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SUMMARY

In this paper, the complete Green's functions in a multilayered, isotropic, and poroelastic half-space are
presented. It is the "rst time that all the common point sources, i.e. the total force, #uid force, #uid dilatation,
and dislocation, are considered for a layered system. The Laplace transform is applied "rst to suppress the
time variable. The cylindrical and Cartesian systems of vector functions and the propagator matrix method
are then employed to derive the Green's functions. In the treatment of a point dislocation, an equivalent
body-source concept is introduced, and the di!erence of a dislocation in a purely elastic and a poroelastic
medium is discussed. While the spatial integrals involved in the Green's functions can be evaluated
accurately by an adaptive Gauss quadrature with continued fraction expansions, the inverse Laplace
transform can be carried out by applying a common numerical inversion technique. These complete Green's
functions can be implemented into a suitable boundary element formulation to study the deformation and
fracture problems in a layered poroelastic half-space. Copyright ( 1999 John Wiley & Sons, Ltd.

KEY WORDS: Green's function; dislocation; equivalent body force; layered poroelastic half-space; vector
function; propagator matrix

1. INTRODUCTION

Since Biot's pioneer work (References 1 and 2) on #uid-saturated porous solid, the theory
of poroelasticity has been greatly developed and applied to various branches of science and
engineering. While Cheng and Detournay3 discussed the fundamentals of poroelasticity in details,
the applications of poroelasticity were recorded in a recent book edited by Selvadurai4 and
a recent special issue in the International Journal of Solids and Structures edited by Cheng et al.5
It is also worth mentioning the extension work by Maier and Comi6 to poroplasticity, and
Elsworth and Bai7 to a double-porosity medium.

When analysing problems in a homogeneous, linear, and poroelastic solid, the boundary
integral equation method or the boundary element method (BEM) o!ers signi"cant computa-
tional advantages over the domain discretization method. When a BEM formulation is applied
directly to a layered poroelastic structure, however, its merit may be lost because all the interfaces
in the structure need to be discretized. An e$cient way to handle this problem is to implement the
Green's functions in the layered system to the BEM formulation.
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Previously, various layered Green's functions and their BEM formulations were proposed (see
Reference 8 for a review). Notable studies related to poroelasticity are those by Senjuntichai and
Rajapakse9 and Yue and Selvadurai.10 So far, however, no Green's function is available when
a dislocation source is acting in a layered and poroelastic system.

This paper presents the complete Green's functions in a multilayered, isotropic, and poroelastic
half-space. The common point sources, i.e. the total force, #uid force, #uid dilatation, and
dislocation are all considered. While the Laplace transform is applied to suppress the time
variable, the cylindrical and Cartesian systems of vector functions and the propagator matrix
method are introduced to derive the Green's functions in the Laplace-transformed domain. The
approach proposed here is a systematic and uniform one that can be applied to any point
body-source or dislocation source (with the axially symmetric and 2-D plane sources being the
special cases). In particular, when treating a dislocation, an equivalent body-force concept is
introduced so that the dislocation source can be treated in the same way as for a point body-force.
These Green's functions are required in the BEM modeling of deformation and fracture problems
in a layered, isotropic, and poroelastic medium.

2. BASIC EQUATIONS OF POROELASTICITY

Biot1 "rst introduced the theory of linear and isotropic poroelasticity for modelling the response
of a #uid-saturated porous solid. The governing equations of this medium consist of the
equilibrium equation and Darcy's law:
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where F
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is the body force per unit volume acting on the mixture (#uid and solid), f
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the #uid body

force, i is the permeability coe$cient, p the pore pressure, q
i
the speci"c discharge, and p
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total stress.
According to Rice and Cleary,11 the coupled constitutive laws for the solid and #uid phases can

be expressed as
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where e"e
ii

denotes the solid volumetric strain, 1 is the variation of #uid volume per unit
reference volume, and d

ij
is the Kronecker delta, G is the shear modulus and B the Skempton's

pore pressure coe$cient, l and l
6
are the drained and undrained Poisson's ratios, respectively. G,

B, l, l
6
, and i form a consistent set of "ve material parameters for the linear, isotropic, and

poroelastic theory (Reference 11). The constant b in equation (3) is the Biot coe$cient of e!ective
stress (Reference 12) de"ned by
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For the solid skeleton, the geometric compatibility of the strain e
ij

with respect to the
displacement u

i
is assumed to be linear:
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Finally, we need the continuity equation to complete the poroelasticity theory, which is of the
form
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where c is the rate of the injected #uid volume from a #uid source.
An alternative form of equation (4) is
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being the generalized consolidation coe$cient (Reference 11). Substituting equations (2) and (8)
into (7) leads to a di!usion equation for the pore pressure p, coupled by the solid dilatation e,
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3. SOLUTION AND PROPAGATOR MATRICES

Although the variable decomposition technique proposed by Biot2 can be employed to solve the
coupled poroelastic equations (References 13 and 14), that technique is suitable only for problems
in homogeneous media. Therefore, a di!erent approach has been developed in this paper to
derive the Green's functions in a layered poroelastic medium.

