JOURNAL OF APPLIED PHYSICS VOLUME 86, NUMBER 1 1 JULY 1999

Ultrasonic waves in multilayered superconducting plates
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Guided waves and the transient response of multilayered superconducting tapes have been studied
in this article. These tapes are usually composed of layers of a superconducting nibkerial
YBa,Cu;O;_ 5, or YBCO, for simplicity alternating between layers of a metallic matefiie

nickel or silve). The tapes are thin, the thickness being in the range of 100200 The
superconducting layer is orthotropic with a thickness of 5z In applications, the tapes are long

and have a finite width. In this article, we focus our attention on the dispersion of two-dimensional
guided waves and the transient response of homogeneous and three-layered tapes assuming that the
thickness of the superconducting layer is much smaller than the metal layer. Three tape geometries
are considered: a homogeneous nickel layer, a three-layered YBCO/nickel/YBCO and a
three-layered nickel/YBCO/nickel. It is found that although the total thickness of the YBCO layer

is very small, the dispersion and transient response in the last two cases are quite different from each
other and from the homogeneous nickel plate. These differences can be used for the ultrasonic
characterization of the in-plane material properties of the superconducting layerd99®
American Institute of Physic§S0021-8979)02613-4

I. INTRODUCTION the wave numbergincluding not only the propagating
modes, but also the nonpropagating and evanescent modes
The ultrasonic nondestructive evaluatioNDE) tech- ~ Then, we use the exact dispersion equatfowhich is ob-
nique has found wide use for quantitative characterization ofained with a direct propagator matrix methdp find the
mechanical properties and for detection of cracks andvave numbers accurately. Finally, the direct propagator ma-
delaminations in laminates. In using this method, howeveririx method and the modal summation techniq@auchy’s
one needs to have a clear understanding of wave propagatioesidue theoreinare used to derive the frequency-domain
in anisotropic and layered plates. For complex wave interacGreen’s functions. The time-domain Green’'s functions are
tion phenomenon occurring in the damaged layered system,@btained by the inverse Fourier transformation combined
general analytical solution is extremely difficult, if not im- with an exponential window method->*
possible, to obtain. This necessitates the use of numerical This general technique for analyzing the Green’s func-
methods, such as the finite-element met{B&M) or the  tions in anisotropic and layered plates is then applied to the
boundary-element methd@EM). It is noted, however, that study of guided waves and the transient response of layered
the latter is more suited than the former to cases where bettétiperconducting tapes. These tapes are usually composed of
accuracy is required due to problems such as stress concdayers of a superconducting material alternating between lay-
tration or where the domain of interest extends to infinity. ers of a metallic material. The superconducting layers are
In applying the BEM formulation to the layered plate, orthotropic and in many cases are very thin with respect to
one needs to find the Green’s functions in such a system. TH8€ total thickness of the tapes. The most notable feature
two-dimensional(2D) elastodynamic Green’s functions due associated with the superconducting tapes is that the in-plane
to line sources in a layered system were studied previousljnaterial properties of the superconducting layers are hard to
by Kundu and Mat: Mal,? and Jd employing the propagator Measure. Three tape geometries are considered: a homoge-
matrix method. A thin-layer method was also proposed fon€ous nickel layer, a three-layered YBCO/nickel/YBCO and
the solution of the Green’s functions in two dimensidds. @ three-layered nickel/'YBCO/nickel. The total thickness of
More recently, Zhu, Shah, and Ddtfaand Zhu and Shéh the YBCO layer is taken to be much smaller than that of the
derived these Green’s functions using a stiffness methofickel layer. Our numerical studies show that even for this
combined with either a wave-function expansion or a modaVery thin superconducting layer, the dispersion and transient
summation technique. Similarly, Liu and Achenblab-  fesponse in the last two cases are q.uite different fr.om each
tained the Green’s function using a strip-element method. Other and from the homogeneous nickel layer. This is en-
This article presents an alternative and accurate methogPUraging for ul_trasonlc charactpnz_aﬂon of in-plane material
to calculate the 2D elastodynamic Green’s functions in anProperties of thin superconducting inner or outer layers.
isotropic and layered plates. It is an extension of the modal
summation technique used by Zhu, Shah, and Pattd Liu Il. A GE,NERAL SOLUTION OF THE TRANSFORMED
and Achenbacfi.As in the modal summation technique, we GREEN'S FUNCTIONS
first divide the layered system into a certain number of thin  In this section, an outline is given for calculating the
layers and use the stiffness metfHbtb find approximately ~Green'’s functions for a multilayered plate. Figure 1 shows a
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“ to Eq. (4), we then arrive at two ordinary differential equa-
: tions for the double Fourier transformed displacements
“1 I Layer s1 e (et — kU +iKC1qU 5 ,+ Cog(Uy 1o+ KU, 1) + Fy
. Y ' Layer s2 ¢ Dy __ prUX ,
7N iI(Cl?zux,z""C33Uz,zz+ C55(ika,z_ k2U2)+Fz
Layer N hy
N (z=H) =—pw?U,, (6)
Free Surf .
ree wurtace . whereF, and F, are the double Fourier transformed force
v

