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Abstract

This paper presents a single-domain boundary element method (BEM) analysis of fracture mechanics in 2D anisotropic piezoelectric
solids. In this analysis, the extended displacement (elastic displacement and electrical potential) and extended traction (elastic traction and
electrical displacement) integral equations are collocated on the outside boundary (no-crack boundary) of the problem and on one side of the
crack surface, respectively. The Green’s functions for the anisotropic piezoelectric solids in an infinite plane, a half plane, and two joined
dissimilar half-planes are also derived using the complex variable function method. The extrapolation of the extended relative crack
displacement is employed to calculate the extended ‘stress intensity factors’ (SIFs), i.e.,K I, K II , K III andK IV. For a finite crack in an infinite
anisotropic piezoelectric solid, the extended SIFs obtained with the current numerical formulation were found to be very close to the exact
solutions. For a central and inclined crack in a finite and anisotropic piezoelectric solid, we found that both the coupled and uncoupled (i.e.,
the piezoelectric coefficienteijk ¼ 0) cases predict very similar stress intensity factorsK I andK II when a uniform tensionjyy is applied, and
very similar electric displacement intensity factorK IV when a uniform electrical displacementDy is applied. However, the relative crack
displacement and electrical potential along the crack surface are quite different for the coupled and uncoupled cases. Furthermore, for a
inclined crack within a finite domain, we found that while a uniformjyy (¼1 N m¹2) induces only a very small electrical displacement
intensity factor (in the unit of Cm¹3/2), a uniformDy (¼1 C m¹2) can produce very large stress intensity factors (in the unit of Nm¹3/2).
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1. Introduction

Because of their inherent coupling between electric and
mechanical behavior, piezoelectric materials have found
wide technological applications as transducers, sensors
and actuators. Applications of piezoelectric materials as
electro-mechanical devices have also stimulated a wide
range of analytical researches. These include studies of
electromechanical properties [1,2], analysis of fracture
problems in piezoelectric materials [3–9], and solutions of
laminated piezoelectric systems [10–15]. Numerical
methods, such as the finite element method [16] and the
boundary element method (BEM) [17] have also been
applied to the analysis of electromechanical coupling
under complicated conditions.

The BEM is particularly suited to cases where better
accuracy is required due to problems such as stress

concentrations or where the domain of interest extends to
infinity. The most important feature of the BEM is that it
only requires discretization of the boundary rather than the
domain. Although the BEM has been applied to various
branches of science and engineering, modeling of piezoelec-
tric problems with this method is very limited [17–19]. To
the author’s best knowledge, there is no BEM analysis of
fracture mechanics problems in anisotropic piezoelectric
solids.

In this paper, we present a single-domain BEM analysis
of fracture mechanics problems in anisotropic piezoelectric
solids. In our approach, the extended displacement (elastic
displacement and electrical potential) integral equation is
applied to the outside boundary (no-crack boundary) of
the problem, and the extended traction (elastic traction
and electrical displacement) integral equation is applied to
one side of the crack surface. These integral equations are
derived from an extended reciprocal theorem. Green’s func-
tions for the 2D anisotropic piezoelectric solids in an infinite
plane, a half plane and two joined dissimilar half-planes are
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derived using the complex variable function method. In
order to calculate the extended ‘stress intensity factors’
(SIFs), i.e.,K I, K II , K III and K IV, an extrapolation of the
extended crack-tip displacement is employed. Numerical
examples are carried out to show the accuracy and
efficiency of the current method. Results also show that
the electro-mechanical coupling can have great influence
on the elastic and electric quantities and on the extended
SIFs.

2. Basic equations

Under the condition of a static deformation, the field
equations for a linear and generally anisotropic piezoelectric
solid consist of [2,5,17,20]:

2.1. Equilibrium equations

jji , j þ Fi ¼ 0, Di, i ¹ Q¼ 0, (1)

wherej ij and Di are the stress and electric displacement,
respectively;Fi and Q are the body force and electric
charge, respectively. In this and the next sections, summa-
tion from 1 to 3 (1 to 4) over repeated lowercase (uppercase)
subscripts is assumed. A subscript comma denotes the
partial differentiation.

2.2. Constitutive relations

jij ¼ Cijlmglm ¹ ekjiEk, Di ¼ eijkgjk þ «ij Ej , (2)

whereg ij is the strain andEi is the electric field;Cijlm, eijk

and « ij are the elastic moduli (measured at a constant
electric field), the piezoelectric coefficients (measured at
a constant strain or electric field) and the dielectric
constants (measured at a constant strain), respectively.
It is noteworthy from Eq. (2) that the elastic and
electric fields are usually coupled together. However,
uncoupled solutions can be obtained by simply letting
eijk ¼ 0.

2.3. Elastic strain-displacement and electric field-potential
relations

gij ¼
1
2
(ui, j þ uj, i), Ei ¼ ¹ f, i , (3)

where ui and f are the elastic displacement and electric
potential, respectively.