We "rst employ the Laplace transform

f (x; s)"P
`=

0

f (x; t)e~stdt (11)

to suppress the time variable t for any function depending upon time, and adopt the same symbol
for the function before and after the Laplace transform. These functions are distinguished by
using the Laplace variable s, in the transformed domain in the place of time t, before the
transform. For instance, in the transformed domain, equation (10) becomes (we also assume that
the initial value for all "eld quantities are zero)
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The next step is to expand formally all "eld quantities in terms of the cylindrical and Cartesian
systems of vector functions (Reference 15).

The cylindrical system of vector functions is de"ned as (Reference 15)
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where J
m
(jr) is the Bessel function of order m with m"0 corresponding to the axially symmetric

deformation.
Equations (13) form an orthogonal system, and therefore any function (vector or scalar) may be

expressed in terms of it. In particular, for the displacement and traction vectors, pore pressure,
and speci"c discharge in the z-direction, we can formally write
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Notice that the dependence of the above unknown expansion coe$cients on the Laplace variable
s and on the parameters j and m has been dropped for brevity.

Similarly, we can also expand the source functions (in the transformed domain) in equations (1)
and (12) in terms of this system
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where the expansion coe$cients are known for the given sources.
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The de"nition of the Cartesian system of vector functions is given in Appendix I for the sake of
completeness. It is noted, however, the following expressions of the expansion coe$cients hold in
these two systems. It is also emphasized that the cylindrical system of vector functions is an
extension of the Hankel transform and it can be directly applied to a vector function (Reference
15).

We now substitute equations (15)}(20) into the transformed basic equations. After performing
some straightforward but tedious algebra, we then obtain two independent sets of simultaneous,
linear, and di!erential equations for the unknown coe$cients involved in equations (15)}(18)
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and [AI] and [AII] are the coe$cient matrices with their elements being given in Appendix II.
When deriving equation (21), we have assumed that the poroelastic parameters involved are

independent of the horizontal variables r and h, but can be any function of the vertical variable z.
Although the two sets of equations can be used to obtain the transient and coupled poroelastic
Green's functions in a vertically inhomogeneous half-space using the numerical integral methods
(e.g. Reference 16), we assume in the following that the medium is vertically piece-wise homogene-
ous. This simpli"ed model is suitable to the ground structure, and further the resulting equations
can be easily solved by the propagator matrix method (Reference 17).

It is interesting that the deformation of type II (related to N) is free of the porous e!ect, and
thus is exactly the same as the deformation of a purely elastic solid. The author (e.g. References 15
and 18) has derived solutions associated with type-II, caused by either surface loads or point
sources in a layered medium. We therefore will neglect the derivation of these solutions in the
following, and give only the "nal results in the appropriate place for the sake of completeness.

If [AI] is a constant matrix, the homogeneous solution to equation (21) can be derived easily.
Here, we employ the Laplace transform method to solve it. The advantage of using this transform
is that the propagator matrix can be obtained directly from the solution matrix.

Applying the Laplace transform
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to the type-I equation of (21) with [VI]"[0] and inverting the result, we arrive at
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where [I] is the identity matrix. The inversion of the integrand matrix and the inverse Laplace
integral can be derived directly, and the "nal result can be written simply as (also included is the
type-II result)

[EI (z)]"[aI(!z)][EI (0)]

[EII(z)]"[aII(!z)][EII (0)]
(25)

where [aI(!z)] and [aII(!z)] are the propagator matrices. By utilizing the characteristics of the
propagator matrix (Reference 17), we can present equation (25) in an alternative form

[EI (0)]"[aI (z)][EI (z)]

[EII(0)]"[aII(z)][EII (z)]
(26)

with the elements of [aI (z)] and [aII(z)] being given in Appendix III. It is noteworthy from
Appendix III that while the type-II propagator matrix [aII (z)] is the same as that in a purely
elastic solid, the type-I propagator matrix [aI (z)] can be reduced to the uncoupled purely elastic
case (for indexes (i, j))4) and purely water #ow case (for indexes (i, j)*5) by setting b"0 in the
matrix [aI(z)].

4. BODY-SOURCE EQUIVALENCE

When obtaining the solution and propagator matrices in the foregoing sections we have neglected
the contribution from the source. If a source exists, it then causes a discontinuity on the expansion
coe$cients [EI(z)] and [EII(z)] at the source level. While the discontinuity caused by the body
source (e.g., F

j
and c!(if

i
)
,i
can be derived easily, that caused by a dislocation, however, requires

special approach. Here we will "rst express a dislocation source by an equivalent body force
(Reference 19), and then derive the discontinuities of [EI (z)] and [EII(z)] using the method
described by Kennett.17

We start with the generalized reciprocal theorem of Betti type in poroelasticity
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where superscripts (1) and (2) denote two independent systems of the "eld quantities. This relation
is a direct consequence of the constitutive equations (3) and (4). Applying an instantaneous point
force to the second system in equation (27) and integrating the result, we obtain the following
representation relation (Reference 14):
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where n
k
is the outward normal at the boundary point x,
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is the relative #uid displacement, and
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the volume of the injected #uid (i.e., the #uid dilatation). The superscript &Fj' in equation (28)
denotes the source type and its direction. For example, uFj

i
(x, !t; y, !q) represents the solid

displacement in the ith direction at (x, !t) due to an instantaneous point force F of unit impulse
in the jth direction at (y, !q).

