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Abstract

A powerful numerical method that can be used for modeling rock-structure interaction is the discontinuous deformation

analysis (DDA) method developed by Shi in 1988. In this method, rock masses are treated as systems of ®nite and deformable
blocks. Large rock mass deformations and block movements are allowed. Although various extensions of the DDA method
have been proposed in the literature, the method is not capable of modeling water-block interaction, sequential loading or
unloading and rock reinforcement; three features that are needed when modeling surface or underground excavation in fractured

rock. This paper presents three new extensions to the DDA method. The extensions consist of hydro-mechanical coupling
between rock blocks and steady water ¯ow in fractures, sequential loading or unloading, and rock reinforcement by rockbolts,
shotcrete or concrete lining. Examples of application of the DDA method with the new extensions are presented. Simulations of

the underground excavation of the `Unju Tunnel' in Korea were carried out to evaluate the in¯uence of fracture ¯ow,
excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that fracture ¯ow and
improper selection of excavation sequence could have a destabilizing e�ect on the tunnel stability. On the other hand,

reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the DDA program with the three
new extensions can now be used as a practical tool in the design of underground structures. In particular, phases of construction
(excavation, reinforcement) can now be simulated more realistically. However, the method is limited to solving two-dimensional
problems. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Several numerical methods are used in rock mech-
anics to model the response of rock masses to loading
and unloading. These methods include the ®nite el-
ement method (FEM), the boundary element method
(BEM) and the discrete element method (DEM).
Compared to the FEM and BEM methods, the DEM
method is tailored for structurally controlled stability
problems in which there are many material discontinu-

ities and blocks. The DEM method allows for large
deformations along discontinuities and can reproduce
rock block translation and rotation quite well.

The discontinuous deformation analysis (DDA)
method is a recently developed technique that can be
classi®ed as a DEM method. Shi [1] ®rst proposed the
DDA method in his doctoral thesis; computer pro-
grams based on the method were developed and some
applications were presented in the thesis and various
publications [2±5]. Various modi®cations to the orig-
inal DDA formulation have been reported in the rock
mechanics literature, in particular, in the proceedings
of the First International Forum on DDA [6] and of
the 2nd International Conference on Analysis of
Discontinuous Deformation [7].
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In his doctoral thesis, Lin [8] improved the original
DDA program of Shi [1] by including four major
extensions: improvement of block contact, calculation
of stress distributions within blocks using subblocks,
block fracturing, and viscoelastic behavior. Despite
these improvements, the DDA method still su�ers
from several major limitations when used to model the
interaction of engineering structures such as concrete
dams and tunnels with fractured rock masses. In this
paper, three limitations are addressed: hydro-mechan-
ical coupling, sequential loading or unloading, and
rock reinforcement.

In rock masses, there are generally many discontinu-
ities that are preferred pathways for groundwater.
Water ¯ow induces hydrostatic pressure and seepage
forces that a�ect the state of stress in the rock masses.
At the same time, changes in the state of stress induce
rock mass deformation, which result in changes in the
rock mass hydraulic properties. This hydro-mechanical
coupling is critical and cannot be ignored when model-
ing rock-structure interaction in engineering problems
where water is present.

As discussed more extensively by Szechy [9], the
arrangement of underground openings and their exca-
vation sequence depend on the necessary operations to
be conducted in them (excavation method, installation
and construction of temporary and permanent sup-
port, short-term and long-term use, etc.), the nature of
the rock mass, and the rock pressure conditions
encountered. Therefore, there is a practical need to
simulate the di�erent phases of underground construc-
tion and, if possible, ®nd the optimal construction pro-
cedure considering not only rock mechanics issues but
also construction time and cost.

At the outset, this paper reviews some of the basic
concepts of the DDA method. Then, it presents three
two-dimensional extensions that have been im-
plemented into the original DDA program of Shi [1]
and modi®ed by Lin [8] in 1995. First, seepage is
allowed to take place in the fracture space between
rock blocks; ¯ow is assumed to be steady laminar or
turbulent. The hydro-mechanical coupling across rock
fracture surfaces is also taken into account. The pro-
gram computes water pressure and seepage throughout
the rock mass of interest. Second, the program allows
for sequential loading or unloading and therefore can
be used to simulate construction sequence. When
block elements are removed (excavation) or added
(loading), the algorithm modi®es the initial block el-
ements and the initial stress data. The new data are
then used as input data for the next construction step.
Finally, di�erent types of rock reinforcement (shot-
crete, rockbolts, concrete lining) can be selected in the
program. The shotcrete or concrete lining algorithm
creates lining elements along the excavated rock sur-
face of an underground opening with speci®ed thick-

ness and material properties. The rockbolt algorithm
suggested by Shi [1] was modi®ed to be applicable to
the cases of sequential excavation and reinforcement,
in which axial forces of rockbolts at a previous step
are applied to the rockbolts as preloading in the next
step. The DDA program with the three new extensions
can now be used as a practical tool in the design of
underground structures. In particular, phases of con-
struction (excavation, reinforcement) can now be simu-
lated using this new program.

2. Modeling blocky rock masses using DDA

In the DDA method, the formation of blocks is very
similar to the de®nition of a ®nite element mesh. A
®nite element type of problem is solved in which all
the elements are physically isolated blocks bounded by
preexisting discontinuities. The elements or blocks
used by the DDA method can be of any convex or
concave shape whereas the FEM method uses only el-
ements with predetermined topologies. When blocks
are in contact, Coulomb's law applies to the contact
interfaces, and the simultaneous equilibrium equations
are selected and solved at each loading or time incre-
ment. The large displacements and deformations are
the accumulation of small displacements and defor-
mations at each time step. Within each time step, the
displacements of all points are small, hence the displa-
cements can be reasonably represented by ®rst order
approximations.

In general, the DDA method has a number of fea-
tures similar to the FEM. For instance, the DDA and
FEM methods minimize the total potential energy of a
system (of blocks or elements) to establish the equili-
brium equations; the displacements are the unknowns
of those simultaneous equations. Also, both methods
add sti�ness, mass and loading submatrices to the
coe�cient matrix of the simultaneous equations.
Finally, the DDA method use of displacement locking
of contacting blocks resembles in many ways the
method of adding bar elements to element contacts in
the FEM. The main attraction of the DDA method is
its capability of reproducing large deformations along
discontinuities and large block movement; two features
that are restricted with the FEM.

2.1. Block deformations

By adopting ®rst order displacement approxi-
mations, the DDA method assumes that each block
has constant stresses and strains throughout. The dis-
placements (u, v ) at any point (x, y ) in a block, i, can
be related in two dimensions to six displacement vari-
ables
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Di � �d1i d2i d3i d4i d5i d6i �T

� �u0 v0 r0 ex ey gxy�T,
�1�

where (u0, v0) is the rigid body translation at a speci®c
point (x0, y0) within the block, r0 is the rotation angle
of the block with the rotation center at (x0, y0) and ex,
ey and gxy are the normal and shear strains in the
block. As shown by Shi [1], the complete ®rst order
approximation of block displacements takes the fol-
lowing form�
u
v

�
� TiDi, �2�

where

Ti ��
1 0 ÿ� yÿ y0� �xÿ x0� 0 � yÿ y0�=2
0 1 �xÿ x0� 0 � yÿ y0� �xÿ x0�=2

�
�3�

This equation enables the calculation of the displace-
ments (u, v ) at any point (x, y ) within the block (in
particular, at the corners), when the displacements are
given at the center of rotation and when the strains
(constant within the block) are known. In the two-
dimensional formulation of the DDA method, the cen-
ter of rotation with coordinates (x0, y0) coincides with
the block centroid.

