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Ultrasonic waves in multilayered superconducting plates
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Guided waves and the transient response of multilayered superconducting tapes have been studied
in this article. These tapes are usually composed of layers of a superconducting material~like
YBa2Cu3O72d , or YBCO, for simplicity! alternating between layers of a metallic material~like
nickel or silver!. The tapes are thin, the thickness being in the range of 100–200mm. The
superconducting layer is orthotropic with a thickness of 5–10mm. In applications, the tapes are long
and have a finite width. In this article, we focus our attention on the dispersion of two-dimensional
guided waves and the transient response of homogeneous and three-layered tapes assuming that the
thickness of the superconducting layer is much smaller than the metal layer. Three tape geometries
are considered: a homogeneous nickel layer, a three-layered YBCO/nickel/YBCO and a
three-layered nickel/YBCO/nickel. It is found that although the total thickness of the YBCO layer
is very small, the dispersion and transient response in the last two cases are quite different from each
other and from the homogeneous nickel plate. These differences can be used for the ultrasonic
characterization of the in-plane material properties of the superconducting layers. ©1999
American Institute of Physics.@S0021-8979~99!02613-4#
o
n
e

at
a
m
-

ric

t
et
c
.
e,
T
e

us
r
fo
.

ho
da

.
th
an
d

e
hi

des

a-

in
are
ed

c-
the
ered
ed of
lay-
are
t to
ture
lane
d to
oge-
nd
of

the
his
ient
ach
en-
rial

e
s a
I. INTRODUCTION

The ultrasonic nondestructive evaluation~NDE! tech-
nique has found wide use for quantitative characterization
mechanical properties and for detection of cracks a
delaminations in laminates. In using this method, howev
one needs to have a clear understanding of wave propag
in anisotropic and layered plates. For complex wave inter
tion phenomenon occurring in the damaged layered syste
general analytical solution is extremely difficult, if not im
possible, to obtain. This necessitates the use of nume
methods, such as the finite-element method~FEM! or the
boundary-element method~BEM!. It is noted, however, tha
the latter is more suited than the former to cases where b
accuracy is required due to problems such as stress con
tration or where the domain of interest extends to infinity

In applying the BEM formulation to the layered plat
one needs to find the Green’s functions in such a system.
two-dimensional~2D! elastodynamic Green’s functions du
to line sources in a layered system were studied previo
by Kundu and Mal,1 Mal,2 and Ju3 employing the propagato
matrix method. A thin-layer method was also proposed
the solution of the Green’s functions in two dimensions4,5

More recently, Zhu, Shah, and Datta6,7 and Zhu and Shah8

derived these Green’s functions using a stiffness met
combined with either a wave-function expansion or a mo
summation technique. Similarly, Liu and Achenbach9 ob-
tained the Green’s function using a strip-element method

This article presents an alternative and accurate me
to calculate the 2D elastodynamic Green’s functions in
isotropic and layered plates. It is an extension of the mo
summation technique used by Zhu, Shah, and Datta6 and Liu
and Achenbach.9 As in the modal summation technique, w
first divide the layered system into a certain number of t
layers and use the stiffness method10 to find approximately
5430021-8979/99/86(1)/543/9/$15.00
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the wave numbers~including not only the propagating
modes, but also the nonpropagating and evanescent mo!.
Then, we use the exact dispersion equation,11 which is ob-
tained with a direct propagator matrix method,12 to find the
wave numbers accurately. Finally, the direct propagator m
trix method and the modal summation technique~Cauchy’s
residue theorem! are used to derive the frequency-doma
Green’s functions. The time-domain Green’s functions
obtained by the inverse Fourier transformation combin
with an exponential window method.9,13,14

This general technique for analyzing the Green’s fun
tions in anisotropic and layered plates is then applied to
study of guided waves and the transient response of lay
superconducting tapes. These tapes are usually compos
layers of a superconducting material alternating between
ers of a metallic material. The superconducting layers
orthotropic and in many cases are very thin with respec
the total thickness of the tapes. The most notable fea
associated with the superconducting tapes is that the in-p
material properties of the superconducting layers are har
measure. Three tape geometries are considered: a hom
neous nickel layer, a three-layered YBCO/nickel/YBCO a
a three-layered nickel/YBCO/nickel. The total thickness
the YBCO layer is taken to be much smaller than that of
nickel layer. Our numerical studies show that even for t
very thin superconducting layer, the dispersion and trans
response in the last two cases are quite different from e
other and from the homogeneous nickel layer. This is
couraging for ultrasonic characterization of in-plane mate
properties of thin superconducting inner or outer layers.