Let us now assume that there is an internal surface & imbedded in a homogeneous poroelastic
domain< bounded externally by a surface S (Figure 1), and that n is the unit normal to &. Across
the surface &, the solid and #uid displacements may be discontinuous. Let *u

i
(x, t) and *v

i
(x, t)

be the discontinuities in u and v across & in the i-direction at (x, t). These discontinuities may have
any form, provided that the following relations hold:
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satisfy the same homogeneous boundary conditions on S, and

applying equation (28) to the region bounded internally by & and externally by S, we arrive at
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Figure 1. An internal surface & imbedded in a poroelastic domain < bounded externally by the surface S. n is the unit
normal vector on &
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Making change of the variables in the point force solution (Reference 20), equation (32) then
becomes

u
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We now derive the body-force equivalence of the solid and #uid dislocations. Using the
following identity:

pFj(y, q; g, t)"Pd< (x)d (x, g)pFj (y, q; x, t) (34)

the second surface integral in equation (33) can be expressed alternatively as
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Comparison of this expression to the last volume integral in equation (33), we conclude that the
e!ect of a #uid dislocation *v

i
n
i
(the second surface integral in equation (33)) is equivalent to that

of a #uid dilatation !. Furthermore, the body-source equivalence of a #uid dislocation *v
i
n
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The derivation of the body-source equivalence of the "rst surface integral in equation (33) is
somewhat di$cult. We start with the stresses caused by a point force, which can be expressed as
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Substituting equation (37) into (33), the "rst surface integral of equation (33) then becomes
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It is obvious from this expression that a solid dislocation is equivalent to a summation of two
body sources, with the second one being a #uid dilatation. The equivalence of the second part is

R%$(x, t)"bPd& (g)*u
i
(g, t)n

i
(g)d (x, g) (40)

In order to "nd the equivalence of the "rst part on the right-hand side of equation (39), we use the
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Comparison of this expression to the "rst volume integral in equation (33), we "nd that this part
of the solid dislocation is equivalent to a body force, with its equivalence being

F%$
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(x, t)"!Pd&(g)c
iklm
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We conclude that while a #uid dislocation is equivalent to a #uid dilatation, which is given by
equation (36), the body-source equivalence of a solid dislocation is the sum of a #uid dilatation
and a body force, i.e. equations (40) and (43). This result makes the &equivalence' concept in
poroelasticity di!erent to that in the pure elasticity. For an isotropic and purely elastic medium, it
has been shown that the response caused by a dislocation can be generated by certain combina-
tion of double forces (References 19 and 21). In a poroelastic medium, however, a #uid dilatation
as well as the double forces must be used to generate the response caused by a solid dislocation.
Furthermore, we need an equivalent #uid dilatation to generate the response due to a #uid
dislocation.

5. SOURCE FUNCTIONS

In Section 3, we derived the homogeneous solutions and the associated propagator matrices in
a poroelastic and layered half-space. When a point source exists, however, the problem becomes
quite complicated. In order to derive the response of a layered half-space to a point source, i.e. the
Green's function, we need "rst to obtain the source function, or the discontinuity of the expansion
coe$cients of the "eld quantities caused by the point source. This can be achieved by expanding
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the point source in terms of the cylindrical and Cartesian systems of vector functions (References
15 and 18), substituting the expansion coe$cients into equation (21), and deriving the solution to
this equation. While in this section, we address all the source functions, the Green's functions
corresponding to these source functions will be derived in the next section.

5.1. Solid point force

Without loss of generality, we assume that there is a solid point force located along the z-axis at
the depth z"h (also for other point sources), and that in the Laplace transformed domain it can
be expressed as

F
j
(r, h, z; s)"F (s)

d (r)d (h)d(z!h)

r
n
j
, j"r, h, z (44)

where F(s) is the Laplace transform of the time amplitude factor, (n
r
, nh , nz) are the direction

cosines of the unit force vector in the cylindrical coordinates (r, h, z). It can be shown that this
point force will cause the following discontinuity on the expansion coe$cients of the traction
vector:
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where i"J!1, (n
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, n

y
, n

z
) are the (x, y, z) direction cosines of the unit force vector in the space

"xed Cartesian coordinates, with x- and y-directions being taken, respectively, along h"0 and
h"n/2 of the cylindrical coordinates.

A parallel result in the Cartesian system of vector functions was found to be (Reference 22)
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5.2. Fluid point source

We assume that a #uid point source in its Laplace transform can be expressed as

c (r, h, z; s)!(if
i
)
,i
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d (r)d(h)d (z!h)

r
(47)
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with D(s) being the Laplace transformed amplitude of the #uid source. Similar to the above
procedure, we "nd that the corresponding source functions in the cylindrical and Cartesian
systems of vector functions are, respectively,

Q(h#0)!Q (h!0)"
D (s)

J2n
, m"0 (48)

Q(h#0)!Q (h!0)"
D(s)

2n
(49)

5.3. Fluid point dislocation action on d&

For a #uid point dislocation, we obtain, from equation (36), the equivalence of its #uid
dilatation in the Laplace transformed domain

R(r, h, z; s)"*v (s)l
i
n
i

d(r)d (h)d(z!h)

r
(50)

where l
i
and n

i
are the dislocation direction and the normal to the dislocation surface, respective-

ly, and *v(s) is the Laplace transform of the dislocation amplitude *v (t) (*v
i
"*vl

i
).