2.2. Simultaneous equilibrium equations

In the DDA method, individual blocks form a sys-
tem of blocks through contacts among blocks and dis-
placement constraints on single blocks. Assuming that
n blocks are de®ned in the block system, Shi [1]
showed that the simultaneous equilibrium equations
can be written in matrix form as follows26666664

K11 K12 K13 � � � K1n

K21 K22 K23 � � � K2n

K31 K32 K33 � � � K3n

..

. ..
. ..

. . .
. ..

.

Kn1 Kn2 Kn3 � � � Knn

37777775

8>>>>>><>>>>>>:

D1

D2

D3

..

.

Dn

9>>>>>>=>>>>>>;
�

8>>>>>><>>>>>>:

F1

F2

F3

..

.

Fn

9>>>>>>=>>>>>>;
, �4�

where each coe�cient Kij is de®ned by the contacts
between blocks i and j. Since each block i has six
degrees of freedom de®ned by the components of Di in
Eq. (1), each Kij in Eq. (4) is itself a 6 � 6 submatrix.
Also, each Fi is a 6 � 1 submatrix that represents the
loading on block i. Eq. (4) can also be expressed in a
more compact form as KD=F where K is a 6n � 6n
sti�ness matrix and D and F are 6n � 1 displacement
and force matrices, respectively. In total, the number
of displacement unknowns is the sum of the degrees of

freedom of all the blocks. It is noteworthy that the sys-
tem of Eq. (4) is similar in form to that in ®nite el-
ement problems.

The solution to the system of Eq. (4) is constrained
by a system of inequalities associated with block kin-
ematics (e.g. no penetration and no tension between
blocks) and Coulomb friction for sliding along block
interfaces. The system of Eq. (4) is solved for the dis-
placement variables. The ®nal solution to that system
is obtained as follows. First, the solution is checked to
see how well the constraints are satis®ed. If tension or
penetration is found along any contact, the constraints
are adjusted by selecting new locks and constraining
positions and a modi®ed version of K and F are
formed from which a new solution is obtained. This
process is repeated until no tension and no penetration
is found along all of the block contacts. Hence, the
®nal displacement variables for a given time step are
actually obtained by an iterative process.

The simultaneous Eq. (4) were derived by Shi [1] by
minimizing the total potential energy P of the block
system. The i-th row of Eq. (4) consists of six linear
equations

@P
@dri
� 0, r � 1±6, �5�

where the dri are the deformation variables of block i.
The total potential energy P is the summation over all
the potential energy sources, i.e. individual stresses and
forces. The potential energy of each force or stress and
their derivatives are computed separately. The deriva-
tives

@2P
@dri@dsj

, r, s � 1±6 �6�

are the coe�cients of the unknowns dsj of the equili-
brium Eq. (4) for variable dri. All terms of Eq. (6)
form a 6 � 6 submatrix, which is the submatrix Kij in
the global Eq. (4). Eq. (6) implies that matrix K in Eq.
(4) is symmetric. The derivatives

ÿ@P�0�
@dri

, r � 1±6 �7�

are the free terms of Eq. (5) which are shifted to the
right hand side of Eq. (4). All these terms form a
6 � 1 submatrix, which is added to the submatrix Fi.

Shi's thesis [1] covers the details for forming subma-
trices Kij and Fi, for elastic stresses, initial stresses,
point loads, line loads, volume forces, bolting forces,
inertia forces and viscosity forces. Both static and
dynamic analyses can be conducted with the DDA
method. For static analysis, the velocity of each block
in the blocky system at the beginning of each time step
is assumed to be zero. On the other hand, in the case
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of dynamic analysis, the velocity of the blocky system
in the current time step is an accumulation of the vel-
ocities in the previous time steps.

3. Modeling water-block interaction in DDA

A numerical model was developed to study ¯uid
¯ow in deformable naturally fractured rock masses.
The model considers a two-dimensional intact rock
mass dissected by a large number of fractures (joints)
with variable aperture, length, and orientation. Fluid
¯ow, which occurs when pressure gradients exist, is
assumed to be steady, and laminar or turbulent
depending on the values of the Reynolds number and
the relative roughness of the fracture walls [10]. Fluid
¯ow and the rock deformation are fully coupled.

Variations in ¯uid pressure and quantity of ¯uid result
in joint deformation. In turn, joint deformation
changes the joint properties, which therefore changes
the ¯uid pressures and the resistance to ¯uid ¯ow.

3.1. Assumptions

The following assumptions were made when imple-
menting the hydro-mechanical coupling in the DDA
program: (a) the ¯uid is incompressible, (b) the intact
rock is impervious, and ¯uid ¯ow takes place in the
joint space only; (c) the rock mass contains a ®nite
number of joints; (d) the intact rock is linearly elastic;
and (e) joint displacements are small relative to the
joint dimensions.

In the ¯ow model, the fracture space is idealized as
a system of one-dimensional conduits of constant aper-

Fig. 1. Joint modeling. (a) Representative section of closed joint, (b) Idealized section of closed joint, (c) Representative section of open joint, (d)

Idealized section of open joint.
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ture using the approach proposed by Asgian [11]. The
apparent aperture, b, of a conduit representing a joint
depends on the contact between the joint surfaces. The
joint can be classi®ed as closed or open depending on
the contact state. Consider, for instance, a closed joint
with length, L, and unit width representing the inter-
face between two contacting prismatic blocks of thick-
ness d1 and d2 as shown in Fig. 1(a). Let n be the joint
surface contact porosity (ratio between joint surface
open area and total area) of the closed joint which var-
ies between 0 and 1. The joint can be idealized as a
portion of void (n ) with a uniform aperture, a, and a
portion of contacting solid (1ÿn ) with vanishing aper-
ture as shown in Fig. 1(b). The apparent aperture, b,

of the closed joint is de®ned as b=a for the portion of
void (n ).

A representative section of an open joint with
length, L, and unit width is shown in Fig. 1(c). The
joint represents the open interface between two pris-
matic blocks of thickness d1 and d2 separated by a gap
c. The joint can be idealized as one portion of void (n )
with aperture, c+a, and another portion of void
(1ÿn ) with aperture, c, as shown in Fig. 1(d). The
apparent aperture, b, of the open joint consists of two
components with bn=c+a for the portion of void (n )
and b1ÿn=c for the other portion of void (1ÿn ).

3.2. Con®guration of water-block interaction model

As shown in Fig. 2, the hydro-mechanical model
consists of two major components: the DDA method
for the rock mass and the FEM method for joint ¯ow.
The initial properties of the joints such as aperture,
length, orientation, and boundary conditions from the
DDA program are used to compute the piezometric
heads and ¯uid quantities at the joints with a FEM
subroutine called RFLOW. The seepage forces acting
on the rock blocks are computed from the piezometric
heads using a subroutine called WPRESSURE. In the
DDA program, joint deformation is computed using
the seepage forces. In turn, joint deformation changes
the joint properties such as aperture, length, and orien-
tation. A computational loop is followed until the

Fig. 2. Water-block interaction model.

Fig. 3. Compilation of di�erent ¯ow laws and their range of validity for a single fracture. The dashed lines represent mathematical boundaries

by Amadei et al. [12] and the solid lines the boundaries determined experimentally by Louis [10].
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results converge according to a criterion selected by
the user.

3.3. Subroutine RFLOW

Louis [10] showed experimentally that the steady
¯ow of water in a single fracture of constant aperture,
b, and surface roughness can be laminar or turbulent
depending on the values of the Reynolds number,
Re=2bu/n, and the relative roughness, k/Dh, where u is
the average velocity, n the kinematic viscosity of water,
k the fracture surface roughness, and Dh the hydraulic
diameter of the fracture which is equal to 2b. Louis
[10] also proposed di�erent ¯ow laws relating the fric-
tion factor f and the Reynolds number Re which apply
in di�erent regions of the (Re, k/Dh) space. Fig. 3
shows ®ve such regions I±V, their corresponding math-
ematical boundaries and the experimental boundaries
proposed by Louis [10].