As in Dunn and Taya [2], we adopt the notation intro-
duced by Barnett and Lothe [21] for the analysis of piezo-
electric problems. With this notation, the elastic
displacement and electric potential, the elastic strain and
electric field, the stress and electric displacement, and the
elastic and electric moduli (or coefficients) can be grouped

together as:

uI ¼
ui , I ¼ 1, 2,3,

f, I ¼ 4,

(
(4)

gIj ¼
gij , I ¼ 1, 2,3,

¹ Ej , I ¼ 4,

(
(5)

jiJ ¼
jij , J ¼ 1, 2,3,

Di , J ¼ 4,

(
(6)

CiJKl ¼

Cijkl , J,K ¼ 1, 2,3,

elij , J ¼ 1,2,3; K ¼ 4,

eikl , J ¼ 4; K ¼ 1, 2,3,

¹ «il , J,K ¼ 4:

8>>>>><>>>>>:
(7)

In this definition, the lowercase and uppercase subscripts
take on the range of 1–3 and 1–4, respectively. It is also
noted that we have kept the original symbols instead of
introducing new ones since they can be easily distinguished
by their subscript’s range. In terms of this shorthand nota-
tion, the constitutive relations can be unified into the single
equation:

jiJ ¼ CiJKlgKl : (8)

Similarly, the equilibrium equations in terms ofthe
extended stressescan be recast into

jiJ, i þ FJ ¼ 0, (9)

with FJ being defined as

FJ ¼
Fj , J ¼ 1,2, 3,

¹ Q, J ¼ 4:

(
(10)

In the following sections, we will usethe extended displa-
cementto stand for the elastic displacement and electric
potential as defined in Eq. (4), and usethe extended stress
for the stress and electric displacement as defined in Eq. (6).

3. BEM formulation for 2D cracked anisotropic
piezoelectric solids

For a linear piezoelectric medium, one can show that the
following reciprocal property of Betti type holds:

j
(1)
iJ g

(2)
Ji ¼ j

(2)
iJ g

(1)
Ji , (11)

where superscripts (1) and (2) denote two independent sys-
tems of field quantities. Integrating both sides of Eq. (11)
with respect to the domain and making use of the divergence
theorem, we arrive at the following integral relation:∫

Tð1Þ
I uð2Þ

I dS¹

∫
jð1Þ

jI , ju
ð2Þ
I dV ¼

∫
Tð2Þ

I uð1Þ
I dS¹

∫
jð2Þ

jI , ju
ð1Þ
I dV,

(12)

where dS and dV are the boundary and domain elements,
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respectively, andTI is the extended traction vectordefined
by

TI ¼

Ti ;
∑2

j ¼ 1
jji nj , I ¼ 1,2,3,

Dn ;
∑2

j ¼ 1
Djnj , I ¼ 4:

8>>>>><>>>>>:
(13)

Let one of the systems correspond to the Green’s function
solution, and the other to the real problem, the integral
relation (12) can be reduced to the integral equation:

uI (Xp) þ

∫
S

Tp
IJ(Xp,XS)uJ(XS) dS(XS)

¼

∫
S

Up
IJ(Xp,XS)TJ(XS) dS(XS)

þ

∫
V

Up
IJ(Xp,XS)FJ(XS) dV(XS) ð14Þ

whereX p is an arbitrary point within the domain;Up
IJ and

Tp
IJ are theextendedGreen’s displacements and tractions

derived in Appendix A.
Assuming that we can find the particular solution for a

given extended body force, the domain integral in Eq. (14)
can then be avoided [22]. First, we express by superposition
the total extended displacements, stresses, and tractions as
follows

ut
I ¼ uh

I þ up
I ; jt

iJ ¼ jh
iJ þ j

p
iJ ; Tt

I ¼ Th
I þ Tp

I , (15)

where the superscript ‘t’ denotes the total solution, ‘h’ the
homogeneous solution, and ‘p’ a particular solution corre-
sponding to the extended body force and/or the extended
far-field stress. Then, we substitute Eq. (15) into Eq. (14)
and take into account of the crack surface. After some math-
ematical manipulation, we found that the total extended
displacement can be expressed by the integral:

ut
I (Xp) þ

∫
S

Tp
IJ(Xp,XS)ut

J(Xs) dS(XS)

þ

∫
G

Tp
IJ(Xp, XG þ )[ut

J(XG þ ) ¹ ut
J(XG ¹ )] dG(XG þ )

¼

∫
S

Up
IJ(Xp,XS)Tt

J(XS) dS(XS) þ

∫
S

Tp
IJ(Xp,XS)(up

J(XS)

¹ up
I (Xp)) dS(XS) ¹

∫
S

Up
IJ(Xp,XS)Tp

J (XS) dS(XS), ð16Þ

where dS and dG are the line elements on the no-crack
boundary and crack surface, respectively, with the corre-
sponding points being distinguished by subscriptsS andG;
A point on the positive (or negative) side of the crack is

denoted byX Gþ (or X G¹); We add that, in deriving Eq. (16),
we have assumed that the extended tractions on the two
sides of a crack are equal and opposite.

Let X p approach a pointY S on the no-crack boundary,
one arrives at the following boundary integral equation

bIJut
J(YS) þ

∫
¹

S

Tp
IJ(YS,XS)ut

J(XS) dS(XS)

þ

∫
G

Tp
IJ(YS,XG þ )[ut

J(XG þ ) ¹ ut
J(XG ¹ )] dG(XG þ )

¼

∫
S

Up
IJ(YS, XS)Tt

J(XS) dS(XS) þ

∫
S

Tp
IJ(YS,XS)(up

J(XS)

¹ up
I (YS)) dS(XS) ¹

∫
S

Up
IJ(YS,XS)Tp

J (XS) dS(XS), ð17Þ

wherebIJ are coefficients that depend only upon the local
geometry of the no-crack boundary atY S.