Utilizing relation (30) and the results in Section 5.2, we "nd that the source functions due to
a #uid point dislocation in the cylindrical and Cartesian systems of vector functions are,
respectively,

Q (h#0)!Q(h!0)"*v(s)s
n
x
l
x
#n

y
l
y
#n

z
l
z

J2n
, m"0 (51)

Q(h#0)!Q(h!0)"*v(s)s
n
x
l
x
#n

y
l
y
#n

z
l
z

2n
(52)

5.4. Solid point dislocation acting on d&

We have shown in Section 4 that a solid dislocation produces two components of the
body-source equivalence: one equivalent to a #uid dilatation and another to a solid force. This
equivalence has just been derived, as given by equations (40) and (43). Therefore, in order to
obtain the response from an arbitrary solid dislocation, we need only to sum up the responses
from its body-source equivalence (40) and (43).

The "rst equivalence is similar to a #uid point dislocation, and thus its source functions are
similar to equations (51) and (52). That is, in the cylindrical and Cartesian systems of vector
functions, they are respectively,

Q(h#0)!Q(h!0)"*u(s)sb
n
x
l
x
#n

y
l
y
#n

z
l
z

J2n
, m"0 (53)

Q(h#0)!Q(h!0)"*u(s)sb
n
x
l
x
#n

y
l
y
#n

z
l
z

2n
(54)
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where *u(s) is the Laplace transform of the solid dislocation amplitude *u(t) related to its
component as

*u
i
(t)"*u(t)l

i
(55)

The source functions from the second equivalence (43), however, are somewhat complicated to
derive. Fortunately, for a transversely isotropic and purely elastic solid, the author (Reference 18)
has obtained the results. Therefore, we can directly reduce them to the isotropic case. In the
cylindrical system of vector functions, they are (omitting the factor *u(s)/J2n)

;
L
(h#0)!;

L
(h!0)"

l
1!l

(n
x
l
x
#n

y
l
y
)#n

z
l
z
, m"0

;
M

(h#0)!;
M

(h!0)"[$(n
x
l
z
#n

z
l
x
)!i (n

y
l
z
#n

z
l
y
)]/(2j) , m"$1

;
N
(h#0)!;

N
(h!0)"[!i (n

x
l
z
#n

z
l
x
)G(n

y
l
z
#n

z
l
y
)]/(2j), m"$1

¹
M

(h#0)!¹
M

(h!0)"
G(1#l)
1!l

(n
x
l
x
#n

y
l
y
), m"0 (56)

#0.5G[(n
y
l
y
!n

x
l
x
)$i(n

x
l
y
#n

y
l
x
)], m"$2

¹
N
(h#0)!¹

N
(h!0)"0.5G[(n

x
l
y
#n

y
l
x
)$i(n

x
l
x
!n

y
l
y
)], m"$2

Q(h#0)!Q (h!0)"!bsC
l

1!l
(n

x
l
x
#n

y
l
y
)#n

z
l
zD , m"0

In the Cartesian system of vector functions, they are (again, omitting the factor *u(s)/(2n)).

;
L
(h#0)!;

L
(h!0)"

l
1!l

(n
x
l
x
#n

y
l
y
)#n

z
l
z

;
M

(h#0)!;
M

(h!0)"i[a (n
x
l
z
#n

z
l
x
)#b(n

y
l
z
#n

z
l
y
)]/j2

;
N
(h#0)!;

N
(h!0)"i[b (n

x
l
z
#n

z
l
x
)!a(n

y
l
z
#n

z
l
y
)]/j2

¹
M

(h#0)!¹
M

(h!0)"
2Gl2

(1!2l)(1!l)
(n

x
l
x
#n

y
l
y
) (57)

#

2G

j2 C
(1!l)a2#lb2

(1!2l)
n
x
l
x

#

(1!l)b2#la2
(1!2l)

n
y
l
y
#ab(n

x
l
y
#n

y
l
x
)D

¹
N
(h#0)!¹

N
(h!0)"G[(n

x
l
y
#n

y
l
x
) (b2!a2)#2ab (n

x
l
x
!n

y
l
y
)]/j2

Q(h#0)!Q(h!0)"!bsC
l

1!l
(n

x
l
x
#n

y
l
y
)#n

z
l
zD
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Comparison of these source functions to those in a purely elastic medium (Reference 18), we "nd
that in poroelasticity, a term associate with a #uid dilatation need to be added to the source
functions in order to obtain an exact equivalence between a solid dislocation and a body source.
By summing up the two source functions for Q, we have the total discontinuity of Q in the
cylindrical and Cartesian systems of vector functions, respectively (again, the factors *u(s)/J2n
and *u(s)/(2n) are omitted, respectively),

Q(h#0)!Q(h!0)"bs
1!2l
1!l

(n
x
l
x
#n

y
l
y
), m"0 (58)

Q (h#0)!Q(h!0)"bs
1!2l
1!l

(n
x
l
x
#n

y
l
y
) (59)

The source functions in two-dimensional (y, z) plane can be obtained directly from the above
expressions in the Cartesian system by replacing 2n and a with J2n and 0, respectively (Reference
18). In addition, the dislocation type n

x
l
x
should be omitted since it does not occur in a (y, z) plane

problem.