II. A GENERAL SOLUTION OF THE TRANSFORMED
GREEN’S FUNCTIONS

In this section, an outline is given for calculating th
Green’s functions for a multilayered plate. Figure 1 show
© 1999 American Institute of Physics
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multilayered superconducting plate made up ofN parallel,
homogeneous, and orthotropic layers. The layers are n
bered serially with the layer at the top being layer 1 and
bottom being layerN. We place the Cartesian coordinates
the top free surface, and thez axis is drawn down into the
medium. The j th layer is bounded by the interfacesz
5zj 21 , zj . Evidently, we havez050 andzN5H, whereH
is the total thickness of the layered plate. It is assumed
the symmetry axes of the layers are aligned parallel.

Consider a plane strain problem in the~x,z! plane. The
equation of motion in each layer can then be described

sxx,x1sxz,z1 f x5r
]2ux

]t2 ,

~1!

szx,x1szz,z1 f z5r
]2uz

]t2 ,

with the constitutive relation given by

Fsxx

szz

sxz

G5F c11

c13

0

c13

c33

0

0
0

c55

GF ux,x

uz,z

ux,z1uz,x

G . ~2!

In Eqs.~1! and~2!, the densityr, the body forcesf x and f z ,
and the elastic constantsci j are those belonging to the laye
They may differ from one layer to another.

In order to solve the governing equations in terms of
displacement, we first apply the Fourier transform with
spect to timet

F ūx~x,z;v!

ūz~x,z;v! G5E
2`

1`Fux~x,z;t !
uz~x,z;t ! Geivtdt, ~3!

to Eqs.~1! and ~2!. This results in the following differentia
equations for the frequency-domain displacements:

c11ūx,xx1c13ūz,zx1c55~ ūx,zz1ūz,xz!1 f̄ x52rv2ūx ,

c13ūx,xz1c33ūz,zz1c55~ ūx,zx1ūz,xx!1 f̄ z52rv2ūz .
~4!

Applying further another Fourier transform with respect
the horizontal variablex

FIG. 1. Geometry of a multilayered superconducting plate under a con
trated line force.
-
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FUx~k,z;v!

Uz~k,z;v! G5E
2`

1`F ūx~x,z;v!

ūz~x,z;v! Ge2 ikxdx, ~5!

to Eq. ~4!, we then arrive at two ordinary differential equa
tions for the double Fourier transformed displacements

2c11k
2Ux1 ikc13Uz,z1c55~Ux,zz1 ikUz,z!1Fx

52rv2Ux ,

ikc13Ux,z1c33Uz,zz1c55~ ikUx,z2k2Uz!1Fz

52rv2Uz , ~6!

whereFx and Fz are the double Fourier transformed forc
components. The general homogeneous solutions of
above equation for each layer can, therefore, be expre
as6,10

Ux~k,z;v!5 ik@~A11coshr 1z2 iA12sinhr 1z!

1b~A21coshr 2z2 iA22sinhr 2z!#,
~7!

Uz~k,z;v!5ar1~A12coshr 1z1 iA11sinhr 1z!

1r 2~A22coshr 2z1 iA21sinhr 2z!,

where

a5~ak22k2
22r 1

2!/dr 1
2,

b5~k2
22k21br 2

2!/dk2,
~8!

a5c11/c55, b5c33/c55, d511c13/c55,

k25Arv2/c55,

and r 1 and r 2 are the roots of the following equation:

~2ak21r 21k2
2!~br 22k21k2

2!1k2r 2d250. ~9!

Also, in Eq. ~7!, A11, A12, A21, andA22 are constants.