components. The general homogeneous solutions of the

_ _ above equation for each layer can, therefore, be expressed
FIG. 1. Geometry of a multilayered superconducting plate under a concenése,lo

trated line force.
U,(k,z;w)=iK[(Aq;coshr,z—iA,,sinhr,z)

+b(Aycoshr,z—iA,,sinhr,z) ],

multilayered superconducting plate made upNoparallel, _ ) ) (7)
homogeneous, and orthotropic layers. The layers are num- Yz(KiZ@)=ari(Ajpcoshryz+iAy; sinhr, )
bered seriglly with the layer at the top bei.ng layer 1 and the +15(Agyy COSHr yZ+ A, Sinhr ,2),
bottom being layeN. We place the Cartesian coordinates at
the top free surface, and theaxis is drawn down into the Where
medium. Thejth layer is bounded by the interfaces a=(ak?—K3—r?)/sr?

: 2 1 1
=Zj_1, Zj. Evidently, we have,=0 andzy=H, whereH ) )
is the total thickness of the layered plate. It is assumed that b= (k5—k?+ Br5)/ sk?,

the symmetry axes of the layers are aligned parallel. _ _ _ (8
Consider a plane strain problem in the2 plane. The @=C11/Ce5,  B=Ca3/Ce5, =1+ Cus/Css,
equation of motion in each layer can then be described by ko= Vpw?/Css,
J?uy andr, andr, are the roots of the following equation:
Uxx,x+0xz,z+fxzp o2 » )
(— ak®+r2+k3)(Bri—k*+k3) +kr?s°=0. 9
(1) 2 2
d°u Also, in Eq.(7), A11, A1s, Ay, andA,, are constants.
sz,x+azzz+fz:pTZZv ) 9.(7), A11, A1z, Agg, 22
with the constitutive relation given by lll. GREEN'S FUNCTIONS IN THE FREQUENCY
Oxx Cll 013 O uX,X DOMA'N
Tzz|=|C1zs Csz O Uzz . (2) In terms of the double Fourier transformed displacement
Txz 0 0 CosllUxzHUsx solution (7), the transformed stresses can also be obtained.
In Egs.(1) and(2), the densityp, the body forces, andf,, ~ Furthermore, these solutions for each lageay layerj) can
and the elastic constantg are those belonging to the layer. be expressed in terms of a propagating relation as
They may differ from one layer to another. [Q(z)1=[Pj(z;~2_)[Q(z_1]. (10)

In order to solve the governing equations in terms of the

displacement, we first apply the Fourier transform with re-Here, the solutiofQ] at the top interface;, of layerj is
spect to timet related to that at the bottom interfaege by the propagator

matrix [ P; ] of the layer. While the elements of the propaga-

E(X,Z;w) :J” Uy(X,Z;t) ot 3 tor matrix are given in the appendix, the solution column
U,(X,Z; ) _w | UxA(X,Z;1) ! matrix is defined as
to Egs.(1) and(2). This results in the following differential [Q]={Uy,U,,T,,, T, }", (11
equations for the frequency-domain displacements: with T,, andT,, being the double Fourier transformed stress

— — — — = components obtained b
Cllux,xx+ C13uz,zx+ 055(ux,22+ uz,xz)+ fx: _prUxa P y
Cl3Ux,xz+ C33Uz,zz+ CSS(Ux,zx'I'Uz,xx) +f_z= - pwzﬁz . am(X’Z; w)= Jlxmm(x,z;t)ei“"dt,
4
Applying further another Fourier transform with respect to Tim(K,Z: @) = f
the horizontal variable meme

(12

+oo_ .
oim(X,Z;0)e” **dx.
o0
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Suppose now that there is a line force with time historydomain. For example, for the displacement component in the
f(t) located on the axis at the deptla=h which belongs to  x direction and forx=0, this integral can be expressed as
layers (Fig. 1), i.e.,