For parallel ¯ow, and as shown by Amadei et al.
[12], the mathematical boundary between turbulent
hydraulic smooth ¯ow (region II) and turbulent com-
pletely rough ¯ow (III) in Fig. 3 can be expressed as

Re � 2:553

�
log

�
k=Dh

3:7

��8
�8�

For non-parallel ¯ow, and as shown by Amadei et
al. [12], the mathematical boundary between laminar
¯ow (region IV) and turbulent ¯ow (region V) in Fig.
3 can be expressed as

Re � 384
�
1� 8:8�k=Dh�1:5

��
log

�
k=Dh

1:9

��2
�9�

The mathematical boundaries de®ned by Eqs. (8)
and (9) are shown as dashed lines in Fig. 3. These
mathematical boundaries were used in the nonlinear
model presented below.

According to Bernoulli's theorem for ideal friction-
less incompressible ¯uids, the sum of the pressure head,
hp=p/gw, elevation head, he=z, and velocity head,
hv=u 2/2g, is constant at every point of the ¯uid, e.g.

p

gw

� z� u2

2g
� H� hn � constant � Ht �10�

where p is the pressure, z the elevation, u the average
velocity, H the piezometric head (=hp+he), and Ht

the total head.
In the steady ¯ow of water in a single fracture of

constant aperture, b, and length, L, the total head loss,
DHt, (also equal to the piezometric head loss, DDH )
takes place due to the viscous resistance within the
fracture. As shown by Louis [10], the average velocity,
u, and the gradient of piezometric head, i=DDH/L,
(also equal to the gradient of total head, DDHt/L ) for
each hydraulic region of Fig. 3 can be written as fol-
lows

u � Kia � K

�
DH
L

�a

�11�

where DH is the piezometric head loss. Values of the
hydraulic conductivity, K, and the exponent, a, for
each ¯ow region of Fig. 3 are reported in Table 1. For
each hydraulic region, the element discharge, Q, and
the piezometric gradient, i=DDH/L, are such that

Q � ub � Kb

�
DH
L

�a

�12�

Equation (12) can be rewritten as

Q � TDH with T � Kb

La DH
aÿ1 �13�

where T is the so-called fracture transmissivity.
Equation (13) is then modi®ed depending on the

contact state (closed or open) between the joint sur-
faces. For a closed joint (Fig. 1(b)), the element dis-
charge, Q, is de®ned as

Q � TDH with T � n
Kb

La DH
aÿ1 �14�

For an open joint (Fig. 1(d)), the element discharge,
Q, is de®ned as

Q � TDH with

T � n
Knbn
Lan

DH anÿ1 � �1ÿ n�K1ÿnb1ÿn
La1ÿn

DH a1ÿnÿ1, �15�

where Kn and an are respectively the hydraulic conduc-

Table 1

Expression of hydraulic conductivity and degree of nonlinearity for the di�erent hydraulic regions of Fig. 3 (after Louis [10])

Hydraulic region Hydraulic conductivity (K) Exponent (a ) Flow condition

I KI � gb2=12n 1.0 laminar

II KII��1=b���g=0:079��2=n�0:25 � b3�4=7 4/7 turbulent

III KIII � 4
���
g
p

log�3:7=�k=Dh��
���
b
p

0.5 turbulent

IV KIV � �gb2�=�12n�1� 8:8�k=Dh�1:5�� 1.0 laminar

V KV � 4
���
g
p

log�1:9=�k=Dh��
���
b
p

0.5 turbulent
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tivity and exponent for one portion of void (n ) with
apparent aperture bn=c+a. Likewise, K1ÿn and a1ÿn
are respectively the hydraulic conductivity and expo-
nent for the other portion of void (1ÿn ) with apparent
aperture b1ÿn=c.

Consider now a single planar joint element, i, of
length L i and constant aperture b i as shown in Fig.
4(a). Eq. (13) can be used to compute the discharge
through the joint element in terms of the piezometric
head loss between its two end nodes de®ned here as j
and k. The discharge at node k, Qk

i , and the discharge
at node j, Qj

i, are equal to

Qi
k � T iDH i � T i

�
Hi

k ÿHi
j

�

Qi
j � ÿT iDH i � ÿT i

�
Hi

k ÿHi
j

�
�16�

These two equations can be rewritten in matrix form
as follows:

(
Qi

k

Qi
j

)
� T i

�
1 ÿ1
ÿ1 1

�(
Hi

k

Hi
j

)
or Qi � TiHi, �17�

where Qi is the element nodal discharge vector, Ti the
element characteristic matrix, and Hi the element
nodal piezometric head vector.

So far, the elements in the network have been con-
sidered individually, and expressions giving the dis-
charges in terms of the nodal piezometric heads have
been developed. For a complete joint network, how-
ever, the interaction between the di�erent elements
needs to be taken into account. This implies that there
must exist equilibrium at any given node of the net-
work between the discharges of the elements connected
to the node, including any in¯ow or out¯ow at that
node. Consider a simpli®ed model of a fracture net-
work below a dam as shown in Fig. 4(b). The quantity
Cj is the in¯ow (C1 and C3) or out¯ow (C5 and C7) at
any node j. In general, any Cj will be positive for
in¯ow (C1 and C3) and negative for out¯ow (C5 and
C7). Equilibrium at any node means that the sum of
the discharges of the elements connected to the node
equals the in¯ow or out¯ow at that node. For any
node j, the equilibrium equation can be expressed as
follows:X

i

Qi
j � Cj �18�

where the summation runs over all elements connected
to node j. By repeating the procedure for all n nodes,
and using Eqs. (17) and (18), a system of equilibrium
equations can be derived e.g.266664
T11 T12 . . . T1n

T21 T22 . . . T2n

..

. ..
. . .

. ..
.

Tn1 Tn2 . . . Tnn

377775
8>>>><>>>>:
H1

H2

..

.

Hn

9>>>>=>>>>; �
8>>>><>>>>:
C1

C2

..

.

Cn

9>>>>=>>>>;
or TH � C

�19�

where T is the network characteristic matrix, H is the
network piezometric head vector, and C is the network
¯ow vector. Before the total system of Eq.(19) can be
solved, it is necessary to introduce the boundary con-
ditions for the network nodes. The boundary con-
ditions at a given node j can be of two types; speci®ed
piezometric head (Hj) or speci®ed ¯ow (Cj).

The total system of Eq.(19) is a nonlinear system
due to the fact that T depends on H. However, it can
be solved by successive iterations. First, for each joint
element, ¯ow is assumed to be laminar with a=1.0
and K=KI or KIV and an initial value for the nodal
piezometric head, Hini, is assumed for each node.The
fracture transmissivity, T, is computed using Eqs. (14)
or (15) for each joint element, and the total system of

Fig. 4. Construction of total system of equations. (a) Single joint el-

ement, (b) Joint network.
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Eq. (19) is formed using Eqs. (17) and (18). The total
system of equations is solved by the Gauss elimination
method to obtain a new value of the nodal piezometric
head, Hnew, for each node. The velocity, u, de®ned by
Eq. (11) and the Reynolds number, Re = 2bu/n, are
calculated for each joint element using the new value
of the nodal heads. Using Fig. 3, the values of Re and
the relative roughness, k/Dh, determine if the ¯ow in
each joint element is laminar or turbulent. If the ¯ow
is laminar, a and K remain the same. If, on the other
hand, turbulent ¯ow develops, new values of a and K
are selected using Fig. 3 and Table 1 for each joint el-
ement, and a new initial value for the nodal piezo-
metric head is assumed with Hini=Hnew for each node

in the next iteration. Then, using Eqs. (14) or (15), a
new fracture transmissivity, T, is computed for each el-
ement, and a new total system of equations is formed.
The total system of equations is solved to obtain a
new value of the nodal piezometric head, Hnew, for
each node. The process is repeated until, for two suc-
cessive steps, a and K remain the same and
|HnewÿHini|/Hini is below a minimum tolerance speci-
®ed by the user.