6. POROELASTIC SOLUTIONS FOR LAYERED HALF-SPACES

The propagator matrices and various source functions obtained above are now used to derive the
Green's functions in a poroelastic and layered half-space. Figure 2 is a schematic layered system,
which consists of p!1 poroelastic and homogeneous layers lying over a homogeneous and
poroelastic half-space. We number the layer serially, with the layer at the top being layer 1 and the
half-space layer p. The origins of the cylindrical and Cartesian coordinates are placed at the
surface, and the z-axis is drawn into the medium. The kth layer has the thickness of h

k
, and is

bounded by the interfaces z"z
k~1

, z
k
. It is obvious that z

0
"0 and z

p~1
"H. Furthermore, we

assume that appropriate boundary conditions (in particular, traction-free and #uid #ux-free) are
applied to the top surface z"0, and that a point source is located on the z-axis at a depth h below
the surface. Let the source layer be designated as layer s with boundaries z"z

s~1
, z

s
. We divide

this layer into two sub-layers, s1 and s2, of identical properties. The "rst sub-layer is bounded by
the planes z"z

s~1
, h, and the second by z"h, z

s
. Finally, displacement and traction vectors,

Figure 2. A layered poroelastic half-space with a point source acting along the z-axis at a depth z"h
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pore pressure and the speci"c discharge in the z-direction are assumed to be continuous across
any interfaces of layers except at z"h (Reference 23). It can be shown that the continuity of these
quantities is equivalent to the continuity of the column matrices [EI (z)] and [EII(z)]. Across the
source level z"h, however, [EI(z)] and [EII (z)] will experience a jump or discontinuity. These
discontinuities have been just discussed in the previous section for various sources, and in general,
they can be expressed as

[*EI]"[EI
s2

(h)]![EI
s1

(h)]

[*EII]"[EII
s2

(h)]![EII
s1

(h)]
(60)

We now apply the propagating relation (26) to the kth layer

[EI (z
k~1

)]"[aI
k
(z

k
!z

k~1
)][EI (z

k
)]

[EII (z
k~1

)]"[aII
k
(z

k
!z

k~1
)][EII(z

k
)]

(61)

This relation makes a connection of the quantities at the upper and lower interfaces of layer k.
Propagating this relation from the top of the source z"h!0 to the surface z"0, we have

[EI(0)]"[aI
1
][aI

2
]!![aI

s1
][EI

s1
(h)]

[EII (0)]"[aII
1
][aII

2
]!![aII

s1
][EII

s1
(h)]

(62)

Similarly, propagating from the half-space z"H to the bottom of the source z"h#0, we arrive
at

[EI
s2

(h)]"[aI
s2

][aI
s`1

]!![aI
p~1

][ZI
p
(H)][KI]

[EII
s2

(h)]"[aII
s2

][aII
s`1

]!![aII
p~1

][ZII
p
(H)][KII]

(63)

where [ZI
p
(H)] and [ZII

p
(H)] are the homogeneous solution matrices evaluated at z"H, with

their elements being given in Appendix IV. Also in equation (63), [KI] and [KII] are constant
column matrices with components

[KI]"M0, c
2
, 0, c

4
, 0, c

6
N5

[KII]"M0, c
8
N5

(64)

From equations (62) and (63), we "nd

[EI (0)]"[DI][KI]![WI]

[EII(0)]"[DII][KII]![WII]
(65)

where

[DI]"[aI
1
][aI

2
]!![aI

p~1
][ZI

p
(H)]

[DII]"[aII
1
][aII

2
]!![aII

p~1
][ZII

p
(H)]

[WI]"[aI
1
][aI

2
]!![aI

s1
][*EI]

(66)

[WII]"[aII
1
][aII

2
]!![aII

s1
][*EII]
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Using the free boundary conditions at z"0, i.e.

