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Abstract

In this paper, a recently proposed method by E. Pan and F.G. Yuan (Int. J. Solids Struct., 2000) for the
calculation of the elastic bimaterial GreenÕs functions is extended to the analysis of three-dimensional
GreenÕs functions for anisotropic piezoelectric bimaterials. The method is based on the Stroh formalism
and two-dimensional Fourier transforms in combination with MindlinÕs superposition method. We ®rst
derive GreenÕs functions in exact form in the Fourier transform domain. When inverting the Fourier
transform, a polar coordinate transform is introduced so that the radial integral from 0 to +1 can be
carried out exactly. Therefore, the bimaterial GreenÕs functions in the physical domain are derived as a sum
of a full-space GreenÕs function and a complementary part. While the full-space GreenÕs function is in an
explicit form, as derived recently by E. Pan and F. Tonon (Int. J. Solids Struct., 37 (2000): 943±958), the
complementary part is expressed in terms of simple regular line integrals over [0, 2p] that are suitable for
standard numerical integration. Furthermore, the present bimaterial GreenÕs functions can be reduced to
the special cases such as half-space, surface, interfacial, and full-space GreenÕs functions. Uncoupled so-
lutions for the purely elastic and purely electric case can also be simply obtained by setting the piezoelectric
coe�cients equal to zero. Numerical examples for GreenÕs functions are given for both half-space and
bimaterial cases with transversely isotropic and anisotropic material properties to verify the applicability of
the technique. Certain interesting features associated with these GreenÕs functions are observed and dis-
cussed, as related to the selected material properties. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Fundamental three-dimensional GreenÕs functions are of great interest to the solution of in-
clusion problems and of the boundary integral equations. Under the assumption of linear elastic
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deformation, various three-dimensional GreenÕs functions have been derived. A brief review can
be found in a recent paper by Pan and Yuan [1] where they derived the three-dimensional GreenÕs
functions in anisotropic elastic bimaterials in terms of a regular line integral over [0, 2p].

Because of their inherent coupling between mechanical and electric behavior, piezoelectric
materials are now being widely applied to di�erent engineering technologies. This stimulates
various theoretical studies on piezoelectric materials, in particular, on GreenÕs functions in such
materials. It is well known that under the assumption of two-dimensional deformation, the exact
closed-form GreenÕs functions in anisotropic piezoelectric in®nite plane, half plane, and bimaterial
full plane can be derived based on either the Stroh formalism or the direct complex function
method [3±5]. With these 2D GreenÕs functions, fracture mechanics problems in anisotropic pi-
ezoelectric media can then be easily analyzed using the single-domain boundary-element formu-
lation [5]. For the corresponding three-dimensional deformation, the anisotropic piezoelectric
GreenÕs functions are unlikely to obtain in an exact closed form, with the exception of transverse
isotropy. For the case of transversely isotropic piezoelectric materials, GreenÕs functions in an
in®nite space, a half space and bimaterials have been derived recently by Dunn and Wienecke [6,7]
and Ding et al. [8±10]. Therefore, for the general anisotropic piezoelectric 3D case, the numerical
integral formulation developed by Barnett [11] was applied to calculate the 3D full-space GreenÕs
functions, as extensively studied by Chen [12] and Chen and Lin [13]. Recently Pan and Tonon [2]
derived the 3D full-space GreenÕs functions in terms of the eigenvalues, without numerical inte-
gration being involved. So far, however, 3D GreenÕs functions are not available for either general
anisotropic piezoelectric half-space or general anisotropic piezoelectric bimaterials.

Stimulated by a very recent work of Pan and Yuan [1] where the 3D GreenÕs functions in
anisotropic elastic bimaterials using the Stroh formalism and two-dimensional Fourier transform
in combination with MindlinÕs superposition method [14] have been derived, this paper presents
the 3D GreenÕs functions in anisotropic piezoelectric half space and bimaterials. Here we further
demonstrate that the Stroh formalism can equally and successfully be applied to the three-di-
mensional anisotropic piezoelectric bimaterials.