It is observed that all the terms on the right-hand side of
Eq. (17) have only weak singularities, thus, are integrable.
Although the second term on the left-hand side of Eq. (17)
has a strong singularity, it can be treated by the rigid body
motion method (i.e.,uI ¼ constant throughout the whole
domain). At the same time, the calculation ofbIJ can also
be avoided.

For the uncracked case, Eq. (17) can be applied to solve
the extended displacement and stress in a 2D general aniso-
tropic and piezoelectric domain with the crack surface inte-
gral term being omitted. It is well known, however, that for
a cracked domain, Eq. (17) does not have a unique solution
[23]. For this situation, the traction integral equation of Pan
and Amadei [24] can be employed and extended to the
piezoelectric case. Assume thatY G is a smooth point on
the crack surface, the extended traction integral equation
can be derived as

0:5[Tt
M(YG þ ) ¹ Tt

M(YG ¹ )] þ nl(YG þ )

3
∫
S

ClMIkTp
IJ,k(YG þ ,XS)ut

J(XS) dS(XS)

þ nl(YG þ Þ

∫
¼

G

ClMIkTp
IJ,k(YG þ , XG þ )[ut

J(XG þ )

¹ ut
J(XG ¹ )] dG(XG þ ) ¼ 0:5[Tp

M(YG þ ) ¹ Tp
M(YG ¹ )]

þ nl(YG þ )
∫
S

ClMIkUp
IJ,k(YG þ ,XS)Tt

J(XS) dS(XS)

þ nl(YG þ )
∫
S

ClMIkTp
IJ,k(YG þ , XS)up

J(XS) dS(XS)

¹ nl(YG þ )
∫
S

ClMIkUp
IJ,k(YG þ ,XS)Tp

J (XS) dS(XS), ð18Þ
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wherenl is the outward normal at the crack surfaceY Gþ and
ClMIk is the extended stiffness tensor defined in Eq. (7).

Eqs. (17) and (18) form a new pair of boundary integral
equations and they are the extension of the existing single-
domain BEM formulation [24–26] to the anisotropic
piezoelectric medium. In this new formulation, the extended
displacement integral equation is collocated on the no-crack
boundary, and the extended traction integral equation on
one side of the crack surface. The effect of the extended
body force and/or the extended far-field stress have been
included by superposing the corresponding particular solu-
tion, which makes the problem very similar to the one asso-
ciated with the homogeneous governing equation. The only
difference is that for the extended body force and/or the
extended far-field stress cases, two extra integral terms
related to the particular solution need to be added to the
homogeneous integral equations. The advantage of using
Eqs. (17) and (18) is that for the extended far-field stress
case, the artificial truncation of the infinite domain or trans-
ferring of the extended far-field stress onto the problem
boundary can be avoided. While the former method
increases the size of the problem and also introduces errors
because of the truncation of the region, the latter may not be
suitable for cases where the boundary has a complex shape.
It is also worth mentioning that for problems containing
crack surfaces only, i.e., cracks in an infinite, a half plane
or in two bonded half planes, only Eq. (18) is required with
the no-crack boundary integral terms being omitted.

The boundary integral Eqs. (17) and (18) can be discre-
tized and solved numerically for the unknown extended
boundary displacements (or extended displacement discon-
tinuities on the crack surface) and extended tractions. The
hypersingular integral term in Eq. (18) is handled by an
accurate and efficient Gauss quadrature formulae [24,27],
which is similar to the traditional weighted Gauss quad-
rature but with a different weight.

4. Crack tip modeling and calculation of the extended
SIFs

In order to capture the square root characteristics of the
extended relative crack displacement (ERCD) near the
crack-tip, we construct the following crack-tip element
with its tip at s ¼ ¹1:

DuI ¼
∑3

k¼ 1
fkDuk

I , (19)

where the subscriptI (¼1,2,3,4) denotes the components of
the ERCD, and the superscriptk (¼1,2,3) denotes the ERCD
at nodess ¼ ¹2/3,0,2/3, respectively. The shape functions
fk are [26]

f1 ¼
3
���
3

p
8

����������
sþ 1

p
[5¹ 8(sþ 1) þ 3(sþ 1)2],

f2 ¼
1
4

����������
sþ 1

p
[ ¹ 5þ 18(sþ 1) ¹ 9(sþ 1)2],

f3 ¼
3
���
3

p
8
���
5

p ����������
sþ 1

p
[1¹ 4(sþ 1) þ 3(sþ 1)2]: ð20Þ

For the extended SIF calculation, we employ the extra-
polation method of the ERCDs, which requires an analytical
relation between the extended displacement and the
extended SIFs. This relation can be expressed as [5]:

Du(r) ¼ 2

������
2r
p

r
YK , (21)

where the matrixY is given in Eq. (A9) of Appendix A and
K is the extended SIF vector defined as

K ¼ { KII ,KI ,KIII ,KIV } t (22)

with K I, K II andK III being the usual stress intensity factors
andK IV being the electrical displacement intensity factor.

On the crack-tip element, equating the ERCDs from the
numerical calculation (19) to the analytical expression (21),
one then obtains a set of algebraic equations from which the
extended SIFs can be solved.

5. Numerical examples

The piezoelectric material chosen for the numerical
examples is lead zirconate titanate (PZT-4) ceramic [2].
The material constants of PZT-4 are given in Table 1 in
which, the elastic constantsCij are in 109 N m¹2, the piezo-
electric coefficienteij in C m¹2, and the dielectric constants
« ij in 10¹9 C/(Vm). The axis of symmetry of this transver-
sely isotropic PZT-4 is along they-axis.

