction and
electrical displacement) integral equations are collocated on the outside boundary (no-crack boundary) of the problem and on one side of the
crack surface, respectively. The Green’s functions for the anisotropic piezoelectric solids in an infinite plane, a half plane, and two joined
dissimilar half-planes are also derived using the complex variable function method. The extrapolation of the extended relative crack
displacement is employed to calculate the extended ‘stress intensity factors’ (SIFK), Kg., K, andK,y. For a finite crack in an infinite
anisotropic piezoelectric solid, the extended SIFs obtained with the current numerical formulation were found to be very close to the exact
solutions. For a central and inclined crack in a finite and anisotropic piezoelectric solid, we found that both the coupled and uncoupled (i.e.,
the piezoelectric coefficier = 0) cases predict very similar stress intensity fackrandK; when a uniform tensionm,, is applied, and
very similar electric displacement intensity factog, when a uniform electrical displacemet, is applied. However, the relative crack
displacement and electrical potential along the crack surface are quite different for the coupled and uncoupled cases. Furthermore, for a
inclined crack within a finite domain, we found that while a unifoety) (=1 N m~2) induces only a very small electrical displacement
intensity factor (in the unit of Ci#?), a uniform Dy(=1C m~2) can produce very large stress intensity factors (in the unit of ¥fn
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1. Introduction concentrations or where the domain of interest extends to
infinity. The most important feature of the BEM is that it
Because of their inherent coupling between electric and only requires discretization of the boundary rather than the
mechanical behavior, piezoelectric materials have found domain. Although the BEM has been applied to various
wide technological applications as transducers, sensorsbranches of science and engineering, modeling of piezoelec-
and actuators. Applications of piezoelectric materials as tric problems with this method is very limited [17—-19]. To
electro-mechanical devices have also stimulated a widethe author’'s best knowledge, there is no BEM analysis of
range of analytical researches. These include studies offracture mechanics problems in anisotropic piezoelectric
electromechanical properties [1,2], analysis of fracture solids.
problems in piezoelectric materials [3—9], and solutions of  In this paper, we present a single-domain BEM analysis
laminated piezoelectric systems [10-15]. Numerical of fracture mechanics problems in anisotropic piezoelectric
methods, such as the finite element method [16] and thesolids. In our approach, the extended displacement (elastic
boundary element method (BEM) [17] have also been displacement and electrical potential) integral equation is
applied to the analysis of electromechanical coupling applied to the outside boundary (no-crack boundary) of
under complicated conditions. the problem, and the extended traction (elastic traction
The BEM is particularly suited to cases where better and electrical displacement) integral equation is applied to
accuracy is required due to problems such as stressone side of the crack surface. These integral equations are
derived from an extended reciprocal theorem. Green’s func-
*Tel.: +1-303-492-7636; Fax: +1-303-492-7317; E-mail: pane@spot. tions for the 2D anisotropic piezoelectric solids in an infinite
colorado.edu plane, a half plane and two joined dissimilar half-planes are
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derived using the complex variable function method. In together as:

order to calculate the extended ‘stress intensity factors’ u, 1=1,23
(SIFs), i.e. K, Ky, Ky and Ky, an extrapolation of the u, = 4)
extended crack-tip displacement is employed. Numerical {¢' I =4,
examples are carried out to show the accuracy and
efficiency of the current method. Results also show that | Yi 1=1,23, 5
the electro-mechanical coupling can have great influence i = —E, | =4, ©®)
on the elastic and electric quantities and on the extended :
SIFs. {oij, J=1,23,
0iy = (6)
D;, J=4,
2. Basic equations Cii» JK=1,23,
Under the condition of a static deformation, the field . _ ] i =123 K=4, @
equations for a linear and generally anisotropic piezoelectric ~ — eq, J=4:K=123
solid consist of [2,5,17,20]:
— &jl» J, K = 4
2.1. Equilibrium equations In this definition, the lowercase and uppercase subscripts
take on the range of 1-3 and 1-4, respectively. It is also
0jj +Fi =0, Dii—Q=0, (1) noted that we have kept the original symbols instead of

o introducing new ones since they can be easily distinguished
whereg;; and D; are the stress and electric displacement, y their subscript's range. In terms of this shorthand nota-

respectively;F; and Q are the body force and electric g the constitutive relations can be unified into the single
charge, respectively. In this and the next sections, SUMMa-gqyation:

tion from 1 to 3 (1 to 4) over repeated lowercase (uppercase)

subscripts is assumed. A subscript comma denotes the”is = Ciaki 7kI- (®)
partial differentiation. Similarly, the equilibrium equations in terms dhe
extended stressesn be recast into
2.2. Constitutive relations oy +Fy=0, )
c E b E @ with F; being defined as

o: =C. —a. , =Yk + & E,

ij ijlm YIm Q(Jl k i ajk'YJk i Fj, J= 1, 2, 3,
wherevyj is the strain and; is the electric fieldCim, ei Fi= (10)
and g; are the elastic moduli (measured at a constant Q J=4

electric field), the piezoelectric coefficients (measured at In the following sections, we will usthe extended displa-

a constant strain or electric field) and the dielectric cementto stand for the elastic displacement and electric

constants (measured at a constant strain), respectivelypotential as defined in Eq. (4), and ube extended stress