3.4. Subroutine WPRESSURE

A new algorithm for computing seepage forces act-
ing on rock blocks from the nodal piezometric heads

Fig. 5. Conversion of nodal head into point load.
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was developed. The ¯uid pressure acting on the rock
blocks can be computed from the values of the press-
ure heads at those nodes de®ning the blocks. The ¯uid
pressures are transformed as point loads along the
sides of each rock block. Then, the point loads are
given as boundary conditions in the discontinuous de-
formation analysis. Using this approach, there is no
need to arti®cially regulate the deformations of the
joints as in other methods. Therefore, the rock blocks
can deform freely according to block system kin-
ematics.

As an example, consider ¯ow through the joint net-
work of Fig. 5. Subroutine RFLOW gives value of the
piezometric head, H, at each node. Then, at each
node, the pressure head, hp, can be computed from H,
and the elevation head, he=yÿyd, as
hp � Hÿ he � Hÿ y� yd �20�

where y is the vertical coordinate of the node, yd the
vertical coordinate of the datum line. For rock block,
i, in Fig. 5, hp can be calculated by using Eq. (20) at
nodes 1 and 2 with hp1=H1±y1+yd and
hp2=H2ÿy2+yd. The pressures at node 1 and 2 are
then equal to p1=hp1gw and p2=hp2gw, respectively.
For a closed joint with a contact porosity, n, the total
seepage force, F, acting on the edge between nodes 1
and 2 is calculated as

F � n1
2 �p1 � p2� � L with

L �
������������������������������������������������
�x1 ÿ x2�2 � � y1 ÿ y2�2

q
�21�

For an open joint, n is equal to 1.0. The distance, d,
between node 1 and the loading point f (xf , yf ) where
F is applied can be calculated by moment equilibrium
at point 1. When p1 is larger than p2 (Fig. 6(a)), d is
equal to

d � F1 � L=2� F2 � L=3

F
with F1 � np2L

and F2 � n1
2� p1 ÿ p2� � L �22�

When p1 is smaller than p2 (Fig. 6(b)), d is equal to

d � F1 � L=2� F2 � 2L=3

F
with F1 � np1L

and F2 � n1
2� p2 ÿ p1� � L �23�

When p1 is equal to p2, d = l/2. In all cases, the
coordinates (xf , yf ) of the loading point are equal to

xf � x1 � d

L
�x2 ÿ x1�; yf � y1 � d

L
� y2 ÿ y1�: �24�

In general, the horizontal and vertical components
(Fx and Fy) of the total seepage force F can be calcu-
lated as follows:

. when x2 > x1 (Fig. 7(a,b)),

Fx � ÿFsin a,

Fy � Fcos a with a � tanÿ1
�
y2 ÿ y1
x2 ÿ x1

�
�25�

. when x1 > x2 (Fig. 7(c,d)),

Fx � Fsin a,

Fy � ÿFcosa with a � tanÿ1
�
y2 ÿ y1
x2 ÿ x1

�
�26�

. when x1=x2 and y2 > y1 (Fig. 7(e)),

Fx � ÿF, Fy � 0 �27�

Fig. 6. Distance to the loading point. (a) p1 > p2, (b) p1 < p2.
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. when x1=x2 and y1 > y2 (Fig. 7(f)),

Fx � F, Fy � 0 �28�

3.5. Application of seepage forces on rock blocks

Shi [1] derived a formulation for the components of
submatrices Fi for the case of point loading. A seepage
force can be considered as a point load acting along
the edge of a rock block. The seepage force with com-
ponents (Fx, Fy ) acts at point (xf , yf ) on rock block, i,

as shown in Fig. 7(a,f). According to Eq. (2), the dis-
placement components (uf , vf ) at point (xf , yf ) along
the edge of rock block, i, are equal to

�
uf
vf

�
� TiDi �

�
t11 t12 t13 t14 t15 t16
t21 t22 t23 t24 t25 t26

�
8>>>>>><>>>>>>:

d1i
d2i
d3i
d4i
d5i
d6i

9>>>>>>=>>>>>>;
�29�

Fig. 7. Computation of Fx and Fy. (a) x1 < x2, y1ry2, (b) x1 < x2, y1 < y2, (c) x1 > x2, y1 < y2, (d) x1 > x2, y1ry2, (e) x1=x2, y1 < y2, (f)

x1=x2, y1 > y2.

Y. Kim et al. / International Journal of Rock Mechanics and Mining Sciences 36 (1999) 949±970958



The potential energy associated with the seepage
force with components (Fx, Fy) is then equal to

Pf � ÿ
ÿ
Fxuf � Fyvf

� � ÿÿ uf vf
��Fx

Fy

�

Pf � ÿDT
i TT

i

�
Fx

Fy

� �30�

To minimize Pf , derivatives are computed and yield

fr � ÿ@Pf�0�
@dri

� @

@dri
DT

i TT
i

�
Fx

Fy

�
� Fxt1r � Fyt2r,

r � 1±6

�31�

where fr (r = 1±6,) are the components of a 6 � 1 sub-
matrix

TT
i

�
Fx

Fy

�
�

0BBBBBB@
t11 t21
t12 t22
t13 t23
t14 t24
t15 t25
t16 t26

1CCCCCCA
�
Fx

Fy

�
4Fi �32�

which is the product matrix of a 6 � 2 matrix (whose
components are de®ned in Eq. (3)) and a 2 � 1 matrix.
The resulting 6 � 1 submatrix is added to the subma-
trix Fi in the global system of Eq. (4).

3.6. Comparison with the experimental work of
Grenoble [13]

As a validity check of the RFLOW subroutine, a
comparison was made with the experimental work
reported by Grenoble [13], who constructed a physical
laboratory model to simulate two-dimensional ¯ow
through a jointed rock mass. The joint network of the
model was formed by sawing 12.7 mm (0.5 inch) deep
and 0.508 mm (0.02 inch) wide slots in the face of a
25.4 mm (1.0 inch) thick sheet of Plexiglas. A sche-
matic of the complete test set-up is illustrated in Fig.
8(a) and the model joint pattern is shown in Fig. 8(b).
The water pressure was measured at 24 joint intersec-
tion ports as shown in Fig. 8(b). Grenoble [13] con-
ducted nine tests (T1-3 to T1-11) subjecting the model
to hydraulic gradients ranging between 0.01 and 2.84
(resulting in a head di�erential across the model ran-
ging between 0.762 cm and 172.84 cm). The test pro-
cedure consisted of applying a head di�erential,
allowing the system to come to equilibrium, and then
reading the head values at the measurement ports.