The first example corresponds to a finite and horizontal
crack along thex-direction in an infinite PZT-4 medium
under a uniform far-field stress or electric displacement.
We used 20 discontinuous quadratic elements to discretize
the crack surface which has a length of 2a (¼1 m). The
normalized extended SIFs obtained with the current BEM

Table 1
Electroelastic moduli of the PZT-4 material

C11 C12 C13 C22 C44 C55 ¼ 0.5(C11 ¹ C13)
139 74.3 77.8 115 25.6 30.6

e21 e22 e16 «11 «22

¹5.2 15.1 12.7 6.461 5.620

Table 2
Normalized extended SIFs for a horizontal crack in an infinite domain

K I/jyyÎpa KII /jxyÎpa KIII /jyzÎpa KIV/DyÎpa

Numerical 0.9994 0.9994 0.9994 0.9994
Exact 1.0000 1.0000 1.0000 1.0000
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formulation are listed in Table 2 and compared to the exact
closed-form solutions [3–5]. It is obvious that very accurate
SIFs can be obtained by the proposed formulation.

It is interesting to note that even though the extended SIFs
are uncoupled (i.e., a far-field stress induces the stress inten-
sity factors only, and a far-field electric displacement
induces the electric displacement intensity factor only),
the ERCDs are usually coupled together. For example,
Tables 3 and 4 give the relative crack displacement and
electric potential caused by a far-field stressjyy and a far-
field electrical displacementDy. It is obvious that a far-field
stress induces a non-zeroDf even though the corresponding
K IV is zero. Similarly, a far-field electrical displacement can
induce a non-zeroDuy even though the correspondingK II is
zero. The exact closed-form solutions [5] are also given in
Tables 3 and 4, which show that the present numerical
method is very accurate. Finally, we noticed from Tables
3 and 4 that the value ofDf (10¹1 V) caused by a far-field
stressjyy is identical to that ofDuy (10¹1 m) caused by a far-
field electric displacementDy, a consequence of the Betti-
type reciprocity.

The second example also corresponds to a finite crack in
an infinite PZT-4 medium. The crack is inclined 458 to the
positivex-direction and has a length of 2a, which is again
under a uniform far-field stress or electric displacement. The
exact closed-form solution can be obtained simply by the
coordinate transformation for a tensor and a vector. Here we
used 10 discontinuous quadratic elements to discretize the

crack surface. Our numerical results of the normalized
extended SIFs are listed in Table 5 and compared to the
exact closed-form solutions. Again, excellent agreement is
obtained.

As a third and final example, a finite, rectangular, and
PZT-4 solid with a central crack inclined 458 to the hori-
zontal direction is considered (Fig. 1). A uniform tension or
electric displacement is applied in they-direction. The ratios
of crack length to width, and of height to width area/w ¼

0.2 andh/w ¼ 2.0, respectively (in dimension,w ¼ 0.5 m,
h ¼ 1 m, a ¼ 0.1 m). We used 10 discontinuous quadratic
elements on the crack surface and 32 quadratic elements on
the outside boundaries. While Tables 6 and 7 give the results
of the normalized extended SIFs for both the coupled and
uncoupled (eijk ¼ 0) cases when the uniformjyy andDy are
applied, Tables 8 and 9 list the corresponding relative crack
displacement and electric potential. In Table 6,D * is a
nominal electric displacement in the unit of C m¹2 with
its amplitude equal to that ofjyy in the unit of N m¹2, and
in Table 7,j * is a nominal stress in the unit of N m¹2 with its
amplitude equal to that ofDy in the unit of C m¹2. Several
observations can be made from those tables: (1) Table 6
indicates that when the uniform tensionjyy is applied,
both the coupled and uncoupled cases predict very similar
values for the normalizedK I/jyyÎpa andK II/jyyÎpa. Simi-
larly, Table 7 shows that when the uniform electric dis-
placementDy is applied, the values of the normalized
K IV/DyÎpa for both the coupled and uncoupled cases are
very close to each other. (2) It is noted that even though the
extended SIFs are not affected much by the electro-
mechanical coupling, the relative crack quantities (relative

Table 3
Relative crack displacement and electric potential caused by a far-field
jyy(¼1 N/m2)

Duy (10¹12 m) Df (10¹1 V)

x (m) Numerical Exact Numerical Exact

0.492 0.032 0.032 0.040 0.040
0.425 0.094 0.093 0.116 0.116
0.358 0.124 0.124 0.154 0.154
0.292 0.144 0.144 0.179 0.179
0.225 0.158 0.158 0.197 0.197
0.158 0.168 0.168 0.210 0.210
0.092 0.174 0.174 0.217 0.217
0.025 0.177 0.177 0.221 0.221

Table 4
Relative crack displacement and electric potential caused by a far-fieldDy

(¼1 C m¹2)

Df (108 V) Duy (10¹1 m)

x (m) Numerical Exact Numerical Exact

0.492 0.161 0.160 0.040 0.040
0.425 0.466 0.465 0.116 0.116
0.358 0.616 0.616 0.154 0.154
0.292 0.717 0.717 0.179 0.179
0.225 0.789 0.789 0.197 0.197
0.158 0.838 0.838 0.210 0.210
0.092 0.868 0.868 0.217 0.217
0.025 0.882 0.882 0.221 0.221