It is noteworthy from Eqg. (2) that the elastic and for the stress and electric displacement as defined in Eq. (6).

electric fields are usually coupled together. However,

uncoupled solutions can be obtained by simply letting

ej = 0. 3. BEM formulation for 2D cracked anisotropic
piezoelectric solids

2.3. Elastic strain-displacement and electric field-potential

relations For a linear piezoelectric medium, one can show that the
following reciprocal property of Betti type holds:
1 @0, _ 3,0
Yij = é(ui,j +U;,0), E=—-9, (3) TV = %o (11)

o ~where superscripts (1) and (2) denote two independent sys-
whereu; and ¢ are the elastic displacement and electric ems of field quantities. Integrating both sides of Eq. (11)
potential, respectively. with respect to the domain and making use of the divergence

As in Dunn and Taya [2], we adopt the notation intro- thegrem, we arrive at the following integral relation:
duced by Barnett and Lothe [21] for the analysis of piezo-

electric problems. With this notation, the elastic JT|<1>U§2) ds— J(,}Il)ju@ dV=JT|(2)Uf1) ds— Jgj.(f)jufb av,
displacement and electric potential, the elastic strain and ' '

electric field, the stress and electric displacement, and the (12)
elastic and electric moduli (or coefficients) can be grouped where & and d/ are the boundary and domain elements,
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respectively, and is the extended traction vectalefined denoted byXr, (or Xr_); We add that, in deriving Eq. (16),

by we have assumed that the extended tractions on the two
2 sides of a crack are equal and opposite.
T = Z ogin, 1=1,23, Let X, approach a point’ s on the no-crack boundary,
T i=1 (13) one arrives at the following boundary integral equation
I =
2
D= Z Din;, =4 by u(Ys) + ][ Ti5(Ys XgUj(Xs) dS(Xs)
j=1

S
Let one of the systems correspond to the Green’s function
solution, and the other to the real problem, the integral  + JT,’S(YS,XH)[u‘J(XH)—utJ(XF_)] dr(Xr..)

relation (12) can be reduced to the integral equation: T
u (Xp) + JTG (Xp, Xg)Uy(Xs) dS(Xs) = JUG(YSrXS)TB(XS) dS(Xs) + JTI*J (Ys Xg)(US(Xs)
S S s
= JUG(Xp, X9T;(Xs) dYXs) —uP(Yg) dS(Xg) — J’U["J(YS,XS)TJP(XS) dS(Xs), @17
S S
. whereb,; are coefficients that depend only upon the local
+ JUIJ (Xp Xg)F3(Xs) dV(Xs) (14 geometry of the no-crack boundary¥ag,

v It is observed that all the terms on the right-hand side of
whereX, is an arbitrary point within the domairj;; and Eqg. (17) have only weak singularities, thus, are integrable.
T,; are theextendedGreen’s displacements and tractions Although the second term on the left-hand side of Eq. (17)
derived in Appendix A. has a strong singularity, it can be treated by the rigid body

Assuming that we can find the particular solution for a motion method (i.e.u; = constant throughout the whole
given extended body force, the domain integral in Eq. (14) domain). At the same time, the calculationtmf can also
can then be avoided [22]. First, we express by superpositionbe avoided.
the total extended displacements, stresses, and tractions as For the uncracked case, Eq. (17) can be applied to solve

follows the extended displacement and stress in a 2D general aniso-
t o hoop . N 0 t —h . p tropic and piezoelectric domain with the crack surface inte-
u=u+u; oyg=oytoy  TI=T+T, (15 gral term being omitted. It is well known, however, that for

where the superscript ‘t' denotes the total solution, ‘h’ the & cracked domain, Eq. (17) does not have a unique solution
homogeneous solution, and ‘p’ a particular solution corre- [23]. For th|§ situation, the traction integral equation of Pan
sponding to the extended body force and/or the extended@nd Amadei [24] can be employed and extended to the
far-field stress. Then, we substitute Eq. (15) into Eq. (14) piezoelectric case. Assume the is a_sm(_)oth point on.
and take into account of the crack surface. After some math- € crack §urface, the extended traction integral equation
ematical manipulation, we found that the total extended ¢&n be derived as

displacement can be expressed by the integral: 0.5[Th(Yrs) = Tu(Yr ) +n(Yry)
i (Xp) + JTE (Xp, Xg)U3(Xs) dS(Xs) X JclMlkTG,k(YrJr , XgUj(Xs) dS(Xs)
S s
+ JT|§(Xp,XF+)[u5(XF+) —uy(Xp_)] dT'(Xp ) + nl(Yr+)% Ciik T2,k (Y145 XU (X )
T