III. GREEN’S FUNCTIONS IN THE FREQUENCY
DOMAIN

In terms of the double Fourier transformed displacem
solution ~7!, the transformed stresses can also be obtain
Furthermore, these solutions for each layer~say layerj! can
be expressed in terms of a propagating relation as

@Q~zj !#5@Pj~zj2zj 21!#@Q~zj 21!#. ~10!

Here, the solution@Q# at the top interfacezj 21 of layer j is
related to that at the bottom interfacezj by the propagator
matrix @Pj # of the layer. While the elements of the propag
tor matrix are given in the appendix, the solution colum
matrix is defined as

@Q#5$Ux ,Uz ,Tzz,Txz%
t, ~11!

with Tzz andTxz being the double Fourier transformed stre
components obtained by

s̄ lm~x,z;v!5E
2`

`

s lm~x,z;t !eivtdt,

~12!

Tlm~k,z;v!5E
2`

1`

s̄ lm~x,z;v!e2 ikxdx.

n-
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Suppose now that there is a line force with time histo
f (t) located on thez axis at the depthz5h which belongs to
layer s ~Fig. 1!, i.e.,

f m~x,z;t !5d~x!d~z2h! f ~ t !nm , ~13!

wherenm are the components of the unit force vector in t
coordinate axes.

The double Fourier transform of this line force is

Fm~k,z;v!5d~z2h!F~v!nm , ~14!

with F(v) being the frequency-domain behavior off (t). It
is easy to show that the traction discontinuity caused by
line force is

DTxz[Txz~h10!2Txz~h20!5F~v!nx ,
~15!

DTzz[Tzz~h10!2Tzz~h20!5F~v!nz .

For handling the propagation of the matrix@Pj #, we ar-
tificially divide the source layers into two sublayerss1 and
s2 ~Fig. 1!. Using then the propagating relation~10! and the
discontinuity condition~15!, we found that12

@Q~zN!#2@PN#@PN21#¯@P1#@Q~z0!#

5@PN#@PN21#¯@Ps2#@DQ#, ~16!

with

@DQ#5$0,0,2F~v!nx ,2F~v!nz%
t. ~17!

Now, substituting the free-traction boundary conditions
the top (z0) and bottom (zN) surfaces into Eq.~16!, we can
solve the Green’s displacement in the double Fourier tra
formed domain at either the top or bottom surface. For
ample, for a line force in thex direction, the Green’s dis
placement at the top surface is derived as

FUx~k,z0 ;v!

Uz~k,z0 ,v! G5 F~v!

a31a422a41a32
Fb34a422b44a32

a31b442a41b34
G . ~18!

Similarly, for a line force in thez direction, it is

FUx~k,z0 ;v!

Uz~k,z0 ;v! G5 F~v!

a31a422a41a32
Fb33a422b43a32

a31b432a41b33
G . ~19!

In Eqs.~18! and ~19!

@a#5@PN#@PN21#¯@P1#,
~20!

@b#5@PN#@PN21#¯@Ps2#.

Having obtained the surface displacements, the pro
gating relation~10! can then be used again to find the so
tion at any vertical level. For example, forzj 21<z<zj , we
have

@Q~z!#5@Pj~z2zj 21!#@Pj 21#¯@P1#@Q~z0!#. ~21!

It is well known that overflow may occur in the high
frequency region due to the multiplication of the propaga
matrix @Pj #. This problem is avoided by the direct propag
tor matrix method proposed by Pan.12

In order to get the frequency-domain solutions, we ne
to carry out the inverse transform of Eq.~5!. Here, we use
Cauchy’s residue theorem to evaluate these integrals, w
converts the integral into a residue summation in the suita
e
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domain. For example, for the displacement component in
x direction and forx>0, this integral can be expressed as9

ūx~x,z;v!5
1

2p E
2`

1`

Ux~k,z;v!eikxdk

52 i (
m51

M

Ux~km ,z;v!exp~ ikmx!. ~22!

The poles in Eq.~22! are actually the roots of the dispersio
equation

a31a422a41a3250. ~23!

These roots can be found accurately by the method descr
in Zhu, Shah, and Datta6 and Panet al.11 Since all the poles
are of first order, the residue summation can be carried
exactly by finding the exact derivative of the left-hand si
of Eq. ~23! with respect to the wave-numberk. For a given
frequency, there are only a finite number of propagat
modes; all other modes are nonpropagating and decay e
nentially to zero in the selected half plane ofk, when uku
approaches infinity. Therefore, the finite numberM in Eq.
~22! will be enough to give an accurate result, with a suita
range being 40<M<60.