Table 5
Normalized extended SIFs for an inclined crack in an infinite domain

K I/jyyÎpa KII /jyyÎpa KI/jxyÎpa KIII /jyzÎpa KIV/DyÎpa

Numerical 0.4968 0.4968 ¹0.9937 0.7108 0.7108
Exact 0.5000 0.5000 ¹1.0000 0.7071 0.7071

Fig. 1. An anisotropic, piezoelectric, and finite rectangular solid with a
central crack inclined 458 to the horizontal direction under a uniform ten-
sion or electric displacement in they-direction.
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crack displacement and electric potential) are quite different
for the coupled and uncoupled cases. This can be observed
in Table 8 forDux andDuy, and in Table 9 forDJ. (3) It is
also interesting to note from both Tables 6 and 7 that for the
coupled case, while a uniformjyy (¼1 N m¹2) induces only
a very small electric displacement intensity factor (in the
unit of Cm¹3/2), a uniformDy (¼1 C m¹2) can produce very
large stress intensity factors (in the unit of Nm¹3/2). This
phenomenon indicates clearly that the crack initiation cri-
teria based on a single SIF (for the elastic case) cannot be
simply extended to the piezoelectric case. Instead, the
energy-based criteria, which include the contribution of
each component of the extended SIFs, should be employed.
(4) The Betti-type reciprocity is shown again in Tables 8
and 9 whereDf (10¹2 V) induced by the uniform tensionjyy

is equal toDuy (10¹2 m) induced by the uniform electric
displacementDy.

6. Conclusions

A single-domain BEM formulation has been proposed for
fracture mechanics analysis in cracked 2D anisotropic
piezoelectric solids. In this approach, the extended displa-
cements (elastic displacement and electric potential) are
collocated on the no-crack boundary and the extended trac-
tion (elastic traction and electric displacement) on one side
of the crack surface. This work is an extension of the exist-
ing single-domain BEM formulation [24–26] to the aniso-
tropic piezoelectric solid. The Green’s functions for a
general anisotropic piezoelectric solid in an infinite plane,
a half-plane and two joined dissimilar half-planes have been
derived using the complex variable function method.
Numerical examples for the calculation of the extended
SIFs are also carried out. For a finite crack in an infinite
and anisotropic piezoelectric medium, the extended SIFs
obtained with the current numerical method were found to
be very close to the exact solutions. For an inclined and
central crack in a finite piezoelectric solid, we found that

both the coupled and uncoupled (eijk ¼ 0) cases predict very
similar stress intensity factorsK I and K II when a uniform
tension is applied, and very similar electric displacement
intensity factorK IV when a uniform electrical displacement
is applied. However, the relative crack displacements and
electric potentials along the crack are quite different for the
coupled and uncoupled cases. Furthermore, for the coupled
case, while a uniformjyy (¼1 N m¹2) induces only a very
small electrical displacement intensity factor (in the unit of
Cm¹3/2), a uniformDy (¼1 C m¹2) can produce very large
stress intensity factors (in the unit of Nm¹3/2). This phenom-
enon is new to the author and it may shed a new light on the
future development of fracture mechanics analysis for
piezoelectric solids.
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Table 6
Normalized extended SIFs for an inclined crack in a finite solid underjyy

(¼1 N m¹2)

K I/j yyÎpa KII /jyyÎpa KIV/D *Îpa

Coupled 0.5303 0.5151 ¹2.973 10¹12

Uncoupled 0.5275 0.5151 0.0000

Table 7
Normalized extended SIFs for an inclined crack in a finite solid underDy

(¼1 C m¹2)

K IV/DyÎpa KI/j
*Îpa KII /j

*Îpa

Coupled ¹0.72785 ¹1.4173 106 1.6923 105

Uncoupled ¹0.72776 0.0000 0.0000

Table 8
Relative crack displacement and electric potential caused byjyy

(¼1 N m¹2)

Coupled Uncoupled

x ¼ y
(10¹1 m)

Dux

(10¹13 m)
Duy

(10¹11 m)
Df

(10¹2 V) a
Dux

(10¹13 m)
Duy

(10¹11 m)

0.684 0.099 ¹ 0.066 0.081 0.102 ¹ 0.095
0.589 0.216 ¹ 0.143 0.175 0.223 ¹ 0.205
0.495 0.283 ¹ 0.185 0.226 0.292 ¹ 0.265
0.401 0.330 ¹ 0.214 0.261 0.340 ¹ 0.305
0.306 0.365 ¹ 0.234 0.285 0.375 ¹ 0.334
0.212 0.388 ¹ 0.247 0.302 0.400 ¹ 0.353
0.118 0.403 ¹ 0.256 0.312 0.415 ¹ 0.365
0.024 0.409 ¹ 0.259 0.316 0.421 ¹ 0.370

a Df is zero for the uncoupled case.

Table 9
Relative crack displacement and electric potential caused byDy

(¼1 C m¹2)

Coupled Uncoupled

x ¼ y
(10¹1 m)

Dux

(10¹5 m)a
Duy

(10¹2 m)a
Df

(108 V)
Df

(108 V)

0.684 0.103 0.081 0.032 0.061
0.589 0.226 0.175 0.070 0.132
0.495 0.296 0.226 0.090 0.170
0.401 0.346 0.261 0.104 0.196
0.306 0.382 0.285 0.114 0.214
0.212 0.407 0.302 0.121 0.227
0.118 0.422 0.312 0.125 0.234
0.024 0.429 0.316 0.127 0.238

a Dux andDuy are zero for the uncoupled case.