T
—Uy(Xp_)] d0(Xp 4 ) =0.5[TH(Yr4) = Th(Yr_)]

= JUG(Xp! X9)Tj(Xs) dS(Xg) + JTFB(Xp,Xs)(US’(Xs) .
S s +n|(Yr+)JC|M|kU|J,k(YI‘+:Xs)Tﬁ(Xs) dS(Xs)
S

— UP(Xp)) dS(Xs) — JUES(Xp,Xs)TJ"(Xs) dSXs), (16)
s +n(Yry) J Civic T3, k(Y » Xg)Uj(Xs) dS(Xs)
where & and d' are the line elements on the no-crack S
boundary and crack surface, respectively, with the corre- A
sponding points being distinguished by subscripndT"; - nI(YF+)JCIMIkUG,k(YF+ XgTH(Xs) dS(Xg),  (18)
A point on the positive (or negative) side of the crack is S
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wheren, is the outward normal at the crack surfatg, and
Ci is the extended stiffness tensor defined in Eq. (7).
Egs. (17) and (18) form a new pair of boundary integral

equations and they are the extension of the existing single-

domain BEM formulation [24-26] to the anisotropic
piezoelectric medium. In this new formulation, the extended
displacement integral equation is collocated on the no-crac

boundary, and the extended traction integral equation onP
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62= 3V/5T 1L ~5+ 185+ 1)~ s+ 17,

bs= ;’\/3 /s+1[1— &(s+ 1) + 3(s+ 1)7]. (20)

N

For the extended SIF calculation, we employ the extra-

olation method of the ERCDs, which requires an analytical

one side of the crack surface. The effect of the extended €lation between the extended displacement and the

body force and/or the extended far-field stress have been

included by superposing the corresponding particular solu-
tion, which makes the problem very similar to the one asso-

ciated with the homogeneous governing equation. The only

difference is that for the extended body force and/or the

extended far-field stress cases, two extra integral terms

related to the particular solution need to be added to the
homogeneous integral equations. The advantage of usin
Egs. (17) and (18) is that for the extended far-field stress
case, the artificial truncation of the infinite domain or trans-
ferring of the extended far-field stress onto the problem
boundary can be avoided. While the former method

increases the size of the problem and also introduces errors
because of the truncation of the region, the latter may not be

ith Ky, Ky andKy,

extended SIFs. This relation can be expressed as [5]:

\/ EYK,
™
where the matriX is given in Eq. (A9) of Appendix A and

K is the extended SIF vector defined as
K Z{KII ’ Klr KIII ’ KIV}t

Au(r) =2 (1)

(22)

being the usual stress intensity factors
andK,, being the electrical displacement intensity factor.

On the crack-tip element, equating the ERCDs from the
numerical calculation (19) to the analytical expression (21),
one then obtains a set of algebraic equations from which the
extended SIFs can be solved.

suitable for cases where the boundary has a complex shape.

It is also worth mentioning that for problems containing
crack surfaces only, i.e., cracks in an infinite, a half plane
or in two bonded half planes, only Eq. (18) is required with
the no-crack boundary integral terms being omitted.

The boundary integral Egs. (17) and (18) can be discre-
tized and solved numerically for the unknown extended
boundary displacements (or extended displacement discon

tinuities on the crack surface) and extended tractions. The

hypersingular integral term in Eq. (18) is handled by an

accurate and efficient Gauss quadrature formulae [24,27],

which is similar to the traditional weighted Gauss quad-
rature but with a different weight.

4. Crack tip modeling and calculation of the extended
SIFs

In order to capture the square root characteristics of the
extended relative crack displacement (ERCD) near the
crack-tip, we construct the following crack-tip element
with its tip ats = —1:

3

Ay, = Z ¢>kAu:‘, (19)
k=1

where the subscript(=1,2,3,4) denotes the components of

the ERCD, and the superscrip{=1,2,3) denotes the ERCD

at nodess = —2/3,0,2/3, respectively. The shape functions

¢ are [26]

b= 3—f\/s+ 1[5— 8(s+ 1) + 3(s+ 1),

5. Numerical examples

The piezoelectric material chosen for the numerical
examples is lead zirconate titanate (PZT-4) ceramic [2].
The material constants of PZT-4 are given in Table 1 in

which, the elastic constan@; are in 16 N m~2, the piezo-

electric coefficient; in C m™2, and the dielectric constants

gj in 107° C/(Vm). The axis of symmetry of this transver-
sely isotropic PZT-4 is along thgaxis.