1 [+ )
- . _ . k
fm(X,Z:) = 8(x) 8(z— ) f(t)npy, (13) ux(x’z"")‘ﬁf,w Us(kzw)eTdk
wheren,, are the components of the unit force vector in the M
coordinate axes. =—i > Uy(Kp,Z o)expikmX). (22)
The double Fourier transform of this line force is =1 o "
F(k,Z,w)=8(z—h)F(w)ny,, (14  The poles in Eq(22) are actually the roots of the dispersion
equation
with F(w) being the frequency-domain behavior fqf). It a
is easy to show that the traction discontinuity caused by the 831842~ a41832=0. (23
line force is These roots can be found accurately by the method described
AT, =Ty (h+0) =Ty (h—0)=F(w)ny, in Zhu, Shah, and Daftaand Paret al! Since all the poles
(15) are of first order, the residue summation can be carried out
AT, =T;{h+0)=T,(h=0)=F(w)n,. exactly by finding the exact derivative of the left-hand side

of Eqg. (23) with respect to the wave-numbkr For a given
frequency, there are only a finite number of propagating
modes; all other modes are nonpropagating and decay expo-

For handling the propagation of the matfik;], we ar-
tificially divide the source layes into two sublayersl and
s2 (Fig. 1). Using then the propagating relatiéf0) and the

discontinuity condition(15), we found tha? nentially to zero in the selected half plane kfwhen |K|
' approaches infinity. Therefore, the finite numiérin Eq.
[Q(zn) 1= [PNI[Pn-1]-[P1][Q(z0)] (22) will be enough to give an accurate result, with a suitable

_ range being 4& M <60.
=[PNIlPN-1] - [P][AQ], (18) In the actual calculation, we first use the stiffness-based
with Rayleigh—Ritz technigue to find the approximate values of
_ ¢ the complex wave numbers. Then, the Muller's method is
[AQJ={0.0~F(@)ny, = F(w)n}, (17 employed to the exact dispersion E§3) to calculate the
Now, substituting the free-traction boundary conditions atexact poles. Once these poles are found, (8. or the like
the top (z;) and bottom £,) surfaces into Eq(16), we can is used to find the Green’s functions in the frequency do-
solve the Green'’s displacement in the double Fourier transmain. It should be emphasized here that for a given fre-
formed domain at either the top or bottom surface. For exquency, we need to find the poles only once. With these
ample, for a line force in the direction, the Green's dis- poles, the frequency-domain Green'’s functions for any pair
placement at the top surface is derived as of source and field points can be evaluated accurately using
the direct propagator matrix method, which is therefore very

U(k,Zo; o) Flo)  [bs@e—badsl (0 efficient

Uz(k,ZO,w) - a31a42_ a41a32_a31b44_ a41b34_ '
Similarly, for a line force in thez direction, it is IV. GREEN'S FUNCTIONS IN THE TIME DOMAIN

Ux(k,Zp;0)| F(w) [ D358~ bysas)] To obtain the time-domain response, the inverse trans-

Uy(K,Zp;®)|  agas— aasy| @31baz— a4ibas)” 19 form of Eq. (3) needs to be carried out. For example, the
time-domain displacementg(t) andu,(t) can be expressed

In Egs.(18) and(19)

as
[a]=[Pn]I[Pn-1]-[P1], 1 [+=
- Z J'foo

[b]=[PNI[Pn-1]"[Ps].

Having obtained the surface displacements, the propaAgain, F(w) is the Fourier transform of the time dependence
gating relation(10) can then be used again to find the solu-of the line forcef(t). The integration involved in Eq24) is
tion at any vertical level. For example, fay_,;<z<z;, we  usually carried out numerically. For an infinite plate, how-
have ever, difficulties with the integration may occur due to the

singularity of the frequency-domain solution@at=0 and at

[QEDI=[Pj(z=2-DI[Pj—1] ~[PilIQ(z)]. D e cytoff frequenciesk=0). To overcome these difficul-

It is well known that overflow may occur in the high-
frequency region due to the multiplication of the propagator _ _ ,
matrix[Pj]. This problem is avoided by the direct propaga—TAB"E I. Geometry and material properties of the homogeneous nickel

Uy(X,z;t)
U(X,z;t)

Uy(X,Z; @)
Uy(X,Z;w)

(20 }F(w)ei“’tdw. (24)

i late.
tor matrix method proposed by P&n. pete
In order to get the frequency-domain solutions, we need Thickness  Density Cu Ci3 Cs3 Css
to carry out the inverse transform of E(). Here, we use Layer (um)  (10kg/im) (GPa  (GPa  (GPa (GPa
Cauchy’s residue theorem to evaluate these integrals, whigce 100 8.910 208.95 12953 298.95 84.71

converts the integral into a residue summation in the suitable
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TABLE Il. Geometry and material properties of the three-layered YBCO/
Ni/YBCO plate.