As the laboratory model was made of one plate with
slots, all blocks in the DDA model were modeled as
subblocks. The Plexiglas was assumed to have a unit
weight of 11.7 kN/m3, a Young's Modulus of 3.1 GPa
and a Poisson's ratio of 0.35. The joints were assumed

to have no friction or cohesion. The kinematic vis-
cosity of water was taken equal to 1.005 � 10ÿ6 m2/
sec. Six representative tests (T1-5 to T1-10) were ana-
lyzed by the DDA program containing the RFLOW
subroutine (Table 2). For each test, the head values
computed by the revised DDA program were com-
pared with the values measured in the laboratory
model at all measurement ports (Table 2). The error in
head value, Ei, at each measurement port, i, was calcu-
lated as follows

Ei � hl ÿ hd

Hÿ h
, �33�

where hl is the head value measured in the laboratory;
hd is the value predicted by the DDA program; H is
the upstream head; and h is the downstream head. For
each test, the average error in head value, Eh, for each
test was calculated as

Eh � 1

n

Xn
i�1
jEij, �34�

where n (n = 24) is the number of measurement ports.
Values of Eh are reported in Table 2.

The results in Table 2 indicate that the average error
does not exceed 5.83% and its magnitude increases
with the hydraulic gradient. This increase is probably
due to the fact that the pressure ports disturb the ¯ow
and the magnitude of the disturbance increases with
the ¯ow velocity [13].

3.7. Comparison with the analytical solution of Sneddon
and Lowengrub [14]

As a validity check of the WPRESSURE subroutine
in the DDA program, the problem of the opening of a
crack (joint) in an in®nite domain subjected to an in-
ternal pressure was considered. The geometry of the
problem is shown in Fig. 9(a). An internal pressure P
is applied on the walls of a crack of length, 2L, result-
ing in a maximum deformation, Dn,max, at the center
of the crack.

Two DDA models for this problem are shown in
Fig. 9(b,c). The crack length is 2L = 20 m and the
domain of analysis is 10L � 10L (100 m � 100 m). The
crack has a friction angle of 458, and no cohesion. The
intact rock has a unit weight of 26.0 kN/m3, a
Young's modulus of 2.5 GPa, and a Poisson's ratio of
0.25. The ¯uid has a kinematic viscosity of 2.0 � 10ÿ7

m2/sec. At the crack ends (x=2L ), the pressure
heads were ®xed at 22.45 m as boundary conditions,
thus a constant ¯uid pressure of 0.22 MPa was applied
on the crack wall surfaces. Two cases were considered
for comparison in which the walls of the crack were
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divided into 6 subblocks (Fig. 9(b)) and 10 subblocks
(Fig. 9(c)).

The crack opening for this problem was also com-
puted using the analytical solution given by Sneddon
and Lowengrub [14]:

Dn � 2�1ÿ n�
G

PL

�������������������������ÿ
1ÿ x2=L2

�q
, �35�

where L is the crack half-length, Dn the crack opening
along the interval ÿL R x R L, G is the shear mod-
ulus of the elastic medium; P is the pressure acting on
the crack wall surfaces; x is the distance along the
crack measured from the center of the crack; and n is
the Poisson's ratio.

The analytical and numerical predictions for the
crack wall deformation pro®les for the two cases are
compared in Figs. 10(a) and 10(b). At the center of the
crack, the numerical solution deviates from the analyti-
cal solution by 3.9% for the case in which 6 subblocks
are used to compute the crack displacement (Fig.
10(a)). When 10 subblocks are used instead (Fig.
10(b)), the deviation of the numerical solution from
the analytical solution reduces to 1.1%. At the crack
ends (x=2L ), the numerical solution deviates from
the analytical solution by 15.8% for the 6 subblocks
case and 14.5% for the 10 subblocks case. At the ends
of the idealized crack, the crack opening is zero, yet
the gradient of the opening is in®nite. This large devi-
ation at the crack ends results because the discretiza-

Fig. 8. Laboratory model of Grenoble [13]. (a) Schematic of the complete laboratory test set-up, (b) Layout of the joint pattern in the physical

model.
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tion of the crack is too coarse to account for the sharp
curvature of the crack at its ends. Except for the crack
ends, Fig. 10(a,b) indicate good agreement between the
numerical and analytical predictions.

3.8. E�ect of water level on tunnel stability

The excavation of a (half) circular tunnel is con-
sidered as a numerical example. The tunnel has a di-
ameter, D, of 10 m and is located at a depth of 409.6
m below the surface. The water level varies between
100 and 500 m above the center of the tunnel. The
domain of analysis is 5D (50 m) wide and 4D plus tun-
nel height (46.71 m) high. A vertical compressive stress
of 10 MPa is applied on the top boundary of the
domain (to simulate the load associated with 384.6 m
of rock) and no lateral deformation is allowed. The
intact rock has a unit weight of 26 KN/m3, a Young's
modulus of 3.6 GPa, and a Poisson's ratio of 0.2. The

joints have a spacing of 4 m, a friction angle of 358,
and a cohesion of 0.5 MPa. No reinforcement is
applied in this example. As boundary conditions, only
elevation heads (zero pressure heads) were applied on
the nodes along the excavated surface of the tunnel.

Without water the settlement of the tunnel roof was
found to be equal to 165.2 mm (Table 3). The tunnel
roof deforms but does not collapse as shown in Fig.
11(a). As the water level increases, the tunnel roof
settlement increases resulting in complete collapse of
the tunnel (see Table 3 and Fig. 11(b±f)).

4. Modeling sequential loading or unloading

4.1. Sequential excavation algorithm

A new algorithm to simulate sequential loading or
unloading has been developed and implemented into

Table 2

Average error of the DDA program compared with experimental results by Grenoble [13]

Test No. T1-5 T1-6 T1-7 T1-8 T1-9 T1-10

H (cm) 80.52 97.28 115.7 134.37 151.38 227.2

h (cm) 71.76 71.37 71.37 71.37 72.01 54.36

Dh (cm) 8.76 25.91 44.33 63 79.37 172.84

L (cm) 60.96 60.96 60.96 60.96 60.96 60.96

i(Dh/L) 0.14 0.42 0.73 1.03 1.30 2.84

Method DDA Lab Error DDA Lab Error DDA Lab Error DDA Lab Error DDA Lab Error DDA Lab Error

Port hd (cm) hl (cm) Ei (%) hd (cm) hl (cm) Ei (%) hd (cm) hl (cm) Ei (%) hd (cm) hl (cm) Ei (%) hd (cm) hl (cm) Ei (%) hd (cm) hl (cm) Ei (%)

1 79.93 79.88 ÿ0.58 95.55 95.38 ÿ0.69 112.60 112.65 0.11 130.18 130.56 0.60 146.35 147.45 1.38 215.75 217.81 1.19

2 79.96 79.88 ÿ0.87 95.61 95.50 ÿ0.39 112.70 113.16 1.03 130.28 131.19 1.45 146.30 147.70 1.76 216.00 218.57 1.48

3 79.17 79.25 0.87 93.27 93.47 0.78 108.71 109.22 1.15 124.64 126.37 2.74 139.01 142.49 4.38 200.18 201.93 1.01

4 80.01 79.88 ÿ1.45 95.76 95.50 ÿ0.98 112.90 112.52 ÿ0.86 130.63 130.56 ÿ0.12 146.61 146.94 0.42 216.89 217.04 0.09

5 80.04 80.01 ÿ0.29 95.86 95.89 0.10 113.08 113.54 1.03 130.94 131.32 0.60 146.94 148.08 1.44 217.68 218.06 0.22

6 80.37 80.26 ÿ1.16 96.82 96.77 ÿ0.20 114.91 114.68 ÿ0.52 133.22 133.10 ÿ0.20 149.91 150.11 0.26 224.08 224.03 ÿ0.03
7 78.84 78.99 1.74 92.30 92.84 2.06 107.11 108.20 2.46 122.22 124.84 4.15 136.42 140.97 5.73 194.06 200.79 3.89

8 78.89 78.99 1.16 92.46 92.96 1.96 107.32 108.46 2.58 122.61 125.10 3.95 136.86 141.35 5.66 195.07 201.17 3.53