In the actual calculation, we first use the stiffness-ba
Rayleigh–Ritz technique to find the approximate values
the complex wave numbers. Then, the Muller’s method
employed to the exact dispersion Eq.~23! to calculate the
exact poles. Once these poles are found, Eq.~22! or the like
is used to find the Green’s functions in the frequency d
main. It should be emphasized here that for a given f
quency, we need to find the poles only once. With the
poles, the frequency-domain Green’s functions for any p
of source and field points can be evaluated accurately u
the direct propagator matrix method, which is therefore v
efficient.

IV. GREEN’S FUNCTIONS IN THE TIME DOMAIN

To obtain the time-domain response, the inverse tra
form of Eq. ~3! needs to be carried out. For example, t
time-domain displacementsux(t) anduz(t) can be expressed
as

Fux~x,z;t !
uz~x,z;t ! G5 1

2p E
2`

1`F ūx~x,z;v!

ūz~x,z;v! GF~v!e2 ivtdv. ~24!

Again,F(v) is the Fourier transform of the time dependen
of the line forcef (t). The integration involved in Eq.~24! is
usually carried out numerically. For an infinite plate, ho
ever, difficulties with the integration may occur due to t
singularity of the frequency-domain solution atv50 and at
the cutoff frequencies (k50). To overcome these difficul

TABLE I. Geometry and material properties of the homogeneous nic
plate.

Layer
Thickness

~mm!
Density

(103 kg/m3)
c11

~GPa!
c13

~GPa!
c33

~GPa!
c55

~GPa!

Nickel 100 8.910 298.95 129.53 298.95 84.7
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ties, a small imaginary part of the frequencyv can be intro-
duced into the integrand of Eq.~24!.9,13,14By doing so, Eq.
~24! can be written equivalently as

Fux~x,z;t !
uz~x,z;t ! G5 eht

2p E
2`

1`F ūx~x,z;v1 ih!

ūz~x,z;v1 ih! G
3F~v1 ih!e2 ivtdv, ~25!

where

F~v1 ih!5E
0

td
e2ht f ~ t !eivtdt, ~26!

in which td is the duration of the line force andh is the
shifting constant. For the numerical examples presente
the next section, the normalizedh is chosen to be 0.1, as i
Liu and Achenbach.9

V. NUMERICAL EXAMPLES

We now apply this formulation to three cases: a hom
geneous plate made of nickel~named case I, see Table I!, a
three-layered superconducting plate made of YBCO, nic
and YBCO~named case II, i.e., YBCO/Ni/YBCO, see Tab
II !, and a three-layered superconducting plate made
nickel, YBCO, and nickel~named case III, i.e., Ni/YBCO
Ni, see Table III!. YBCO is orthotropic with elastic proper
ties being taken from Leiet al.,15 and is such that thex and
z axes are along the maximum and minimum of its elas
constantsci j .

As we mentioned earlier, Eq.~23! is actually the disper-
sion relation for the layered plate. Therefore, as a by-prod
Eq. ~23! can be used to find the dispersion behavior of
layered plate. For instance, Figs. 2~a! and 2~b! show the
comparison of the dispersion curves for cases I and II and
cases I and III. In Figs. 2~a! and 2~b!, the normalized wave
number isk85kHI , whereHI is the thickness of nickel, and
the normalized frequency isv85vHI /cs , wherecs is the
shear velocity in nickel. It is observed clearly that even fo
very thin YBCO layer either on both sides of the nickel lay
~case II, YBCO/Ni/YBCO!, or in the middle of it~case III,

TABLE II. Geometry and material properties of the three-layered YBC
Ni/YBCO plate.

Layer
Thickness

~mm!
Density

(103 kg/m3)
c11

~GPa!
c13

~GPa!
c33

~GPa!
c55

~GPa!

YBCO 5 6.333 268 95 186 49
Nickel 100 8.910 298.95 129.53 298.95 84.7
YBCO 5 6.333 268 95 186 49

TABLE III. Geometry and material properties of the three-layered
YBCO/Ni plate.