¹
L
(0)"¹

M
(0)"¹

N
(0)"Q(0)"0 (67)

the constants in [KI] and [KII] can be determined as

c
8
"=II

2
/DII

22

c
2
"

1

*

=I
3

DI
34

DI
36

=I
4

DI
44

DI
46

=I
6

DI
64

DI
66

, c
4
"

1

*

DI
32
=I

3
DI

36
DI

42
=I

4
DI

46
DI

62
=I

6
DI

66

, c
6
"

1

*

DI
32

DI
34
=I

3
DI

42
DI

44
=I

4
DI

62
DI

64
=I

6

,

(68)

where

*"

DI
32

DI
34

DI
36

DI
42

DI
44

DI
46

DI
62

DI
64

DI
66

, (69)

Once the constants c
i
in equation (64) are determined, the Green's functions in any vertical level

can be obtained. For any point below the source level, i.e. z*h#0 (suppose that z is in layer k,
i.e. z

k~1
)z)z

k
), we have

[EI(z)]"[aI
k
(z

k
!z)][aI

k`1
]!![aI

p~1
][ZI

p
(H)][KI]

[EII(z)]"[aII
k
(z

k
!z)][aII

k`1
]!![aII

p~1
][ZII

p
(H)][KII]

(70)

Similarly, for any point above the source, i.e. z)h!0 (suppose that z is in layer j, i.e.
z
j~1

)z)z
j
), we arrive at

[EI (z)]"[aI
j
(z

j
!z)][aI

j`1
]!![aI

p~1
][ZI

p
(H)][KI]![aI

j
(z

j
!z)][aI

j`1
]!![aI

s1
][*EI]

[EII (z)]"[aII
j
(z

j
!z)][aII

j`1
]!![aII

p~1
][ZII

p
(H)][KII]![aII

j
(z

j
!z)][aII

j`1
]!![aII

s1
][*EII]

(71)

Now, we can substitute these expansion coe$cients [EI] and [EII] into equations (15)}(18) to
"nd the corresponding "eld quantities in the Laplace transformed domain. The remaining stress
and speci"c discharge components are shown to be a linear combination of the known coe$-
cients [EI] and [EII], and their expressions in the Laplace transformed domain are given in
Appendix V in terms of both the cylindrical and Cartesian systems of vector functions. The
time-domain solution can be obtained by a numerical inverse Laplace transform.

7. CONCLUSIONS

The complete Green's solutions have been derived in this paper for a multilayered, isotropic, and
poroelastic half-space. These Green's functions are expressed in terms of the inverse Laplace
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transform (for time t) and of the cylindrical and Cartesian systems of vector functions (for the
horizontal variables r, h or x, y). The advantage of using these systems of vector functions is that
the solution and propagator matrices have the same structures in these two systems, and that the
axially symmetric and 2-D plane deformations are the special cases of the current complete
solutions.

The propagator matrix method has also been introduced to avoid solving a large system of
equations with order proportional to the layer number. It is also the "rst time that a dislocation in
a layered poroelastic system has been considered in details by an equivalent body-source concept.
While the Green's functions due to the body source can be incorporated into a BEM formulation
for the deformation and stress analysis, those due to the #uid and solid dislocations are required
in the BEM modelling of hydrofracture problems in a layered poroelastic half-space. Numerical
implementation of those Green's functions into a suitable BEM formulation (Reference 24) is
currently under investigation by the author and progress will be reported in the future.
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NOTATION

G shear modulus
B Skempton's pore pressure coe$cient
l drained Poisson's ratio
l
6

undrained Poisson's ratio
i permeability coe$cient
b Biot's coe$cient of e!ective stress
c generalized consolidation coe$cient
p
ij

total stress tensor
F
i

bulk body force (on #uid and solid)
f
i

#uid body force
p pore pressure
c rate of injected #uid volume
R":t

0
c dt #uid dilatation (volume of injected #uid)

u
i

solid displacement
*u

i
discontinuity of solid displacement (or solid dislocation)

e
ij

strain tensor
e"e

ii
volumetric strain (or solid dilatation)

1 variation of #uid volume
q
i

speci"c discharge
v
i
":t

0
q
i
dt relative #uid displacement

*v
i

discontinuity of relative #uid displacement (or #uid dislocation)
t, q time variable
s Laplace variable; also used to denote the source layer number
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S scalar function; also used to denote the external boundary
L, M, N vector functions
;

L
, ;

M
, ;

N
expansion coe$cients of solid displacement u

i
¹

L
, ¹

M
, ¹

N
expansion coe$cients of traction t

i
"p

iz
P expansion coe$cient of pore pressure
Q expansion coe$cient of speci"c discharge q

z
F
L
, F

M
, F

N
expansion coe$cients of body force F

i
! expansion coe$cient of the #uid source c!(if

i
)
,i

D Laplace transformed amplitude of the #uid source c!(if
i
)
,i

n
i

normal cosines to a surface
l
i

direction cosines of a dislocation or displacement discontinuity
& discontinuous surface
g variable vector on &

APPENDIX I

Cartesian system of vector functions

The Cartesian system of vector functions is de"ned as (Reference 15)

L(x, y; a, b)"e
z
S (x, y; a, b)

M(x, y; a, b)"Aex
L
Lx

#e
y

L
LyBS (x, y; a, b) (72)

N(x, y; a, b)"Aex
L
Ly

!e
y

L
LxBS (x, y; a, b)

with

S (x, y; a, b)"
1

2n
e~*(ax`by) (73)

where i"J(!1).
Equation (72) forms an orthogonal system and any function (vector or scalar) may be expressed

in terms of it. In particular, for the displacement and traction vectors, pore pressure, and speci"c
discharge in the z-direction, we have formally

u (x, y, z; s)"PP
`=

~=

;
L
(z)L (x, y)#;

M
(z)M (x, y)#;

N
(z)N(x, y)] da db (74)

T (x, y, z; s),p
xz

e
x
#p

yz
e
y
#p

zz
e
z

"PP
`=

~=

¹
L
(z)L(x, y)#¹

M
(z)M (x, y)#¹

N
(z)N(x, y)] da db (75)

p (x, y, z; s)"PP
`=

~=

P (z)S (x, y) dadb (76)

q
z
(x, y, z; s),!ip

,z
"PP

`=

~=

Q(z)S (x, y) da db (77)
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As in the text, the dependence of the above unknown expansion coe$cients on the Laplace
variable s and on the parameters a and b has been dropped for brevity.