9 75.64 74.80 ÿ9.57 82.88 83.06 0.69 90.93 91.19 0.57 99.36 102.11 4.35 107.52 114.81 9.18 131.60 141.61 5.79

10 75.36 75.31 ÿ0.58 82.02 81.92 ÿ0.39 89.66 89.41 ÿ0.57 97.31 98.55 1.98 105.31 111.00 7.17 125.98 133.86 4.56

11 75.97 75.95 ÿ0.29 83.82 83.82 0.00 92.58 91.82 ÿ1.72 101.68 103.51 2.90 110.49 116.33 7.36 138.00 144.40 3.70

12 76.73 76.96 2.61 86.13 87.00 3.33 96.70 97.79 2.46 107.26 111.38 6.53 117.45 125.60 10.27 153.09 165.10 6.95

13 76.86 76.96 1.16 86.46 87.38 3.53 97.31 98.68 3.09 108.08 112.40 6.85 118.41 127.00 10.82 155.17 167.39 7.07

14 76.40 76.45 0.58 85.12 85.60 1.86 94.87 95.63 1.72 104.78 107.32 4.03 114.20 120.90 8.45 146.53 157.99 6.63

15 76.61 76.58 ÿ0.29 85.73 86.23 1.96 96.01 96.52 1.15 106.27 109.73 5.48 116.18 123.44 9.15 150.83 163.20 7.16

16 76.81 76.71 ÿ1.16 86.39 86.61 0.88 97.03 97.28 0.57 107.80 110.36 4.07 118.57 123.95 6.78 154.41 163.96 5.53

17 73.05 72.77 ÿ3.19 75.21 75.18 ÿ0.10 77.90 77.72 ÿ0.40 80.67 82.30 2.58 84.02 89.41 6.78 79.83 86.49 3.85

18 72.75 72.39 ÿ4.06 74.30 74.42 0.49 76.53 76.45 ÿ0.17 78.49 78.99 0.81 81.33 85.09 4.74 73.79 77.98 2.42

19 73.71 73.53 ÿ2.03 77.17 77.47 1.18 81.23 81.79 1.26 85.42 88.65 5.12 90.22 96.14 7.46 92.91 100.46 4.36

20 73.13 72.90 ÿ2.61 75.41 75.82 1.57 78.44 78.74 0.69 81.18 83.31 3.39 84.91 90.68 7.26 81.15 89.66 4.92

21 74.27 74.04 ÿ2.61 78.82 78.99 0.69 83.97 84.33 0.80 89.43 92.96 5.60 95.30 100.46 6.50 103.99 113.67 5.60

22 72.85 72.52 ÿ3.77 74.60 74.68 0.29 76.96 77.34 0.86 79.20 83.06 6.13 81.99 87.63 7.10 75.69 87.76 6.98

23 72.57 72.26 ÿ3.48 73.74 73.91 0.69 75.39 75.82 0.97 77.11 79.50 3.79 79.35 83.82 5.63 70.05 78.11 4.66

24 72.29 71.88 ÿ4.64 72.95 72.64 ÿ1.18 74.14 74.17 0.06 75.21 77.09 2.98 76.99 80.39 4.29 64.82 71.63 3.94

Eh (%) 2.11 1.08 1.12 3.35 5.83 3.98
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the DDA program. The algorithm can be used, for
instance, to model the di�erent phases of underground
excavation. The algorithm consists of an iterative pro-
cedure where in situ stresses are ®rst computed in all
rock blocks before excavation. Then, the new stress
distribution is determined following the ®rst excavation
step. The new stresses are then taken as initial stresses
for the next excavation step. This iterative procedure
continues until the end of the excavation process.

4.2. Analysis of excavation sequence of tunnels

As an example of application of the method, a rock
mass 30 m wide and 20 m high consisting of 17 rock

blocks is considered (Fig. 12). Three point loads are
applied on block #15, to simulate structural loads at
the ground surface. The intact rock has a unit weight
of 23.6 kN/m3, a Young's Modulus of 48 GPa, and a
Poisson's ratio of 0.3. The joints have a friction angle
of 408 and a cohesion of 4.0 MPa. No water ¯ow was
considered. Two sequences of excavation of a horse-
shoe tunnel in the rock mass of Fig. 12 were con-
sidered and are referred to as top-to-bottom and
bottom-to-top. In the top-to-bottom (ex-t) excavation
sequence, ®ve blocks (numbered #32, #33, #31, #30,
#29 in Fig. 12) were removed sequentially as shown in
Fig. 13(b±f). In the bottom-to-top (ex-b) excavation
sequence, ®ve di�erent blocks (numbered #29, #30,
#31, #32, #33) were removed sequentially as shown in
Fig. 14(b±f). The major principal stress s1 in blocks
#18, #19, #23, #22 and #20 located on the left of the
excavation surface was calculated for both excavation
sequences. The results are plotted in Fig. 15(a,b,c,d,e).

Figure 15(a±e) indicate that the top-to-bottom exca-
vation sequence induces much less stress concentration
in the rock blocks adjacent to the excavated rock sur-
face than the bottom-to-top excavation sequence. The
results also show that in the bottom-to-top excavation
sequence, the stress increases rapidly, which is more
critical for the stability of the ®nal excavated rock sur-

Fig. 9. Analysis of a pressurized crack in an in®nite domain. (a) Representative section of a crack, (b) DDA model with crack walls divided into

6 subblocks, (c) DDA model with crack walls divided into 10 subblocks.

Table 3

E�ect of water level on the stability of the tunnel in Fig. 11

Water level (m) Roof settlement (mm)

0 165.2

100 237.6

200 706.4

300 1632.8

400 2088.2

500 4514.0
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face. At the ®nal excavation step (step 5), the top-to-
bottom excavation sequence shows slightly smaller
stresses than the bottom-to-top excavation sequence.
These results indicate that the ®nal stress distribution
is in¯uenced by the stress history induced by the exca-
vation. This stress-path dependency is associated with
geometrical nonlinearities in the DDA method as
energy losses take place by friction along the joints
and relative deformation of the blocks.

5. Modeling reinforcement by shotcrete and rockbolts

5.1. Shotcrete and concrete lining algorithm

A new algorithm to model shotcrete or concrete lin-
ing has been developed and implemented into the
DDA program. The algorithm can be used to model
the functions of shotcrete or concrete lining, i.e. sealing

of rock surfaces, preserving inherent ground strength,
and providing a structural arch. The algorithm creates

shotcrete or concrete lining elements along the exca-
vated rock surface with speci®ed thickness and ma-

terial properties, in order to simulate the application
of shotcrete or the installation of concrete lining on
already reinforced and excavated rock surfaces. After

tunnel excavation, the geometrical data of the rock
blocks along the excavated rock surface such as block

numbers and nodal coordinates from the DDA pro-
gram are used to compute block numbers and nodal
coordinates of the shotcrete elements. The shotcrete el-

ements are modeled as subblocks with speci®ed thick-
ness and material properties. The algorithm adds the

shotcrete elements to existing rock blocks, thus chan-
ging the sti�ness matrix of the blocky system. The in-

itial stress in the shotcrete is assumed to be zero. As
the rock blocks deform, the shotcrete elements are
stressed. The new algorithm allows shotcrete elements

Fig. 10. Comparison between analytical and numerical solutions. (a) Case of 6 subblocks, (b) Case of 10 subblocks.
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to be installed step-by-step and therefore to simulate
the construction sequence. In that case, the stresses in
the shotcrete elements in a previous step are used as
initial stresses for the next step, whereas the stresses in
the newly installed shotcrete elements are assumed to
be zero.