Table 1
Electroelastic moduli of the PZT-4 material

Cu Cu Cis Ca Cu Css = 0.5C1; — Cy3)
139 74.3 77.8 115 25.6 30.6

€21 €2 €16 €11 €22
-5.2 15.1 12.7 6.461 5.620

The first example corresponds to a finite and horizontal
crack along thex-direction in an infinite PZT-4 medium
under a uniform far-field stress or electric displacement.
We used 20 discontinuous quadratic elements to discretize
the crack surface which has a length & &1 m). The
normalized extended SIFs obtained with the current BEM

Table 2

Normalized extended SIFs for a horizontal crack in an infinite domain
K|/O'yy\“‘7l"a K||/O'Xy\f‘7l'a K|||/0yz\“‘7l'a K|\//Dy\“‘7l'a

Numerical 0.9994 0.9994 0.9994 0.9994

Exact 1.0000 1.0000 1.0000 1.0000
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Table 3 Table 5
Relative crack displacement and electric potential caused by a far-field Normalized extended SIFs for an inclined crack in an infinite domain
oy(=1 N/m?)

K|/Uyy\57l'a K||/O'yy\°7ra K|/axy\“7ra K|||/(7yz\“7l'a K|\//Dy\57l'a

Auy (1072 m) A (1071 V) -

Numerical 0.4968  0.4968 —0.9937 0.7108  0.7108
x (m) Numerical ~ Exac Numerical ~ Exact Exact 0.5000  0.5000 —1.0000 0.7071  0.7071
0.492 0.032 0.032 0.040 0.040
0.425 0.094 0.093 0.116 0.116 crack surface. Our numerical results of the normalized
g-ggg 8&‘213 8-:1—[‘213 8-15733 8-1%‘ extended SIFs are listed in Table 5 and compared to the
0.295 0.158 0.158 0.197 0.197 exagt closed-form solutions. Again, excellent agreement is
0.158 0.168 0.168 0.210 0.210 obtained.
0.092 0.174 0.174 0.217 0.217 As a third and final example, a finite, rectangular, and
0.025 0.177 0.177 0.221 0.221 PZT-4 solid with a central crack inclined 4% the hori-

zontal direction is considered (Fig. 1). A uniform tension or

formulation are listed in Table 2 and compared to the exact €lectric displacement is applied in thelirection. The ratios
closed-form solutions [3—5]. It is obvious that very accurate Of crack length to width, and of height to width aaév =
SIFs can be obtained by the proposed formulation. 0.2 andh/w = 2.0, respectively (in dimensiow = 0.5 m,

Itis interesting to note that even though the extended SIFsh =1 m,a = 0.1 m). We used 10 discontinuous quadratic
are uncoupled (i.e., a far-field stress induces the stress inten€lements on the crack surface and 32 quadratic elements on
sity factors only, and a far-field electric displacement the outside boundaries. While Tables 6 and 7 give the results
induces the electric displacement intensity factor only), of the normalized extended SIFs for both the coupled and
the ERCDs are usually coupled together. For example, uncoupled ¢ = 0) cases when the uniform, andD, are
Tables 3 and 4 give the relative crack displacement and applied, Tables 8 and 9 list the corresponding relative crack
electric potential caused by a far-field stresgand a far-  displacement and electric potential. In Table[®, is a
field electrical displacemem,. It is obvious that a far-field ~ nominal electric displacement in the unit of C fowith
stress induces a non-zetg even though the corresponding  its amplitude equal to that afyy in the unit of N m, and
K, is zero. Similarly, a far-field electrical displacement can in Table 70" is a nominal stress in the unit of N thwith its
induce a non-zerau, even though the correspondikg is amplitude equal to that db, in the unit of C m™. Several
zero. The exact closed-form solutions [5] are also given in Observations can be made from those tables: (1) Table 6
Tables 3 and 4, which show that the present numerical indicates that when the uniform tensian, is applied,
method is very accurate. Finally, we noticed from Tables both the coupled and uncoupled cases predict very similar
3 and 4 that the value af¢ (1071 V) caused by a far-field ~ values for the normalize /o,y 7a andK,/oyy,ma. Simi-
stresw,y is identical to that of\u, (10" m) caused by a far- larly, Table 7 shows that when the uniform electric dis-
field electric displacemeri,, a consequence of the Betti- PlacementD, is applied, the values of the normalized
type reciprocity. Ky /Dy /ma for both the coupled and uncoupled cases are

The second example also corresponds to a finite crack invery close to each other. (2) It is noted that even though the
an infinite PZT-4 medium. The crack is inclined®46 the ~ extended SIFs are not affected much by the electro-
positive x-direction and has a length oh2which is again mechanical coupling, the relative crack quantities (relative
under a uniform far-field stress or electric displacement. The
exact closed-form solution can be obtained simply by the

| ow |

coordinate transformation for a tensor and a vector. Here we A y !
used 10 discontinuous quadratic elements to discretize the e T T T T T
Table 4
Relative crack displacement and electric potential caused by a faifjeld
(=1Cm? 17