Layer
Thickness

~mm!
Density

(103 kg/m3)
c11

~GPa!
c13

~GPa!
c33

~GPa!
c55

~GPa!

Nickel 50 8.910 298.95 129.53 298.95 84.7
YBCO 10 6.333 268 95 186 49
Nickel 50 8.910 298.95 129.53 298.95 84.7
in
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Ni/YBCO/Ni!, the dispersion behaviors of the homogeneo
nickel plate and the superconducting tapes are significa
different. In particular, the cutoff frequencies for both sup
conducting tapes~cases II and III! are quite different from
those of the nickel, as listed in Table IV. Addition of th
superconducting YBCO layer is, in general, to lower the c
off frequency. It is also noteworthy that for the nickel plat
the cutoff frequencies calculated by our numerical meth
are very close to the exact values, which are eithernp or
npcl /cs (n51,2,3,...), withcl being the longitudinal veloc-
ity in the nickel plate~Table IV!.

When comparing the cutoff frequencies of cases II a
III ~Table IV!, we note that for the same mode, the cuto
frequency of case III~Ni/YBCO/Ni! is either lower than or

/

FIG. 2. ~a! Comparison of dispersion curves for a homogenous nickel p
and a three-layered YBCO/Ni/YBCO plate.~b! Comparison of dispersion
curves for a homogenous nickel plate and a three-layered Ni/YBCO
plate.
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TABLE IV. Comparison of cutoff frequencies for nickel, YBCO/Ni/YBCO, and Ni/YBCO/Ni plates.

Nickel ~Exact! Nickel ~Numer.! YBCO/Ni/YBCO Ni/YBCO/Ni

p53.14 592 65 3.141 592 65 2.932 101 64 2.682 612 24
pc1 /cs55.901 763 62 5.901 763 63 5.508 444 12 5.090 639 22
2p56.283 185 31 6.283 185 31 5.858 054 96 5.858 054 96
3p59.424 777 96 9.424 777 96 8.771 366 24 8.131 763 95
2pc1 /cs511.803 52 72 11.803 527 3 11.006 748 01 11.006 748 01
4p512.566 370 6 12.566 370 6 11.664 931 29 11.664 931 29
5p515.707 963 3 15.707 963 3 14.531 004 67 13.749 529 22
3pc1 /cs517.705 290 9 17.705 290 9 16.484 325 76 15.399 567 10
6p518.849 555 9 18.849 555 9 17.361 707 11 17.361 707 11
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exactly equal to that of case II~YBCO/Ni/YBCO!. The cor-
responding modes for which the cutoff frequencies are
same for both cases are the symmetrical modes with an
multiplier of p. Even though the cutoff frequencies are qu
different for the three cases, the modal displacements

FIG. 3. Modal displacement Re(ux) for branch No. 1(a0) for v857 ~a! and
v8514 ~b!.
e
en

re

very similar to each other. For example, Figs. 3~a! and 3~b!
show the modal displacement Re(ux) for a0 whenv857 and
14, respectively, where the vertical coordinatez has been
shifted so thatz50 is the symmetrical plane of the layere
plates. It is noted that the modal shapes are all similar exc
for case III where the thin soft middle layer of YBCO be
haves like an interface layer.16–18 It should be emphasized
that in both cases II and III, the total thickness of the YBC
layer is the same. But the dispersions in these two cases
quite different. It is not apparent that this can be explain
by some simple scaling of the thickness.

With the calculated wave numbers for given frequenci
the response of a layered plate to a line force in the
quency domain can be evaluated accurately. For exam
Fig. 4 shows the amplitude variation of the frequenc
domain Green’s displacementsux anduz along the top free
surface of a homogeneous plate caused by a vertical tim
harmonic line load with unit amplitude applied at the orig
~0, 0!. The plate has a thickness ofH and a Poisson’s ratio o
1/3. The normalized frequency for this example is fixed
vH/cs53.14. Liu and Achenbach9 used the strip-elemen
method to calculate the amplitude ofuz . It is noted that the
result foruz is very close to that in Liu and Achenbach.9