5.2. Rockbolt algorithm

The rockbolt algorithm suggested by Shi [1] was
modi®ed to be applicable to the case of sequential ex-
cavation and reinforcement, in which the axial force of
a rockbolt at a previous step is applied as preloading
in the next step. The algorithm applies a spring with
speci®ed sti�ness between the starting and ending
points of the rockbolt, thus changing the sti�ness
matrix of the blocky system. Consider a rockbolt con-
necting point P1 (x1, y1) of block 1 and point P2 (x2,
y2) of block 2, which are not necessarily the vertices of
the blocks as shown in Fig. 16(a). The length of the
rockbolt is

l �
������������������������������������������������
�x1 ÿ x2�2 � � y1 ÿ y2�2

q
�36�

The preloading of the rockbolt is assumed to be
zero. As the rock blocks move as shown in Fig. 16(b),
the rockbolt extends by an amount Dl equal to

Fig. 11. E�ect of water level on tunnel stability. (a) No water, (b)

W.L.: 100 m, (c) W.L.: 200 m, (d) W.L.: 300 m, (e) W.L.: 400 m, (f)

W.L.: 500 m.

Fig. 12. Initial con®guration for the analysis of sequential excavation

of a tunnel.

Fig. 13. Stress distribution for top-to-bottom excavation sequence.

(a) Initial state (step 0), (b) step 1, (c) step 2, (d) step 3, (e) step 4, (f)

step 5.
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Dl �
�
�Di �T�Ti �T

�
lx
ly

�
ÿ �Dj

�T�
Tj

�T� lx
ly

��
, �37�

where

lx � 1

l
�x1 ÿ x2� ly � 1

l
� y1 ÿ y2� �38�

are the direction cosines of the rockbolt. If s is the
sti�ness of the rockbolt, the axial force in the rockbolt
is

F � ÿsDl
l

�39�

The axial force in the rockbolt at a previous step is
applied to the rockbolt as preloading in the next step
as shown in Fig. 16(c).

The components Fx and Fy of the preloading force
at point P1 '(x1 ',y1 ') in block 1 are equal to

Fx � ÿF lx and Fy � ÿF ly �40�
Likewise, the components Fx and Fy of the preload-

ing force at point P2 '(x2 ',y2 ') in block 2 are equal to

Fx � F lx and Fy � F ly �41�
The preloading force at each point can be con-

sidered as point loading. For each block, the 6 � 1

submatrix for point loading is computed using Eqs.
(29±32) and is added to the submatrix Fi in the global
system of Eq. (4).

5.3. E�ect of reinforcement on tunnel stability

The excavation and reinforcement by rockbolt of a
(half) circular tunnel is considered as an example of
application of the method. The tunnel has a diameter,
D, of 10 m and is located at a depth of 409.6 m below
the surface. The water level is 400 m above the center
of the tunnel. The domain of analysis is 5D (50 m)
wide and 4D plus tunnel height (46.71 m) high. A ver-
tical compressive stress of 10 MPa is applied on the
top boundary of the domain (to simulate the load as-
sociated with 384.6 m of rock) and no lateral defor-
mation is allowed. The intact rock has a unit weight of
26 KN/m3, a Young's modulus of 3.6 GPa, and a
Poisson's ratio of 0.2. The joints have a spacing of 4
m, a friction angle of 358, and a cohesion of 0.5 MPa.
After excavation of the tunnel, two rockbolts (unten-
sioned end-bearing type) were installed across the two
vertical joints intersecting the tunnel roof. The sti�ness
of the rockbolts varies between 0 and 1 � 1012 N/m.

Without rockbolt reinforcement, the tunnel roof col-
lapses as shown in Fig. 17(a) and the settlement of the

Fig. 14. Stress distribution for bottom-to-top excavation sequence. (a) Initial state (step 0), (b) step 1, (c) step 2, (d) step 3, (e) step 4, (f) step 5.
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tunnel roof was found to be equal to 1632.8 mm
(Table 4). As the sti�ness of the rockbolts increases,
the tunnel roof settlement decreases (see Table 4 and
Fig. 17(b,c,d,e,f)). Also, Table 4 indicates that the
axial force in the rockbolts increases with the sti�ness
of the rockbolts.

6. Case study: modeling the excavation and
reinforcement of the Unju tunnel

The Unju tunnel was selected as a case study
(Daewoo Institute of Construction Technology [15]).

The tunnel is located in Yeongigun

Chungchungnamdo (Korea) and is part of the

``Kyungbu High Speed Railway Project''. Its depth

ranges between 0 and 277.6 m (109K 820) and has a

length of 4.02 km. A tunnel section (Station 109K 440)

was selected for numerical analysis using our DDA

program.

The half circular tunnel was excavated by the single

bench cut method, and reinforced by shotcrete (thick-

ness of 10 cm), rockbolts (diameter of 25 mm and

length of 4 m) and concrete lining (thickness of 0.4 m).

Rockbolts (untensioned end-bearing type) were

installed along the upper half surface of the tunnel

Fig. 15. Variation of s1 with step of excavation for the two excavation sequences of Figs. 13 and 14. (a) block #18, (b) block #19, (c) block #23,

(d) block #22, (e) block #20.
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only. The spacing of the rockbolts was 2 m longitudin-
ally and 11.38 latitudinally (with a total number of 15).
The ground condition above the tunnel is represented
in Fig. 18. The radius of the excavation is 7.6 m (tun-
nel radius=7.1 m, shotcrete thickness=0.1 m, lining
thickness=0.4 m). The geology of the station consists
of augen and banded gneiss. From the geological site
investigation report, the ground above the tunnel is
mostly hard rock with a very small depth of weathered
rock and soft rock. The intact rock has a unit weight
of 26 kN/m3, a Young's modulus of 3.6 GPa, and a
Poisson's ratio of 0.2. The joints have a friction angle
of 33.58 and a cohesion of 0.11 MPa. The shotcrete
has a unit weight of 23 kN/m3, a Young's modulus of

15 GPa, and a Poisson's ratio of 0.25. The Young's
modulus of the rockbolts is 214 GPa. The domain of
analysis was set as 5D horizontally and 4D (plus tun-
nel height) vertically, where D is the tunnel diameter
equal to 15.2 m. A vertical compressive stress of 4.83
MPa was applied on the top boundary of the domain
(to simulate the load associated with 185.7 m of rock).

The joint location and orientation data for station
109K 440 used in the DDA analysis were obtained

Fig. 16. Computation of rockbolt preloading. (a) Initial state, (b)

Deformed state, (c) Conversion of axial force of rockbolt as preload-

ing in next step.

Fig. 17. E�ect of rockbolt on tunnel stability for di�erent values of

rockbolt sti�ness. (a) No rockbolt, (b) sti�ness: 1 � 106 N/m, (c)

sti�ness: 1 � 107 N/m, (d) sti�ness: 1 � 109 N/m, (e) sti�ness:

1 � 1011 N/m, (f) sti�ness: 1 � 1012 N/m.

Table 4

E�ect of rockbolt sti�ness on the stability of the tunnel in Fig. 17

Rockbolt Sti�ness (N/m) Rockbolt Axial force (N ) Roof settlement (mm) Rockbolt reinforcement

0 0 1632.8 no

1 � 106 2.29 � 105 1204.1 yes

1 � 107 1.61 � 106 871.9 yes

1 � 109 3.39 � 107 286.6 yes

1 � 1011 7.91 � 108 108.8 yes

1 � 1012 1.20 � 109 69.3 yes
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from tunnel face mapping photographs at Station
109K 442 located near the station of interest. The
joints were assumed to be continuous and to extend
over the entire domain of analysis. The initial geome-
try is shown in Fig. 19(a). Construction (excavation
and reinforcement) of the tunnel was conducted in ®ve
steps outlined in Table 5. These ®ve steps were simu-
lated using our DDA program. The stress distribution
at the end of each step is shown in Fig. 19(b±f).