Numerical examples are also presented for both half-space and bimaterial cases with transversely
isotropic and anisotropic material properties. The responses of GreenÕs functions for di�erent half-
space and bimaterial cases due to di�erent types of point sources are discussed. It is observed that
some of these GreenÕs functions are material-dependent (i.e., in the source region with the same
material properties, GreenÕs functions behave similarly for both half-space and bimaterial cases),
others are case-dependent (i.e., GreenÕs functions behave similarly for a half-space case or bimaterial
case despite whether the material properties are transversely isotropic or anisotropic). Another
interesting feature is associated with the responses of GreenÕs electric displacements where the
electric displacements in the anisotropic region are negligible compared to those in the transversely
isotropic region. This feature, however, is due to the magnitude di�erence of the piezoelectric and
dielectric constants between the selected anisotropic and transversely isotropic materials.

2. Basic equations

Assuming a static deformation, the ®eld equations for a linear and generally anisotropic
piezoelectric solid consist of [15]:
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Equilibrium equations:

rji;j � fi � 0;

Di;i ÿ q � 0;
�1�

where rij and Di are the stress and electric displacement, respectively; fi and q are the body force
and electric charge, respectively. In this and the following sections, lowercase (uppercase) sub-
scripts will always range from 1 to 3 (1 to 4). Summation over repeated lowercase (uppercase)
subscripts is implied. A subscript comma denotes the partial di�erentiation with respect to the
coordinates (i.e., x1, x2, x3 or x, y, z).

Constitutive relations:

rij � Cijlmclm ÿ ekjiEk;

Di � eijkcjk � eijEj;
�2�

where cij is the strain and Ei the electric ®eld; Cijlm, eijk and eij are the elastic moduli, the piezo-
electric coe�cients, and the dielectric constants, respectively. The uncoupled state (purely elastic
and purely electric deformation) can be obtained by simply setting eijk � 0. The constants satisfy
the following symmetries:

Cijlm � Cjilm � Clmij;

ekji � ekij;

eij � eji:

Elastic strain-displacement and electric ®eld-potential relations:

cij �
1

2
�ui;j � uj;i�;

Ei � ÿ/;i;
�3�

where ui and / are the elastic displacement and electric potential, respectively.
The notation introduced by Barnett and Lothe [3] has been shown to be very convenient for

the analysis of piezoelectric problems. With this notation, the elastic displacement and electric
potential, the elastic strain and electric ®eld, the stress and electric displacement, and the elastic
and electric moduli (or coe�cients) can be grouped together as [3,5]:

uI � ui; I � 1; 2; 3;
/; I � 4;

�
�4�

cIj � cij; I � 1; 2; 3;
ÿEj; I � 4;

�
�5�
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riJ � rij; J � 1; 2; 3;
Di; J � 4;

�
�6�

CiJKl �
Cijkl; J ;K � 1; 2; 3;
elij; J � 1; 2; 3; K � 4;
eikl; J � 4; K � 1; 2; 3;
ÿeil; J � K � 4:

8>><>>: �7�

It is noted that we have kept the original symbols instead of introducing new ones since they
can be easily distinguished by the range of uppercase subscripts. In terms of this shorthand no-
tation, the constitutive relations can be uni®ed into a single equation

riJ � CiJKlcKl: �8�

Similarly, the equilibrium equations in terms of the extended stresses can be recast into

riJ ;i � fJ � 0; �9�

with fJ being de®ned as

fJ � fj; J � 1; 2; 3;
ÿq; J � 4:

�
�10�

It is observed that the structure of Eqs. (8) and (9) is similar to its purely elastic counterpart.
Therefore, the solution method developed recently by Pan and Yuan [1] can be extended and
applied to the current GreenÕs function analysis for anisotropic piezoelectric materials. For easy
reference, we will, in the following sections, use the extended displacement to stand for the elastic
displacement and electric potential as de®ned in Eq. (4), and use the extended stress for the stress
and electric displacement as de®ned in Eq. (6).