72 E. Pan / Engineering Analysis with Boundary Elements 23 (1999) 67–76



Appendix A

In this appendix, the Green’s functions for anisotropic
piezoelectric solids in an infinite plane, a half-plane and
two-jointed dissimilar half-planes are derived. Previously,
Lee and Jiang [18] using the Fourier transform method
derived the Green’s functions of transversely isotropic
piezoelectric solids in an infinite plane. Sosa and Castro
[28] using a state space approach combined with the Fourier
transform obtained the Green’s functions due to a compres-
sive point force or a point charge acting on the surface of a
transversely isotropic piezoelectric half plane. When a
piezoelectric material possesses lower symmetry, neither
the infinite-plane nor the half-plane Green’s function is
available.

For a 2D, anisotropic and linear piezoelectric medium,
the extended displacement and stress can be described with
four complex functionsf I(zI) [5,29]

uI ¼ 2 Re
∑4

J ¼ 1
AIJfJ(zJ)

" #
, j2I ¼ 2 Re

∑4

J ¼ 1
BIJfJ9(zJ)

" #
,

j1I ¼ ¹ 2 Re
∑4

J ¼ 1
BIJmJfJ9(zJ)

" #
,

fI ¼ ¹ 2 Re
∑4

J ¼ 1
BIJfJ(zJ)

" #
: ðA:1Þ

In the last equation,f I is the extended resultant tractionon a
curve, i.e., the integral ofthe extended tractiondefined by

TI ¼

Ti ;
∑2

j ¼ 1
jji nj , I ¼ 1,2,3,

Dn ;
∑2

j ¼ 1
Djnj , I ¼ 4,

8>>>>><>>>>>:
(A.2)

with nj (j ¼ 1,2) being the unit outward normal of the curve.
In Eq. (A.1),zJ ¼ x þ mJy; Re denotes the real part of a

complex variable or function; a prime denotes the deriva-
tive; andmJ (J ¼ 1,2,3,4) are four distinct complex roots
with positive imaginary part of the following equation

C1IJ1 þ m(C1IJ2 þ C1JI2) þ m2C2IJ2

�� ��¼ 0 (A.3)

For each of the characteristic rootsmK, each column of the
matrix A in Eq. (A.1) is the eigenvector of the following
equation:

∑4

J ¼ 1
C1IJ1 þ mK(C1IJ2 þ C1JI2) þ m2

KC2IJ2

� �
AJK ¼ 0: (A.4)

Once the matrixA is found, the matrixB in Eq. (A.1) can be
obtained by

BIK ¼
∑4

J ¼ 1
C1JI2 þ mKC2IJ2

ÿ �
AJK: (A.5)

It is noted that in writing the general solution (A.1), we have
assumed that the eigenfunction (A.3) has eight roots, which
form four conjugate pairs. This requires equally that Eq.
(A.3) admits no real root which is true as proved by Suo
et al. [5]. Another assumption in writing the solution (A.1) is
that Eq. (A.3) has eight different eigenvalues. For an
isotropic, non-piezoelectric dielectric, degenerated eigenva-
lues can occur. In this case, however, a quasi-isotropic mate-
rial can replace the isotropic material so that the general
solution (A.1) is still valid. In general, the difference
between the solution based on the quasi-isotropic model
and that based on the isotropic model is negligible, as has
been verified by Sollero et al. [30] and Pan and Amadei [24]
for the purely elastic case. It is also noted that since each
column of the matrixA is an eigenvector, the representation
of Eq. (A.1) is uniquely determined by the material proper-
ties, up to the four normalized factors of the matrixA.

In order to obtain the Green’s functions for different
domain cases, we use the one-complex-variable approach
[5] and define a vector function as

f (z) ¼ f1(z), f2(z), f3(z), f4(z)
� �t, (A.6)

with the argument having the generic formz¼ x þ my. Once
the complex vector function is obtained, the Green’s func-
tions, i.e., the extended displacement and stress fields can be
derived from Eq. (A.1).

Appendix A.1 Green’s functions in an infinite piezoelectric
plane

Assume that there is an extended dislocation {dJ} ¼ d ¼

(uþ ¹ u¹) and an extended force {pJ} ¼ p ¼ (T ¹ ¹ T þ)
acting at the source point (x0,y0), the solution for the com-
plex functions can be expressed as [31,32]:

fJ(z) ¼ qJ ln(z¹ sJ), (A.7)

wheresJ ¼ x0 þ mJy
0, andq ¼ { qJ} is a complex coefficient

vector. To findq, we substitute Eq. (A.7) into Eq. (A.1) and
let the jump of the extended displacement and resultant
traction be equal tod and p, respectively. This gives us
the following expression forq

q ¼
1

2p
[B¹ 1(Y þ Ȳ)¹ 1d ¹ A ¹ 1(Y ¹ 1 þ Ȳ ¹ 1)¹ 1p, (A.8)

where overbar means complex conjugate; superscript¹1
means matrix inverse; andY is given by

Y ¼ iAB ¹ 1 (A.9)

with i ¼
��������
¹ 1

p
.