; . oo Aas®

A¢ (10%V) Au, (107 m) 2h ¥ / X

x (m) Numerical Exac Numerical Exact
0.492 0.161 0.160 0.040 0.040
0.425 0.466 0.465 0.116 0.116 R
0.358 0.616 0.616 0.154 0.154 _' l l 1 l
0.292 0.717 0.717 0.179 0.179
0.225 0.789 0.789 0.197 0.197 Gyy or Dy
0.158 0.838 0.838 0.210 0.210 ) ) L ) . o
0.092 0.868 0.868 0.217 0.217 Fig. 1. An anisotropic, piezoelectric, and finite rectangular solid with a
0.025 0.882 0.882 0.221 0.221 central crack inclined 45to the horizontal direction under a uniform ten-

sion or electric displacement in tlyedirection.




72 E. Pan / Engineering Analysis with Boundary Elements 23 (1999) 67-76

Table 6 Table 8
Normalized extended SIFs for an inclined crack in a finite solid ulaggr Relative crack displacement and electric potential caused oRy
(=1Nm™? (=1Nm™?
Koy ma Ky/oy ra K|V/D*\f7ra Coupled Uncoupled
Coupled 0.5303 0.5151 —2.97Xx 10712 X=y Auy Auy Ao Auy Auy
Uncoupled 0.5275 0.5151 0.0000 10'm)y (@0 Em) @0 ™m) (10°v)* (10 Bm) (10Mm)
0.684 0.099 —0.066 0.081 0.102 — 0.095
0.589 0.216 -0.143 0.175 0.223 - 0.205
crack displacement and electric potential) are quite different 0-495 0.283 — 0185 0.226 0292 —0.265
for the coupled and uncoupled cases. This can be observe 401 0.330 - 0214 0261 0.340 - 0305
in Table 8 f d din Table 9 f 3 It .306 0.365 —0.234 0.285 0.375 —0.334
in Table 8 forAuy andAuy, and in Table 9 fore. (3) Itis 0212 038  —0247 0302 0400 - 0.353
also interesting to note from both Tables 6 and 7 that for the g.118 0.403 ~0.256 0.312 0.415 —0.365
coupled case, while a uniform, (=1 N m™) induces only 0.024 0.409 —-0.259 0.316 0421  —0.370

a very small electric displacement intensity factor (in the
unit of Cm~¥?), a uniformD,, (=1 C m~?) can produce very
large stress intensity factors (in the unit of Ni#). This
phenomenon indicates clearly that the crack initiation cri- Table 9

teria based on a single SIF (for the elastic case) cannot beReIative crack displacement and electric potential caused Dgy

2 A¢ is zero for the uncoupled case.

: . . =1Cm™>
simply extended to the piezoelectric case. Instead, the )
energy-based criteria, which include the contribution of Coupled Uncoupled
each component of tht_a ext(_and_ed SIFs, shou_ld _be employed, _ Au, Au, Ad Ad
(4) The Betti-type reciprocity is shown again in Tables 8 (101 m) (10°m)®  (1072m)*  (10°V) (10%V)
_2 . . .
gnd 9 Wlhfr?(b (1100_2V) |thcjjced:ybth?hun|for;n tens:cm_tq,. 0.684 0.103 0.081 0.032 0.061
is equal to uy ( m) induced by the uniform electric 559 0226 0175 0.070 0132
displacemenD,,. 0.495 0.296 0.226 0.090 0.170
0.401 0.346 0.261 0.104 0.196
0.306 0.382 0.285 0.114 0.214
; 0.212 0.407 0.302 0.121 0.227
6. Conclusions 0.118 0.422 0.312 0.125 0.234
0.024 0.429 0.316 0.127 0.238

A single-domain BEM formulation has been proposed for
fracture mechanics analysis in cracked 2D anisotropic  Aux@ndAuyare zero for the uncoupled case.
piezoelectric solids. In this approach, the extended displa-
cements (elastic displacement and electric potential) arep Jih the coupled and uncouplegj(= 0) cases predict very
gollocateq on thg no-crack boqnda_\ry and the extended trac'similar stress intensity factois; and K, when a uniform
tion (elastic traction and electric displacement) on one side

fth K surf Thi Ki tensi fth st tension is applied, and very similar electric displacement
ot the crack surface. 1his WOrk IS an extension ot the exist- intensity factorK,y, when a uniform electrical displacement
ing single-domain BEM formulation [24—-26] to the aniso-

) . . . . is applied. However, the relative crack displacements and
tropic piezoelectric solid. The Green’s functions for a bp b

| anisotropic bi lectri id i infinite ol electric potentials along the crack are quite different for the
general anisotropic piezoelectric soid in an nfinite piane, coupled and uncoupled cases. Furthermore, for the coupled
a half-plane and two joined dissimilar half-planes have been

derived g th | iable  funcii thod case, while a unifornwy, (=1 N m~?) induces only a very
erived using the compiex varable function. metnod. -4 ejectrical displacement intensity factor (in the unit of
Numerical examples for the calculation of the extended