FIG. 4. Frequency-domain Green’s displacements~at v853.14! on the top
surface of an isotropic plate subjected to a vertical time–harmonic line l
at the origin~0,0!.
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Now, the method is used to calculate the Green’s fu
tions over a certain frequency range for a given observa
point. As an example, Figs. 5~a! and 5~b! are the calculated
spectra ofux caused by a line force in thex direction, and
that of uz caused by a line force in thez direction. The
loading is at the origin~0,0! and the response is calculated
the top surface of the layered plate at a horizontal distanc
10HI , whereHI is again the total thickness of the nick
layer. As can be observed, the spectra for the three c
considered are quite different. The sharp peak amplitu
corresponding to the cutoff frequencies are found to
shifted and correspond to those listed in Table IV. The f
quency spectra can be used to characterize the properti

FIG. 5. Frequency-domain Green’s displacements at (10Hl ,0) caused by a
line force at~0,0!: ux in ~a! due to a line force in thex direction, anduz in
~b! due to a line force in thez direction.
-
n

t
of

es
es
e
-
.

In order to calculate the time-domain Green’s function
a time history of the line force has been assumed. Her
Gaussian-type behavior is chosen with the expression of8,9

f ~ t !5
2

sA2p
expF2

~ t2t0!2

2s2 Gsin~vct !, 0<t<td ,

~27!

wheres is a parameter controlling the width of the pulse,t0

determines the time delay of the pulse, andvc is the center
angular frequency of the pulse. As an example, we choss
50.8, t053.0H I /cs , andvc53.14cs /HI , whereHI andcs

are, respectively, the thickness of and shear velocity in
isotropic layer. For these fixed parameters, the time and
quency dependencies of the line force are shown, res
tively, in Figs. 6~a! and 6~b!. It is seen from the frequency

FIG. 6. Time history of the applied load in~a! and its frequency-domain
behavior in~b!.
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FIG. 7. Time-domain Green’s displacements for a homogenous nickel plate and a three-layered YBCO/Ni/YBCO plate. While the field point is at (Hl ,0),
the source point is at the origin~0,0!: ux(t) in ~a! due to a line force in thex direction,uz(t) in ~b! due to a line force inx direction, anduz(t) in ~c! due to
a line force inz direction.
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dependence of the line force that the amplitude approac
zero after a frequency greater than 40 MHz. Therefore,
high frequencies are filtered out.

While Figs. 7~a!–7~c! show the comparison of the time
domain Green’s functions in the nickel and three-laye
YBCO/Ni/YBCO plates, Figs. 8~a!–8~c! show the compari-
son of the time-domain Green’s functions in the nickel a
three-layered Ni/YBCO/Ni plates. Again, the geometry a
material properties are given in Tables I–III. As in Fig. 5, t
observation point is at (10HI ,0) and the source point is at th
origin ~0,0!. While Figs. 7~a! and 8~a! and 7~b! and 8~b!
show the Green’s displacementsux(t) and uz(t) caused by
the x-direction force, Figs. 7~c! and 8~c! show the Green’s
displacementuz(t) caused by thez-direction force. The
Green’s displacementux(t) due to thez-direction force is
es
e

d

d

exactly opposite to the Green’s displacementuz(t) due to the
x-direction force, a consequence of the Betti’s recipro
theorem. As can be observed clearly, the time-domain
sponses of the nickel, YBCO/Ni/YBCO, and Ni/YBCO/N
plates are significantly different. It is noted that the hi
peaks ofuz(t) in Figs. 7~c! and 8~c! correspond to the Ray
leigh waves in the nickel, YBCO/Ni/YBCO, and Ni
YBCO/Ni plates. While the Rayleigh wave in the nickel a
rives at 0.455ms, the Rayleigh waves in YBCO/Ni/YBCO
and Ni/YBCO/Ni arrive at 0.422ms and 0.433, respectively
Based on the information in Figs. 7~c! and 8~c! and taking
account of the delayed time 0.083ms in the time history of
the applied load, we obtained the Rayleigh velocities
0.940cs , 0.957cs , and 0.927cs , respectively, for the nickel,
YBCO/Ni/YBCO, and Ni/YBCO/Ni plates. These values a
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FIG. 8. Time-domain Green’s displacements for a homogenous nickel plate and a three-layered Ni/YBCO/Ni plate. While the field point is at (10Hl ,0), the
source point is at the origin~0,0!: ux(t) in ~a! due to a line force in thex direction,uz(t) in ~b! due to a line force inx direction, anduz(t) in ~c! due to a line
force in z direction.
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close to 0.929cs , 0.947cs , and 0.926cs calculated from the
slopes of the first two branches of the dispersion cur
shown in Figs. 2~a! and 2~b! ask→`. It is noted that for the
homogeneous nickel case, the Rayleigh velocity obtai
from our calculation is close to the approximate value
0.927cs derived from the relation between the Rayleigh wa
velocity and the Poisson’s ratio.19