Thickness
(pm)

YBCO 5
Nickel 100
YBCO 5

Density Cyy Cy3 Ca3 Css

Layer (1Ckg/m®) (GP3 (GPa (GPa (GPa

6.333
8.910
6.333

268 95
298.95 129.53
268 95

186 49
298.95 84.71
186 49

ties, a small imaginary part of the frequeneycan be intro-
duced into the integrand of Eq4).>*>1*By doing so, Eq.
(24) can be written equivalently as

eﬂt + o0
ol
XF(o+in)e “do, (25

where 0 2 4 6 8 10 12 14 18 18 20
(@) Normalized Wavenumber

Normalized Frequency

& Ni only i

Uy(X,z;t) ~ YBCONVYBCO | _|

Ux(X,z;t)

Uy(X,Z; 0 +i7) 4
Uy(X,Z;0+i7) *

(26)

t ,
Flo+in)= J "em(t)eletdt,
0

in which tq is the duration of the line force ang is the
shifting constant. For the numerical examples presented i
the next section, the normalizeglis chosen to be 0.1, as in
Liu and Achenbach.

V. NUMERICAL EXAMPLES

We now apply this formulation to three cases: a homo-
geneous plate made of nick@glamed case |, see Tablg &
three-layered superconducting plate made of YBCO, nickel
and YBCO(named case I, i.e., YBCO/Ni/YBCO, see Table
II), and a three-layered superconducting plate made c
nickel, YBCO, and nickelnamed case I, i.e., Ni/YBCO/
Ni, see Table Il). YBCO is orthotropic with elastic proper-
ties being taken from Leét al,'® and is such that the and
z axes are along the maximum and minimum of its elastic 0 L LA R B o o o S I
constants;; . 0 2 4 6 $ 10 12 14 16 18 2

As we mentioned earlier, E§23) is actually the disper-  (b)
sion relation for the layered plate. Therefore, as a by-product,
Eq. (23) can be used to find the dispersion behavior of the™!G. 2. (@) Comparison of dispersion curves for a hom_ogenous_ nicke_l plate
layered plate. For instance, Figsta2and 2b) show the o 1o homogenous nickel plats and a three-iayered NIYBCON
comparison of the dispersion curves for cases | and Il and foglate. ’ P y
cases | and lll. In Figs. (@) and Zb), the normalized wave
number isk’ =kH,, whereH, is the thickness of nickel, and ) ) ) )
the normalized frequency i®' = wH, /cy, wherecs is the N.|/YBCO/N|), the dispersion beha\{lors of the hompggneous
shear velocity in nickel. It is observed clearly that even for anickel plate and the superconducting tapes are significantly
very thin YBCO layer either on both sides of the nickel |ayerd|fferent. In particular, the cutoff frequencies for both super-

(case Il, YBCO/Ni/YBCO, or in the middle of it(case III, conducting tapescases Il and Il are quite different from
those of the nickel, as listed in Table IV. Addition of the

superconducting YBCO layer is, in general, to lower the cut-
TABLE Ill. Geometry and material properties of the three-layered Ni/ off frequency. It is also noteworthy that for the nickel plate,

Normalized frequency

[e3 Ni only ]
X NiYBCOMNi 4

Normalized wavenumber

YBCOINi plate.

the cutoff frequencies calculated by our numerical method
are very close to the exact values, which are eitheror

Thickness  Density C1y Ci3 Ca3 Css . . . .
Layer (um)  (10Pkg/n®) (GPa (GPa (GPa (GPa nwc/cs (Nn=1,2,3,...), withc, being the longitudinal veloc-
: ity in the nickel plate(Table V).
$'E‘;ke' 50 8.910 29895 12953 298.95 8471 When comparing the cutoff frequencies of cases Il and
co 10 6.333 268 95 186 49
Nickel 50 8.910 208.95 12953 20895 ga71 Ml (Table IV), we note that for the same mode, the cutoff

frequency of case IlI[Ni/'YBCO/Ni) is either lower than or
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TABLE IV. Comparison of cutoff frequencies for nickel, YBCO/Ni/YBCO, and Ni/YBCO/Ni plates.