If d ¼ 0, the Green’s functions will be those correspond-
ing to an extended point force only. The substitution of the
complex function (A.7) in Eq. (A.1) gives the Green’s
extended displacement and traction. For an extended unit
point force, the extended displacements are found to be

Up
KL ¼

¹ 1
p

Re
∑4

J ¼ 1
ALJHJK ln(zJ ¹ sJ)

" #
: (A.10)
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Similarly, the extended tractions can be expressed as

Tp
KL ¼

1
p

Re
∑4

J ¼ 1
BLJ

mJnx ¹ ny

zJ ¹ sJ
HJK

" #
, (A.11)

where

H ¼ A ¹ 1(Y ¹ 1 þ Ȳ ¹ 1)¹ 1: (A.12)

In Eqs. (A.10) and (A.11),zJ ¼ x þ mJy andsJ ¼ x0 þ mJy
0

correspond to the field and source points, respectively;nx

and ny are thex and y components of the unit outward
normal at the field point (x,y).

It is noteworthy that by replacingH in Eqs. (A.10) and
(A.11) with ¹ B¹ 1(Y þ Ȳ)¹ 1, we then obtain the Green’s
functions due to an extended point dislocation.

Based on an eight-dimensional formalism, Barnett and
Lothe [21] derived the extended displacement in an infinite
plane due to an elastic dislocation (dJ Þ 0 for J ¼ 1,2,3;
d4 ¼ 0) and an electric charge (pJ ¼ 0 for J ¼ 1,2,3;p4 Þ 0).
Using the Fourier transform, Lee and Jiang [18] obtained the
Green’s functions for a transversely isotropic piezoelectric
infinite plane. These solutions are particular cases of
Eqs. (A.10) and (A.11).

Eqs. (A.10) and (A.11) show that the Green’s functions
Up

KL andTp
KL for piezoelectric solids are 43 4 matrices with

their first index (K) denoting the source components and
second index (L) the field components. Since these Green’s
matrices are usually full for general anisotropic piezoelec-
tric solids, the elastic and electric fields are coupled
together. That is, a body force will induce an electric poten-
tial, and an electric charge will generate an elastic displace-
ment. The physical meaning of the Green’s matrices can be
explained. Take the extended displacementUp

KL for exam-
ple, the meaning of this 43 4 Green’s function is:

1. the elastic displacement (L ¼ 1–3) at field pointzdue to
a unit force (K ¼ 1–3) at source points;

2. the elastic displacement (L ¼ 1–3) at field pointzdue to
a unit charge (K ¼ 4) at source points;

3. the electric potential (L ¼ 4) at field pointz due to a unit
force (K ¼ 1–3) at source points; and finally,

4. the electric potential (L ¼ 4) at field pointz due to a unit
charge (K ¼ 4) at source points.

Appendix A.2 Green’s functions in a piezoelectric half-
plane

For a half-plane problem, we let the medium occupy the
lower half-plane (y , 0) and lety ¼ 0 correspond to the
extended traction-free surface (i.e., the traction and normal
component of the electric displacement are zero aty ¼ 0).
The source point (x0,y0) is located anywhere within the
lower half-plane (y0 , 0). To find the complex functions
in Eq. (A.1), we assume the following vector function
expression:

f (z) ¼ f0(z) þ f c(z), (A.13)

wheref 0(z) is the full-plane solution given in Eq. (A.7) and
f c(z) is a complementary vector function to be determined.
In order to obtainf c(z), we substitutef(z) into the extended
resultant traction equation (last equation of (A.1)) and
enforce the extended traction-free condition aty ¼ 0. Fol-
lowing the standard analytical continuation of complex
functions, the complementary vector function is found as

f c(z) ¼ ¹ B¹ 1B̄f̄0(z): (A.14)

With this solved complex vector function, the Green’s func-
tions in a half-plane can then be derived from Eq. (A.1). For
the extended displacement, the Green’s matrix is

Up
KL ¼

¹ 1
p

Re

( ∑4

J ¼ 1
ALJ

"
HJK ln(zJ ¹ sJ)

¹
∑4

I ¼ 1
WJIH̄IK ln(zJ ¹ s̄I )

#)
, ðA:15Þ

with

W ¼ B¹ 1B̄ (A.16)

and for the extended traction, it is

Tp
KL ¼

1
p

Re

3
∑4

J ¼ 1
BLJ

mJnx ¹ ny

zJ ¹ sJ
HJK ¹

∑4

I ¼ 1
WJI

mJnx ¹ ny

zJ ¹ s̄I
H̄IK

" #( )
:

ðA:17Þ

For a transversely isotropic piezoelectric half-plane, Sosa
and Castro [28] derived the Green’s solutions for a vertical
point force and a point charge acting on the surface of the
half-plane, which is a particular case of the current half-
plane solution.

Appendix A.3 Green’s functions in piezoelectric
bimaterials

We now assume that the medium is composed of two
joined piezoelectric half-planes. We let the interface be
along thex-axis, and the upper (y . 0) and lower (y , 0)
half-planes be occupied by materials #1 and #2, respec-
tively.

For a concentrated source acting at the point (x0,y0) in
material #2 (y0 , 0), we express the complex vector func-
tion as [31]

f (z) ¼
fU(z), z[ 1,

fL(z) þ f 0
(2)(z), z[ 2:

(
(A.18)

In Eq. (A.18), the vector functionf0
(2) is the infinite-plane

solution given in Eq. (A.7) with piezoelectric properties of
material #2.fU(z) and fL(z) are analytic in upper (material
#1) and lower (material #2) half-planes, respectively. The
solutions to them can be found by the requirement of the
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continuities of the extended resultant traction and displace-
ment across the interface, along with the standard analytic
continuation arguments. Following this path and after some
complex algebraic manipulation, the complex vector func-
tions in materials #1 and #2 are obtained as

In Eq. (A.19), the special subscripts (1) and (2) are used
exclusively to denote that the corresponding matrix or
vector is in material #1 (y . 0) and material #2 (y , 0),
respectively.