. o : = UEY em¥9), a uniformD, (=1 C m™?) can produce very large
SlIFs are also_camed out, l_=or a f|_n|te erack in an infinite stress intensity factors (in the unit of Nif). This phenom-
and anisotropic piezoelectric medium, the extended SIFs

btained with th t ical method found t enon is new to the author and it may shed a new light on the
obtained wi € current numerical method were Touna 10 fq,re development of fracture mechanics analysis for
be very close to the exact solutions. For an inclined and

: L ) . iezoelectric solids.
central crack in a finite piezoelectric solid, we found that P
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Appendix A It is noted that in writing the general solution (A.1), we have
assumed that the eigenfunction (A.3) has eight roots, which

In this appendix, the Green’s functions for anisotropic form four conjugate pairs. This requires equally that Eq.
piezoelectric solids in an infinite plane, a half-plane and (A.3) admits no real root which is true as proved by Suo
two-jointed dissimilar half-planes are derived. Previously, et al. [5]. Another assumption in writing the solution (A.1) is
Lee and Jiang [18] using the Fourier transform method that Eq. (A.3) has eight different eigenvalues. For an
derived the Green's functions of transversely isotropic isotropic, non-piezoelectric dielectric, degenerated eigenva-
piezoelectric solids in an infinite plane. Sosa and Castro lues can occur. In this case, however, a quasi-isotropic mate-
[28] using a state space approach combined with the Fourierrial can replace the isotropic material so that the general
transform obtained the Green’s functions due to a compres-solution (A.1) is still valid. In general, the difference
sive point force or a point charge acting on the surface of a between the solution based on the quasi-isotropic model
transversely isotropic piezoelectric half plane. When a and that based on the isotropic model is negligible, as has
piezoelectric material possesses lower symmetry, neitherbeen verified by Sollero et al. [30] and Pan and Amadei [24]
the infinite-plane nor the half-plane Green’s function is for the purely elastic case. It is also noted that since each
available. column of the matriA is an eigenvector, the representation

For a 2D, anisotropic and linear piezoelectric medium, of Eq. (A.1) is uniquely determined by the material proper-
the extended displacement and stress can be described witties, up to the four normalized factors of the mathix

four complex functions,(z) [5,29] In order to obtain the Green’s functions for different
4 4 domain cases, we use the one-complex-variable approach
u=2 Relz A.JfJ(zJ)] , — Relz BufJ’(zJ)] , [5] and define a vector funtctlon as
iz i=1 (2 = [1(2),12(2), 132, f2(2)] ", (A.6)

4 , with the argument having the generic fors x + ny. Once
ou=-2 ReLzl Biyas (ZJ)] ' the complex vector function is obtained, the Green’s func-
B tions, i.e., the extended displacement and stress fields can be
4 derived from Eq. (A.1).
¢ =-2 RG[Z BIJfJ(ZJ)]- (A.D)
=1 Appendix A.1 Green'’s functions in an infinite piezoelectric

In the last equationy, is the extended resultant tractiam a plane

curve, i.e., the integral dhe extended tractiodefined by
Assume that there is an extended dislocatidg} {= d =

2 _ —
_ . _ (ut — u7) and an extended forcepf} =p=(T- -TY
Ti= j; o, 1=123 acting at the source poink{y®), the solution for the com-
T = , (A.2) plex functions can be expressed as [31,32]:
Dh=>. DN, | =4, f3d=q;In(z—s), (A.7)
=1 wheres; = x° + py°, andq = {q;} is a complex coefficient

vector. To findg, we substitute Eq. (A.7) into Eqg. (A.1) and
let the jump of the extended displacement and resultant
traction be equal ta and p, respectively. This gives us
the following expression foq

with n; (j = 1,2) being the unit outward normal of the curve.

In Eqg. (A.1),z; = x 4+ uyy; Re denotes the real part of a
complex variable or function; a prime denotes the deriva-
tive; andu; (3 = 1,2,3,4) are four distinct complex roots
with positive imaginary part of the following equation

1 - —
q= E[B’l(Y—er)’ld—A’l(Y’l—i-Y H~1p, (A8)

2 _
|Cua1 + #(Cuyz + Cuyi2) + #°Cogz| =0 (A-3) where overbar means complex conjugate; superseript
For each of the characteristic rogtg, each column of the ~ Means matrix inverse; and is given by
matrix A in Eq. (A.1) is the eigenvector of the following vy —jAB 1 (A.9)
equation: withi=+/— 1.