3. Problem description

We now consider an anisotropic piezoelectric bimaterial full space where x3 > 0 and x3 < 0 are
occupied by materials 1 and 2, respectively (Fig. 1), with the interface being at x3 � 0 plane.
Without loss of generality, we assume that an extended concentrated force f � (f1, f2, f3,)q) is
applied at (0, 0, d) in material 1 with d > 0.

The continuity conditions at the interface x3 � 0 require that the extended displacement and
traction vectors are continuous, i.e.,

u1jx3�0� � u2jx3�0ÿ ; t1jx3�0� � t2jx3�0ÿ; �11�

where subscripts 1 and 2 denote, respectively, the material half-spaces 1 and 2; t1 and t2 are the
extended traction vectors on x3� constant plane with components de®ned as
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t � �r31; r32;r33;D3�: �12�

At the plane x3 � d where the extended point force is applied, the extended displacement and
traction vectors satisfy the following conditions:

u1jx3�dÿ � u1jx3�d� ;

t1jx3�dÿ ÿ t1jx3�d� � d�x1�d�x2�f :
�13�

It is also required that the solutions in the region of x3 > d and in the region of x3 < 0 be
bounded as x3 approaches +1 and )1, respectively.

4. Stroh formalism and general solutions in the transformed domain

Similar to the purely elastic bimaterial problem [1], we introduce the two-dimensional Fourier
transforms

~uK�y1; y2; x3� �
Z Z

uK�x1; x2; x3�eiy�x dx1 dx2; �14�

where y � �y1; y2� is the transform vector; x denotes �x1; x2�, and

y � x � y1x1 � y2x2:

In the transformed domain, Eq. (9), without the extended forces, becomes

CaIKbyayb~uK � i�CaIK3 � C3IKa�ya~uK;3 ÿ C3IK3~uK;33 � 0; �15�

where a;b � 1; 2. Now, letting

y � gn; n �
n1

n2

0

24 35 � cosh
sinh

0

24 35; m �
0
0
1

24 35; �16�

Fig. 1. An anisotropic piezoelectric bimaterial full space subjected to an extended concentrated force f applied at

(0, 0, d) in material 1.
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a general solution of Eq. (15) can then be expressed as

~u�y1; y2; x3� � aeÿipgx3 ; �17�

with p and a satisfying the following eigenrelation:

�Q � p�R� RT� � p2T�a � 0; �18�

where

QIK � CjIKsnjns; RIK � CjIKsnjms; TIK � CjIKsmjms; �19�

and the superscript T denotes the transpose. Eq. (18) is the eighth polynomial in p and is the
piezoelectric Stroh eigenrelation in the oblique plane spanned by n and m de®ned in Eq. (16). This
equation is a direct extension of the elastic Stroh eigenrelation with the sixth polynomial in p
[1,3,4]. It has been shown [4,16] that the eigenvalues of Eq. (18) are either complex or purely
imaginary. Once the eigenvalue problem (18) is solved, the extended displacements are obtained
by Eq. (17). The extended traction vector t on the x3� constant plane and the extended in-plane
stress vector s are related to the extended displacements as

t � �r31; r32;r33;D3�;
� �C31KluK;l;C32KluK;l;C33KluK;l;C34KluK;l�;

�20�

s � �r11; r12;r22;D1;D2�;
� �C11KluK;l;C12KluK;l;C22KluK;l;C14KluK;l;C24KluK;l�:

�21�

Making use of the extended displacement solution (17), the transformed extended traction and
in-plane stress vectors can be found as

~t � ÿigbeÿipgx3 ; �22�

~s � ÿigceÿipgx3 ; �23�

with

b � �RT � pT�a � ÿ 1

p
�Q � pR�a;

c � Ha;
�24�
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where matrix H is de®ned by