Similarly, we can also expand the source functions in equations (1) and (12) in terms of this
system

F (x, y, z; s)"PP
`=

~=

F
L
(z)L (x, y)#F

M
(z)M (x, y)#F

N
(z)N (x, y)] dadb (78)

c (x, y, z; s)!(if
i
)
,i
(x, y, z; s)"PP

`=

~=

! (z)S (x, y) dadb (79)

where the expansion coe$cients are known for the given sources. It is noteworthy that the
coe$cient, solution, and propagator matrices given in the text for the cylindrical system hold also
for the Cartesian system of vector functions with j being recognized as J(a2#b2).

APPENDIX II

Coezcient matrices [AI] and [AII]

The coe$cient matrix [AI] in equation (21) is equal to

0
jl

1!l
j (1!2l)
2G (1!l)

0
b(1!2l)

2G(1!l)
0

!j 0 0
j
G

0 0

0 0 0 j 0 0

0
2Gj
1!l

!jl
1!l

0
b(1!2l)

1!l
0

0 0 0 0 0
!1

i
0

jbs (1!2l)
1!l

!jbs(1!2l)
2G (1!l)

0 !a 0

(80)

where

a"i (j2#s/c) (81)

The coe$cient matrix [AII] in equation (21) is equal to

C
0

jG

j/G

0 D (82)
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APPENDIX III

Propagator matrices [aI] and [aII]

The elements of propagator matrix [aI (z)] in equation (26) are

(1, 1)"(3, 3)"(1!o
1
)ch(jz)#o

2
jzsh (jz)#o

1
ch (joz)

(2, 2)"(4, 4)"(1#o
1
)ch(jz)!o

2
jzsh (jz)!o

1
ch (joz)

(5, 5)"(6, 6)"ch (joz)

(1, 2)"!(4, 3)"o
2
jzch(jz)!

1

2 Ao3
!

1!2l
1!l Bsh(jz)#oo

1
sh(joz)

(1, 3)"
1

2G C!o
2
jzch (jz)#

1

2 Ao3
!

3!4l
1!l Bsh(jz)!oo

1
sh (joz)D

(1, 4)"!(2, 3)"
1

2G
[o

1
ch (jz)!o

1
ch(joz)!o

2
zsh (jz)]

(1, 5)"
(4, 5)

2G
"

(6, 2)

2Gjs
"

!(6, 3)

js
"

o
4
j C

o
5
!1

o
sh (joz)!o

5
sh(jz)D

(1, 6)"
(4, 6)

2G
"

!(6, 4)

j2si
"

!(2, 5)

ji
"

!(3, 5)

2Gji

"

!(5, 3)

js
"

(5, 2)

2Gjs
"

(6, 1)

2Gj2is
"

o
4
a
2

j
[ch(joz)!ch(jz)]

(2, 1)"!(3, 4)"!o
2
jzch(jz)#

1

2 Ao6
#

1!2l
1!l Bsh (jz)!

o
1
o

sh(joz)

(2, 4)"
1

2G Co2
jzch(jz)!

1

2 Ao6
#

3!4l
1!l Bsh (jz)#

o
1
o

sh(joz)D
(2, 6)"

(3, 6)

2G
"

(5, 4)

js
"

!(5, 1)

2Gjs
"

o
4
a
2

i Csh(jz)!
1

o
sh(joz)D

(3, 1)"2GC!o
2
jzch(jz)#(o

1
#o

2
)sh(jz)!

o
1
o

sh (joz)D
(3, 2)"!(4, 1)"2G[!o

2
jzsh(jz)#o

1
ch(jz)!o

1
ch(joz)]

(4, 2)"2GCo2
jzch (jz)!