4 If d =0, the Green'’s functions will be those correspond-
Z [Cy1 + pk(Cugz + Coni) + & Caza] A =0.  (A.4) ing to an extended point force only. The substitution of the
I=1 complex function (A.7) in Eq. (A.1) gives the Green's
Once the matriA is found, the matrixB in Eq. (A.1) can be extended displacement and traction. For an extended unit
obtained by point force, the extended displacements are found to be

4

* -1 :
Bic = . (Cuiz+ mcCaisz) Ask- (A.5) Uk=— RG[Z ALHak In(z — SJ)] : (A.10)
izt izt
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Similarly, the extended tractions can be expressed as

4
# wany — Ny
Tk, = —Re B ;——Hy |, A.11
KL= ng L s, JK‘| ( )
where
H=A"YY '+Y HL (A.12)

In Egs. (A.10) and (A.11)z; = X + py ands; = x° + pay°
correspond to the field and source points, respectivaly;
and n, are thex andy components of the unit outward
normal at the field pointqy).

It is noteworthy that by replacingl in Eqgs. (A.10) and
(A.11) with —B~*(Y +Y) ™!, we then obtain the Green’s
functions due to an extended point dislocation.

Based on an eight-dimensional formalism, Barnett and
Lothe [21] derived the extended displacement in an infinite
plane due to an elastic dislocatiod;(# 0 for J = 1,2,3;
d,=0) and an electric chargp{=0forJ=1,2,3;p, # 0).
Using the Fourier transform, Lee and Jiang [18] obtained the
Green'’s functions for a transversely isotropic piezoelectric
infinite plane. These solutions are particular cases of
Egs. (A.10) and (A.11).

Egs. (A.10) and (A.11) show that the Green’s functions
Uk, andTg, for piezoelectric solids are 4 4 matrices with
their first index K) denoting the source components and
second indexL() the field components. Since these Green’s
matrices are usually full for general anisotropic piezoelec-
tric solids, the elastic and electric fields are coupled
together. That is, a body force will induce an electric poten-
tial, and an electric charge will generate an elastic displace-

E. Pan / Engineering Analysis with Boundary Elements 23 (1999) 67-76

wheref®(z) is the full-plane solution given in Eq. (A.7) and
f%(2) is a complementary vector function to be determined.
In order to obtairf(z), we substitutd(z) into the extended
resultant traction equation (last equation of (A.1l)) and
enforce the extended traction-free conditioryat 0. Fol-
lowing the standard analytical continuation of complex

functions, the complementary vector function is found as
f°(2) = — B~ 'Bf(2). (A.14)

With this solved complex vector function, the Green’s func-
tions in a half-plane can then be derived from Eq. (A.1). For
the extended displacement, the Green’s matrix is

* - 1 d
UkL = T Re{ Z ALy [HJK In(zy —s5)
iz1

4
- Z Wy Hi In(z —3)] }7 (A.15
'=1
wW=B"'B (A.16)
and for the extended traction, it is
" 1
TKL: — Re
™
2 By — Ny 2 PNy — Ny -
X ZBLJ 7 —s Hjk ZWJI Hi | ¢
J=1 1~ =1 ;-5

(A.17)

ment. The physical meaning of the Green’s matrices can beFor a transversely isotropic piezoelectric half-plane, Sosa

explained. Take the extended displacemdjyt for exam-
ple, the meaning of this X 4 Green'’s function is:

1. the elastic displacemerit & 1-3) at field pointz due to

a unit force K = 1-3) at source poirg;

the elastic displacemerit & 1-3) at field pointz due to

a unit charge{ = 4) at source poins,

. the electric potential(= 4) at field pointzdue to a unit
force (K = 1-3) at source poirg; and finally,

. the electric potential(= 4) at field pointz due to a unit

charge K = 4) at source poins.

2.

Appendix A.2 Green'’s functions in a piezoelectric half-
plane

For a half-plane problem, we let the medium occupy the

lower half-plane ¥ < 0) and lety = 0 correspond to the
extended traction-free surface (i.e., the traction and normal
component of the electric displacement are zerg &t0).
The source pointxCy®) is located anywhere within the
lower half-plane ¥° < 0). To find the complex functions
in Eq. (A.1), we assume the following vector function
expression:

f(2) =2 + f°(2), (A.13)

and Castro [28] derived the Green’s solutions for a vertical
point force and a point charge acting on the surface of the
half-plane, which is a particular case of the current half-
plane solution.

Appendix A.3 Green’s functions in piezoelectric
bimaterials

We now assume that the medium is composed of two
joined piezoelectric half-planes. We let the interface be
along thex-axis, and the uppely(> 0) and lower y < 0)
half-planes be occupied by materials #1 and #2, respec-
tively.