Nickel (Exach Nickel (Numer) YBCO/Ni/YBCO Ni/YBCO/Ni
7=3.14 592 65 3.141592 65 2.932 101 64 2.682612 24
¢, /cs=5.901 763 62 5.901 763 63 5.508 444 12 5.090 639 22
27=6.283 185 31 6.283 185 31 5.858 054 96 5.858 054 96
37=9.424 777 96 9.424 777 96 8.771 366 24 8.131 763 95
2mc,/cs=11.8035272 11.8035273 11.006 748 01 11.006 748 01
47=12.566 3706 12.566 370 6 11.664 931 29 11.664 931 29
57=15.707 963 3 15.707 963 3 14.531 004 67 13.749529 22
3mc,/cg=17.705290 9 17.705 290 9 16.484 325 76 15.399 567 10
67=18.8495559 18.8495559 17.361707 11 17.361 707 11

547

exactly equal to that of case (YBCO/Ni/YBCO). The cor-
responding modes for which the cutoff frequencies are thshow the modal displacement Rg(for a; whenw'=7 and
same for both cases are the symmetrical modes with an evdr, respectively, where the vertical coordinatdas been
multiplier of . Even though the cutoff frequencies are quiteshifted so thaz=0 is the symmetrical plane of the layered
different for the three cases, the modal displacements anglates. It is noted that the modal shapes are all similar except
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FIG. 3. Modal displacement Rejj for branch No. 14,) for »’=7 (a) and
w'=14 (b).

very similar to each other. For example, Figsa)3and 3b)

for case Il where the thin soft middle layer of YBCO be-
haves like an interface lay&t-*8 It should be emphasized
that in both cases Il and lll, the total thickness of the YBCO
layer is the same. But the dispersions in these two cases are
quite different. It is not apparent that this can be explained
by some simple scaling of the thickness.

With the calculated wave numbers for given frequencies,
the response of a layered plate to a line force in the fre-
quency domain can be evaluated accurately. For example,
Fig. 4 shows the amplitude variation of the frequency-
domain Green’s displacemenig andu, along the top free
surface of a homogeneous plate caused by a vertical time—
harmonic line load with unit amplitude applied at the origin
(0, 0. The plate has a thicknessdfand a Poisson'’s ratio of
1/3. The normalized frequency for this example is fixed at
wH/cs=3.14. Liu and Achenbachused the strip-element
method to calculate the amplitude wf. It is noted that the
result foru, is very close to that in Liu and Achenbath.

o-slll\T\\\!]ill‘lll\l{\\‘\\\llllllt\\\\ll}\\\\1
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FIG. 4. Frequency-domain Green'’s displaceméats»’ = 3.14 on the top
surface of an isotropic plate subjected to a vertical time—harmonic line load
at the origin(0,0).
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FIG. 5. Frequency-domain Green's displacements aH(,D) caused by a
line force at(0,0): u, in (&) due to a line force in the direction, andu, in

(b) due to a line force in the direction. . . , i
In order to calculate the time-domain Green'’s functions,

a time history of the line force has been assumed. Here, a
Gaussian-type behavior is chosen with the expressidf of

Now, the method is used to calculate the Green’s func-
tions over a certain frequency range for a given observation f(t)= ——— F{ (t—to)?
point. As an example, Figs(& and Hb) are the calculated U.\/_ 202
spectra ofu, caused by a line force in thedirection, and (27)
that of u, caused by a line force in the direction. The
loading is at the origirf0,0) and the response is calculated atwhereo is a parameter controlling the width of the pulsg,
the top surface of the layered plate at a horizontal distance afetermines the time delay of the pulse, andis the center
10H,, whereH, is again the total thickness of the nickel angular frequency of the pulse. As an example, we clwose
layer. As can be observed, the spectra for the three cases0.8,t,=3.0H,/cs, andw.=3.14¢/H,, whereH, andc,
considered are quite different. The sharp peak amplitudeare, respectively, the thickness of and shear velocity in the
corresponding to the cutoff frequencies are found to besotropic layer. For these fixed parameters, the time and fre-
shifted and correspond to those listed in Table IV. The frequency dependencies of the line force are shown, respec-
qguency spectra can be used to characterize the properties.tively, in Figs. §a) and @b). It is seen from the frequency