1

2 Ao3
#

1

1!lB sh (jz)#o
1
osh(joz)D

(5, 6)"
(6, 5)

ai
"

sh (joz)

joi
(83)
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where

ch(x)"cosh(x), sh (x)"sinh(x)

jo"Ja/i"Jj2#s/c

a
2
"

1

j2!a/i
, a

3
"

(1!2l)2b2s
2G(1!l)2i

o
1
"a

3
a2
2
j2, o

2
"

1

2Ca2a3!
1

1!lD
(84)

o
3
"a

3
a2
2
(j2#a/i), o

4
"

b (1!2l)
2G (1!l)

o
5
"a

2
j2, o

6
"a

3
a2
2
(3j2!a/i)

The propagator matrix [aII (z)] is equal to

C
cosh(jz)

!G sinh(jz)

!sinh(jz)/G

cosh(jz) D (85)

APPENDIX IV

Solution matrices [ZI] and [ZII]

The elements of the solution matrix [ZI(z)] in equation (63) are

(1, 1)"C
1

G
!jg (j)Dejyz

(2, 1)"jyg (j)ejyz

(3, 1)"yejyz

(4, 1)"ejyz
(86)

(5, 1)"0

(6, 1)"0

(1, 3)"G!yCj
dg(j)

dj
#g (j)D#C

1

G
!jg(j)DzHejyz

(2, 3)"jC
dg (j)

dj
#g (j)yzDejyz

(3, 3)"!A
1

j
!yzBejyz

(4, 3)"zejyz
(87)

1650 E. PAN

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., 23, 1631}1653 (1999)



(5, 3)"
df (j)

dj
ejyz

(6, 3)"!jiy
dg(j)

dj
ejyz

(1, 5)"C
1

G
!jog (jo)Dejoyz

(2, 5)"jyg (jo)ejoyz

(3, 5)"yejoyz/o

(4, 5)"ejoyz
(88)

(5, 5)"yf(jo)ejoyz

(6, 5)"!jiof (jo)ejoyz

where y"1, and

g(x)"b(x)/d(x), f (x)"c (x)/d(x)

b(x)"
1

x C(ix2!a)Ax2#
j2l

1!lB!
j2b2s (1!2l)2

2G(1!l)2 D
c(x)"

j2bs(1!2l)(j2!x2)

x (1!l)

(89)

d(x)"
2Gj2(ix2!a)

1!l
!

j2b2s (1!2l)2
(1!l)2

The elements (i, 2), (i, 4) and (i, 6) of [ZI(z)] are obtained, respectively, from (i, 1), (i, 3) and (i, 5) by
replacing y with !1 (i"1}6).

The solution matrix [ZII(z)] in equation (63) is equal to

C
ejz
Gejz

e~jz
!Ge~jzD (90)

APPENDIX V

Other quantities in terms of the cylindrical and Cartesian systems of vector functions

In terms of the Cartesian system of vector functions, the horizontal discharges are expressed as

q
x
(x, y, z; s)"iiPP

`=

~=

[aP!(af
M
#bf

N
)]S (x, y; a, b) dadb

q
y
(x, y, z; s)"iiPP

`=

~=

[bP!(bf
M
#af

N
)]S(x, y; a, b) dadb (91)
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where f
M

and f
N

are the known expansion coe$cients for a given #uid body-force f
i
(x, y, z; s), i.e.

f(x, y, z; s)"PP
`=

~=

[ f
L
(z)L (x, y)#f

M
(z)M(x, y)#f

N
(z)N(x, y)] dadb (92)

The horizontal stress components are given by

p
xx

(x, y, z; s)"PP
`=

~=
C

l
1!l

¹
L
!2Gab;

N

#

2G

1!2l A
j2l2
1!l

!(1!l)a2!lb2B;M
!bPDS (x, y; a, b)dadb

p
xy

(x, y, z; s)"GPP
`=

~=

[(a2!b2);
N
!2ab;

M
]S (x, y; a, b) dadb (93)

p
yy

(x, y, z; s)"PP
`=

~=
C

l
1!l

¹
L
#2Gab;

N

#

2G

1!2l A
j2l2
1!l

!(1!l)b2!la2B;M
!bPDS (x, y; a, b)dadb

Similarly, in terms of the cylindrical system of vector functions, the horizontal discharges can
be expressed as

q
r
(r, h, z; s)"!i +

m
P

`=

0
Cp

L
Lr

!AfM
L
Lr
#f

N

L
rLhBDS (r, h; j, m)jdj

qh(r, h, z; s)"!i +
m
P

`=

0
Cp

L
rLh

!AfM
L

rLh
!f

N

L
LrBDS (r, h; j, m)jdj

(94)

where f
M

and f
N

are the expansion coe$cients for the given #uid body-force f
i
(x, y, z; s), i.e.

f(r, h, z; s)"+
m
P

`=

0

[ f
L
(z)L(r, h)#f

M
(z)M(r, h)#f

N
(z)N(r, h)]jdj (95)

The horizontal stress components are derived as

p
rr
(r, h, z; s)"+

m
P

`=

0
C

l
1!l

¹
L
#2G;

N
*
1

!2G(j2#*
2
);

M
!bPDS (r, h; j, m)jdj

p
rh(r, h, z; s)"G +

m
P

`=

0

[(j2#2*
2
);

N
#2*

1
;

M
]S (r, h; j, m)jdj (96)

phh (r, h, z; s)"+
m
P

`=

0
C

l
1!l

¹
L
!2G;

N
*
1

!2G(j2!*
2
);

M
!bPDS (r, h; j, m)jdj
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where *
1

and *
2

are two surface operators de"ned as

*
1
"

1

r

L2
LrLh

!

1

r2
L
Lh

, *
2
"

1

r2
L

Lh2
#

1

r

L
Lr

(97)
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