For a concentrated source acting at the poiifyf) in
material #2 ¥° < 0), we express the complex vector func-
tion as [31]

{fU(Z),

'@+,
In Eq. (A.18), the vector functiomf’z) is the infinite-plane
solution given in Eq. (A.7) with piezoelectric properties of
material #2fY(z) andf-(2) are analytic in upper (material
#1) and lower (material #2) half-planes, respectively. The
solutions to them can be found by the requirement of the

zel,
f(2) = (A.18)

ZE 2.
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continuities of the extended resultant traction and displace- where the matriH is defined in Eqg. (A.12) with the piezo-
ment across the interface, along with the standard analyticelectric properties of material #1, and
continuation arguments. Following this path and after some

11 _p-1 v \-lv VR
complex algebraic manipulation, the complex vector func- W7=By (Yo +Ye) (Yo~ Y@)By (A.23)
tions in materials #1 and #2 are obtained as (1) For source pointg) in material #1y > 0) and field point
Bo'(Yay+Ye) (Yo +Y@)Bafh@, zel,
f(2)= @O\ @ @) /22" (A19)

1o 1,5 o NS 70
Bo (Yoy+Ye) (Yo —-Yu)Bofn@+ih@, zc2

In Eq. (A.19), the special subscripts (1) and (2) are used (2) in material #2 ¥y < 0):

exclusively to denote that the corresponding matrix or 4
vector is in material #1y(> 0) and material #2y( < 0), Ui = —Re Z A? Z Wi In@2 —sHHP | §,
respectively. =1 =1

Similarly, for a source point in material #49> 0), these (A.24)
complex functions can be found as

Bpl(Yn + Y)Y — Yi)Bfon (@ + 02, z€ 1,
t2)= o Ya+Ye) Yo-Ye)Bofn@+fy2 (A20)

Ba'(Yo +Yw) (Yo + Yu)Bwfh @, ze2,

where the vector functiorﬂ?l) is again the infinite-plane

solution given in Eq. (A.7) but with piezoelectric properties

of material #1. Ti== Re{ Z B lz wizh ZJ(Z)nX Sy Hl(,?] } (A.25)
With the complex functions giving in Egs. (A.19) and 5‘

(A.20), the Green’s functions of the extended displacement \ith

and traction can be obtained by substituting these complex -~

functions into Eq. (A.1). These Green’s functions have four w2 = B(z) Yo+ Y(l)) (Y(l) +Y2)Ba (A.26)

different forms depending on the locations of the field and

source points. The complete expressions for them are given(!!) For source §) and field ) points in material #2(< 0):

below with special superscripts and subscripts (1) and (2) 4

being used exclusively to denote that the corresponding Ui = —1Re{ z A(LZ.])

. : . In(z? — sP)HR
quantities are in materials #¥ (> 0) and #2 y < 0),

J=1
respectively.
(I) For source §) and field ¢ points in material #1 4
> 0 3 W I —s@)ﬂfﬁ] } n.2)
4 =1
Ui = —2Rel S AD |In@ — 9)HE
" =1 1 @ u$n, — ny @
TKL_—Re{ZB lz(z) H
+ Z Wit In(AY — -‘”)H‘”H (A.21)
1=1
22 151 —NYoe
1[4 On _n ZWJ| BCNe | ]} (A.28)
Ty == Z B Jl) X yH(l
77 = Z( where the matripH is defined in Eq. (A.12) with the piezo-

4
n Z\Nll:uJ ' — nyH(1)

T A D

electric properties of material #2, and
]} 822

W#=Bg' (Y +Yw) (Yo — Yu)Ba (A-29)
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(IV) For source pointg) in material #2 y < 0) and field [13] Bisegna P, Maceri F. An exact three-dimensional solution for simply

point (2) in material #1 y > 0) supported rectangular piezoelectric plates. J Appl Mech
1996;63:628—-638.

1 4 4 [14] Heyliger P, Brooks S. Exact solutions for laminated piezoelectric
* - 1 21 1 2 2 plates in cylindrical bending. J Appl Mech 1996;63:903-910.
UkL = T Re Z (J) Z Wi In(ZS ) _S( ))Hl(K) ' [15] Dumir PC, Dube GP, Kapuria S. Exact piezoelastic solution of sim-
ply-supported orthotropic circular cylindrical panel in cylindrical
(A.30) bending. Int J Solids Structures 1997;34:685-702.
[16] Ha SK, Keilers C, Chang FK. Finite element analysis of composite
structures containing distributed piezoceramic sensors and actuators.

. n n
75 = 1Re Z BY Z w3t ) BraH2| b (A3 AIAA Journal 1992;30:772—780,
T J=1 Z( ﬁ( [17] Lee JS. Boundary element method for electroelastic interaction in
. piezoceramics. Eng Anal Bound Elements 1995;15:321-328.
with [18] Lee JS, Jiang LZ. A boundary integral formulation and 2D fundamen-
— — tal solution for piezoelastic media. Mech Res Commun 1994;21:47—
21 —1 -1 ;
WT=Bay (Yu+Ye) (Yo +Y@)Ba- (A-32) 54.

[19] Chen T, Lin FZ. Boundary integral formulations for three-
dimensional anisotropic piezoelectric solids. Computat Mech
1995;15:485-496.
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