————|SiN(wet), O0=<t=<ty,
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FIG. 7. Time-domain Green’s displacements for a homogenous nickel plate and a three-layered YBCO/Ni/YBCO plate. While the field poitt,i®pt (10

the source point is at the origii®,0): u,(t) in (a) due to a line force in the direction,u,(t) in (b) due to a line force i direction, andu,(t) in (c) due to
a line force inz direction.

dependence of the line force that the amplitude approachesxactly opposite to the Green'’s displacemeyit) due to the
zero after a frequency greater than 40 MHz. Therefore, the-direction force, a consequence of the Betti’s reciprocal
high frequencies are filtered out. theorem. As can be observed clearly, the time-domain re-
While Figs. 1a)—7(c) show the comparison of the time- sponses of the nickel, YBCO/Ni/YBCO, and Ni/YBCO/Ni
domain Green’s functions in the nickel and three-layeredblates are significantly different. It is noted that the high
YBCO/NIi/YBCO plates, Figs. &@—8(c) show the compari- peaks ofu,(t) in Figs. 7c) and 8c) correspond to the Ray-
son of the time-domain Green'’s functions in the nickel andeigh waves in the nickel, YBCO/Ni/'YBCO, and Ni/
three-layered Ni/YBCO/Ni plates. Again, the geometry andYBCO/Ni plates. While the Rayleigh wave in the nickel ar-
material properties are given in Tables I-I1ll. As in Fig. 5, therives at 0.455us, the Rayleigh waves in YBCO/Ni/'YBCO
observation point is at (H),0) and the source point is at the and Ni/YBCO/Ni arrive at 0.422:s and 0.433, respectively.
origin (0,0). While Figs. 1a) and 8a) and 7b) and &b) Based on the information in Figs(cJ and &c) and taking
show the Green'’s displacementg(t) and u,(t) caused by account of the delayed time 0.083 in the time history of
the x-direction force, Figs. (€) and &c) show the Green's the applied load, we obtained the Rayleigh velocities of
displacementu,(t) caused by thezdirection force. The 0.94Q, 0.95%,, and 0.92¢, respectively, for the nickel,
Green’s displacement,(t) due to thezdirection force is YBCO/Ni/YBCO, and Ni/YBCO/Ni plates. These values are
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FIG. 8. Time-domain Green’s displacements for a homogenous nickel plate and a three-layered Ni/YBCO/Ni plate. While the field poirt jOat (1€

source point is at the origi(0,0): u,(t) in (a) due to a line force in tha direction,u,(t) in (b) due to a line force ix direction, andi,(t) in (c) due to a line
force inz direction.

close to 0.928,, 0.94%,, and 0.926, calculated from the derived by the direct propagator matrix method. The time-
slopes of the first two branches of the dispersion curveslomain solution was obtained by the inverse Fourier trans-
shown in Figs. 2a) and 2b) ask— . It is noted that for the form technique combined with the exponential window
homogeneous nickel case, the Rayleigh velocity obtaineghethod. The formulation is then applied to the study of dis-
from our calculation is close to the approximate value ofpersion of the guided waves and transient response of the
092735 derived from the relation between the Raylelgh Wave|ayered tapes: a homogeneous p|ate made of nickel, a three-

velocity and the Poisson’s ratfd. layered superconducting tape made of YBCO/Ni/YBCO, and

a three-layered superconducting tape made of Ni/YBCO/Ni.
VI. CONCLUSION In the last two cases, attention has been focused on the small
We presented an analytical method for calculating théhickness of the YBCO layer. It is found that the dispersion

elastodynamic Green’s functions in two-dimensiofalane  behaviors and the time-domain responses are significantly
strain layered anisotropic plates. We first expressed thdlifferent in the three-layered cases, even though the super-
frequency-domain solution by the residue theorem with polesonducting layer YBCO is very thin as compared to the total
being evaluated by the Muller's method. Initial estimates ofthickness of the tape. These differences in their responses
these poles are found using a stiffness-based Rayleigh—Ritould be used for the ultrasonic characterization of the in-
technique and are refined using the exact dispersion relatigolane material properties of the superconducting layers. Al-
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though the study was limited to the plane strain case, it is
possible to extend the technique to study the three-
dimensional response due to a point load. For that general
case, it would be necessary to obtain the frequency-wave-
number relation for waves propagating at an arbitrary angle
to the x axis. Zh#° reported the result of some limited in-
vestigation for low frequencies. Investigation of the high-
frequency response is under way and will be reported in the
future.
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