VI. CONCLUSION

We presented an analytical method for calculating
elastodynamic Green’s functions in two-dimensional~plane
strain! layered anisotropic plates. We first expressed
frequency-domain solution by the residue theorem with po
being evaluated by the Muller’s method. Initial estimates
these poles are found using a stiffness-based Rayleigh–
technique and are refined using the exact dispersion rela
s

d
f

e

e
s
f
itz
on

derived by the direct propagator matrix method. The tim
domain solution was obtained by the inverse Fourier tra
form technique combined with the exponential windo
method. The formulation is then applied to the study of d
persion of the guided waves and transient response of
layered tapes: a homogeneous plate made of nickel, a th
layered superconducting tape made of YBCO/Ni/YBCO, a
a three-layered superconducting tape made of Ni/YBCO/
In the last two cases, attention has been focused on the s
thickness of the YBCO layer. It is found that the dispersi
behaviors and the time-domain responses are significa
different in the three-layered cases, even though the su
conducting layer YBCO is very thin as compared to the to
thickness of the tape. These differences in their respon
could be used for the ultrasonic characterization of the
plane material properties of the superconducting layers.
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though the study was limited to the plane strain case, i
possible to extend the technique to study the thr
dimensional response due to a point load. For that gen
case, it would be necessary to obtain the frequency-wa
number relation for waves propagating at an arbitrary an
to the x axis. Zhu20 reported the result of some limited in
vestigation for low frequencies. Investigation of the hig
frequency response is under way and will be reported in
future.
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APPENDIX

The elements of the propagator matrix@Pj # of layer j are

~1,1!5
ikc55

D1
~dchr1h2cbchr2h!,

~2,1!5
c55

D1
~r 1adshr1h2r 2cshr2h!,

~3,1!5
cdc55

2

D1
~chr1h2chr2h!,

~4,1!5
ikc55

2

D1
@r 1d~11a!shr1h2r 2c~11b!shr2h#,

~1,2!5
k2c55

D2
@r 2~11b!shr1h2r 1b~11a!shr2h#,

~2,2!5
ikr 1r 2c55

D2
@2a~11b!chr1h1~11a!chr2h#,

~3,2!5
ikc55

2

D2
@2r 2c~11b!shr1h1r 1d~11a!shr2h#,

~4,2!5
r 1r 2~11a!~11b!k2c55

2

D2
~chr1h2chr2h!,

~1,3!5
bk2

D1
~chr1h2chr2h!,
is
-

ral
e-
le

-
e

.

-
,
-

~2,3!5
ik

D1
~2r 1abshr1h1r 2shr2h!,

~3,3!5
ikc55

D1
~2cbchr1h1dchr2h!,

~4,3!5
k2c55

D1
@r 1b~11a!shr1h2r 2~11b!shr2h#,

~1,4!5
ik

D2
@r 2shr1h2r 1abshr2h#,

~2,4!5
ar1r 2

D2
@chr1h2chr2h#,

~3,4!5
c55

D2
~r 2cshr1h2r 1adshr2h!,

~4,4!5
ikr 1r 2c55

D2
@~11a!chr1h2a~11b!chr2h#.

In these expressions

c5~12d!k21bar1
2, d5~12d!bk21br 2

2,

D15 ikbc55~r 2
22abr1

2!, D25 ikc55r 1r 2~12ab!,

h5zj2zj 21 , i 5A21.
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