The tunnel roof settlement, the axial force in the 15
rockbolts, and the tangential stresses in the shotcrete
segments were predicted using the DDA analysis and
compared with actual ®eld measurements. The com-
puted and measured data are listed in Table 6. These
results indicate that rockbolts #7 and #10, which inter-
sect natural rock joints, develop large tensile forces (42
and 81 kN). This observation shows the e�ectiveness
of rockbolt reinforcement in preventing relative move-
ment between blocks in a rock mass. The stresses in
the shotcrete show small compression. The results in
Table 6 indicate that rockbolts act as a major re-
inforcement of rock blocks and shotcrete functions as
auxiliary reinforcement such as sealing of rock surface,
preserving inherent ground strength and providing a
structural arch.

7. Conclusion

Three major extensions were implemented into the
original DDA program of Shi [1] and modi®ed by Lin
[8]. The extensions include hydro-mechanical coupling
between rock blocks and water ¯ow in fractures,
sequential loading and unloading, and rock reinforce-
ment by shotcrete, rockbolt and concrete lining.

The hydro-mechanical coupling algorithm is very
important in rock engineering problems where seepage
takes place in natural fractures and joints. Seepage

forces and water pressure can be controlling factors in
rock mass stability as illustrated in the tunnel example
presented in this paper. The new algorithm is limited
to two-dimensional steady state ¯ow and needs to be
modi®ed to include transient ¯ow phenomena.

Fig. 18. Ground condition of the Unju tunnel (station 109K 440).

Fig. 19. Construction sequence of the Unju tunnel (109K 440). (a)

Step 0, (b) step 1, (c) step 2, (d) step 3, (e) step 4, (f) step 5.
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The sequential loading (or unloading) algorithm
allows for changes in loading conditions that can
occur in rock engineering problems. In the examples
presented herein, the changes were associated with the
excavation of underground openings. The same algor-
ithm could also be used to model surface excavations
associated with road cuts, open pit mining, quarrying,
etc. It is likely that the overall ®nal stability of a rock
mass depends on the excavation sequence and the cor-
responding stress history. This interesting phenomenon
can now be studied and researched using our new
DDA program.

The shotcrete or concrete lining algorithm creates
shotcrete or concrete lining elements along the exca-

vated rock surface with speci®ed thickness and ma-
terial properties, which simulates applying shotcrete or
installing concrete lining on already reinforced and
excavated rock surfaces. The rockbolt algorithm
suggested by Shi [1] was modi®ed to be applicable to
the cases of sequential excavation and reinforcement,
in which axial forces of rockbolts at a previous step
are applied to the rockbolts as preloading in the next
step.

The DDA program with the three new extensions
can now be used as a practical tool in the design of
underground structures such as tunnels or caverns. It
can also be used to analyze the stability of concrete
dams on fractured rock masses. The main contribution

Table 5

Steps of excavation and reinforcement for the Unju tunnel

Step Contents

0 Initial state without excavation

1 Excavation of upper half section

2 Reinforcement of the upper half section with shotcrete and rockbolts

3 Excavation of lower half section

4 Reinforcement of lower half section with shotcrete

5 Reinforcement of full section with concrete lining

Table 6

Comparison between computed and measured data (Unju tunnel)

Item DDA Measured data App.

Roof settlement (mm) 4.3 4 +: Down, ÿ: Up

Rock bolt axial force (kN) ÿ3.97 (1) ÿ3.88 (1) ÿ: Compression, +: Extension

ÿ0.70 (2)

4.82 (3)

3.03 (4)

ÿ0.85 (5)

0.93 (6)

41.98 (7)

ÿ0.51 (8) ÿ0.20 (8)

9.68 (9)

80.74 (10)

6.07 (11)

7.01 (12)

ÿ4.86 (13)

ÿ4.58 (14) ÿ4.08 (14)

2.87 (15)

Tangential shotcrete stress (MPa) ÿ0.007 (a)

ÿ0.013 (b) ÿ0.014 (b)

ÿ0.015 (c)

ÿ0.015 (d)

ÿ0.013 (e) ÿ0.012 (e)

ÿ0.035 (f)

ÿ0.035 (g)

ÿ0.036 (h)

ÿ0.026 (i)

ÿ0.009 (j) ÿ0.011 (j)
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of this paper is that phases of construction (exca-
vation, reinforcement) can now be simulated in a more
realistic way. It is noteworthy that the method pre-
sented in this paper is limited to solving two-dimen-
sional problems.

Acknowledgements

The support of Daewoo Corporation (Construction
Division) is gratefully acknowledged.

References

[1] Shi GH. Discontinuous deformation analysis: a new numerical

model for the statics and dynamics of block systems. Ph.D. the-

sis, University of California, Berkeley, CA, 1988.

[2] Shi GH, Goodman RE. Generalization of two-dimensional dis-

continuous deformation analysis for forward modeling.

International Journal for Numerical and Analytical Methods in

Geomechanics 1989;13:359±80.

[3] Shi GH. Forward and backward discontinuous deformation

analyses of rock systems. In: Proceedings of International

Conference of Rock Joints. Norway: Leon, 1990. p. 731±43.

[4] Ke TC, Goodman RE. Discontinuous deformation analysis and

`the arti®cial joint concept'. In: Proceedings of 1st NARMS,

UT, Austin, 1994. p. 599±606.

[5] Yeung MR, Klein SJ. Application of the discontinuous defor-

mation analysis to the evaluation of rock reinforcement for tun-

nel stabilization. In: Proceedings of 1st NARMS, UT, Austin,

1994. p. 607±14.

[6] Salami MR, Banks D. Discontinuous deformation analysis

(DDA) and simulations of discontinuous media. In: Proc. of the

First International Forum on Discontinuous Deformation

Analysis (DDA) and Simulations of Discontinuous Media,

Berkeley, CA, 1996.

[7] Ohnishi Y. Proc. of the Second International Conference on

Analysis of Discontinuous Deformation, Kyoto, Japan, 1997.

[8] Lin CT. Extensions to the discontinuous deformation analysis

for jointed rock masses and other block systems. Ph.D. thesis,

University of Colorado at Boulder, CO, 1995.

[9] Szechy K. The Art of Tunnelling. Budapest: Akademiai Kiado,

1967.

[10] Louis C. A study of groundwater ¯ow in jointed rock and its

in¯uence on the stability of rock masses. Imperial College,

Rock Mechanics Research Report No. 10, 1969.

[11] Asgian MI. A numerical study of ¯uid ¯ow in deformable,

naturally fractured reservoirs. Ph.D. thesis, University of

Minnesota, MN, 1988.

[12] Amadei B, Carlier JF, Illangasekare TH. E�ects of turbulence

on fracture ¯ow and advective transport of solutes. Int J Rock

Mech Min Sci Geomech Abs 1995;32:343±56.

[13] Grenoble BA. In¯uence of geology on seepage and uplift in

concrete gravity dam foundations. Ph.D. thesis, University of

Colorado at Boulder, CO, 1989.

[14] Sneddon IN, Lowengrub M. Crack problems in the classical

theory of elasticity. New York: John Wiley and Sons, Inc, 1969.

[15] Daewoo Institute of Construction Technology. Final report on

instrumentation of UNJU tunnel ± Kyungbu High Speed Rail

Way Project 4-3 Section. Suwon, Korea: Deawoo Co.

(Construction Division), 1995.

Y. Kim et al. / International Journal of Rock Mechanics and Mining Sciences 36 (1999) 949±970970