Similarly, for a source point in material #1 (y0 . 0), these
complex functions can be found as

where the vector functionf0
(1) is again the infinite-plane

solution given in Eq. (A.7) but with piezoelectric properties
of material #1.

With the complex functions giving in Eqs. (A.19) and
(A.20), the Green’s functions of the extended displacement
and traction can be obtained by substituting these complex
functions into Eq. (A.1). These Green’s functions have four
different forms depending on the locations of the field and
source points. The complete expressions for them are given
below with special superscripts and subscripts (1) and (2)
being used exclusively to denote that the corresponding
quantities are in materials #1 (y . 0) and #2 (y , 0),
respectively.

(I) For source (s) and field (z) points in material #1
(y . 0):

Up
KL ¼

¹ 1
p

Re

( ∑4

J ¼ 1
A(1)

LJ

"
ln(z(1)

J ¹ s(1)
J )H(1)

JK

þ
∑4

I ¼ 1
W11

JI ln(z(1)
J ¹ s̄(1)

I )H̄(1)
IK

#)
, ðA:21Þ

Tp
KL ¼

1
p

Re

( ∑4

J ¼ 1
B(1)

LJ

"
m

(1)
J nx ¹ ny

z(1)
J ¹ s(1)

J

H(1)
JK

þ
∑4

I ¼ 1
W11

JI
m

(1)
J nx ¹ ny

z(1)
J ¹ s̄(1)

I

H̄(1)
IK

#)
, ðA:22Þ

where the matrixH is defined in Eq. (A.12) with the piezo-
electric properties of material #1, and

W11 ¼ B¹ 1
(1) (Y(1) þ Ȳ(2))¹ 1(Ȳ(1) ¹ Ȳ(2))B̄(1) (A.23)

(II) For source point (s) in material #1 (y . 0) and field point

(z) in material #2 (y , 0):

Up
KL ¼

¹ 1
p

Re
∑4

J ¼ 1
A(2)

LJ

∑4

I ¼ 1
W12

JI ln(z(2)
J ¹ s(1)

I )H(1)
IK

" #( )
,

(A.24)

Tp
KL ¼

1
p

Re
∑4

J ¼ 1
B(2)

LJ

∑4

I ¼ 1
W12

JI
m

(2)
J nx ¹ ny

z(2)
J ¹ s(1)

I

H(1)
IK

" #( )
, (A.25)

with

W12 ¼ B¹ 1
(2) (Y(2) þ Ȳ(1))

¹ 1(Ȳ(1) þ Y(1))B(1) (A.26)

(III) For source (s) and field (z) points in material #2 (y , 0):

Up
KL ¼

¹ 1
p

Re

( ∑4

J ¼ 1
A(2)

LJ

"
ln(z(2)

J ¹ s(2)
J )H(2)

JK

þ
∑4

I ¼ 1
W22

JI ln(z(2)
J ¹ s̄(2)

I )H̄(2)
IK

#)
, ðA:27Þ

Tp
KL ¼

1
p

Re

( ∑4

J ¼ 1
B(2)

LJ

"
m

(2)
J nx ¹ ny

z(2)
J ¹ s(2)

J

H(2)
JK

þ
∑4

I ¼ 1
W22

JI
m

(2)
J nx ¹ ny

z(2)
J ¹ s̄(2)

I

H̄(2)
IK

#)
, ðA:28Þ

where the matrixH is defined in Eq. (A.12) with the piezo-
electric properties of material #2, and

W22 ¼ B¹ 1
(2) (Y(2) þ Ȳ(1))¹ 1(Ȳ(2) ¹ Ȳ(1))B̄(2) (A.29)

f (z) ¼
B¹ 1

(1) (Y(1) þ Ȳ(2))
¹ 1(Ȳ(2) þ Y(2))B(2)f

0
(2)(z), z[ 1,

B¹ 1
(2) (Ȳ(1) þ Y(2))¹ 1(Ȳ(2) ¹ Ȳ(1))B̄(2) f̄

0
(2)(z) þ f0

(2)(z), z[ 2:

8<: (A.19)

f (z) ¼
B¹ 1

(1) (Ȳ(2) þ Y(1))¹ 1(Ȳ(1) ¹ Ȳ(2))B̄(1) f̄
0
(1)(z) þ f0

(1)(z), z[ 1,

B¹ 1
(2) (Y(2) þ Ȳ(1))¹ 1(Ȳ(1) þ Y(1))B(1)f

0
(1)(z), z[ 2,

8<: (A.20)
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(IV) For source point (s) in material #2 (y , 0) and field
point (z) in material #1 (y . 0)

Up
KL ¼

¹ 1
p

Re
∑4

J ¼ 1
A(1)

LJ

∑4

I ¼ 1
W21

JI ln(z(1)
J ¹ s(2)

I )H(2)
IK

" #( )
,

(A.30)

Tp
KL ¼

1
p

Re
∑4

J ¼ 1
B(1)

LJ

∑4

I ¼ 1
W21

JI
m

(1)
J nx ¹ ny

z(1)
J ¹ s(2)

I

H(2)
IK

" #( )
, (A.31)

with

W21 ¼ B¹ 1
(1) (Y(1) þ Ȳ(2))¹ 1(Ȳ(2) þ Y(2))B(2): (A.32)
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