H �

C111ana � pC1113 C112ana � pC1123 C113ana � pC1133 C114ana � pC1143

C121ana � pC1213 C122ana � pC1223 C123ana � pC1233 C124ana � pC1243

C221ana � pC2213 C222ana � pC2223 C223ana � pC2233 C224ana � pC2243

C141ana � pC1413 C142ana � pC1423 C143ana � pC1433 C144ana � pC1443

C241ana � pC2413 C242ana � pC2423 C243ana � pC2433 C244ana � pC2443

266664
377775; �25�

with a � 1; 2.
If pm, am, and bm �m � 1; 2; . . . ; 8� are the eigenvalues and the associated eigenvectors, we let

Im pJ > 0; pJ�4 � �pJ ; aJ�4 � �aJ ; bJ�4 � �bJ �J � 1; 2; 3; 4�;
A � �a1; a2; a3; a4�; B � �b1; b2; b3; b4�; C � �c1; c2; c3; c4; c5�;

�26�

where Im stands for the imaginary part and the overbar denotes the complex conjugate. Assuming
that pJ are distinct, and the eigenvectors aJ , and bJ satisfy the following normalization relation [3]

bT
I aJ � aT

I bJ � dIJ ; �27�

with dIJ being the Kronecker delta of 4� 4, then the general solutions of Eq. (17) in the trans-
formed domain can be obtained by superposing eight eigensolutions of Eq. (18), i.e.,

~u�y1; y2; x3� � igÿ1 �Aheÿi �p�gx3i�q� igÿ1Aheÿip�gx3iq0;
~t�y1; y2; x3� � �Bheÿi �p�gx3i�q� Bheÿip�gx3iq0;
~s�y1; y2; x3� � �Cheÿi �p�gx3i�q� Cheÿip�gx3iq0;

�28�

where �q and q0 are arbitrary complex vectors to be determined and

heÿip�gx3i � diag�eÿip1gx3 ; eÿip2gx3 ; eÿip3gx3 ; eÿip4gx3 �: �29�

It is noteworthy that, besides their obvious dependence on material properties, matrices A, B,
C, vectors �q, q0, and pj are also functions of the unit vector n.

5. Bimaterial Greens functions in the transformed domain

For the anisotropic piezoelectric bimaterials, the continuity condition in Eq. (11) at the in-
terface x3 � 0 and the condition (13) at x3 � d become, in the transformed domain, as

~u1jx3�0� � ~u2jx3�0ÿ ; ~t1jx3�0� � ~t2jx3�0ÿ ; �30�

and

~u1jx3�dÿ � ~u1jx3�d� ;

~t1jx3�dÿ ÿ ~t1jx3�d� � f :
�31�
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Using these conditions as well as the requirement that the solutions should be bounded as x3

approaches in®nity, the bimaterial GreenÕs functions in the transformed domain can be derived
similarly as for the purely elastic case [1].

For x3 > d (in material 1):

~u1�y1; y2; x3� � ÿigÿ1 �A1heÿi �p�1�� g�x3ÿd�i�q11 ÿ igÿ1 �A1heÿi �p�1�� gx3i�q1;

~t1�y1; y2; x3� � ÿ�B1heÿi �p�1�� g�x3ÿd�i�q11 ÿ �B1heÿi �p�1�� gx3i�q1;

~s1�y1; y2; x3� � ÿ �C1heÿi �p�1�� g�x3ÿd�i�q11 ÿ �C1heÿi �p�1�� gx3i�q1:

�32�

For 06 x3 < d (in material 1):

~u1�y1; y2; x3� � igÿ1A1heÿip�1�� g�x3ÿd�iq11 ÿ igÿ1 �A1heÿi �p�1�� gx3i�q1;

~t1�y1; y2; x3� � B1heÿip�1�� g�x3ÿd�iq11 ÿ �B1heÿi �p�1�� gx3i�q1;

~s1�y1; y2; x3� � C1heÿip�1�� g�x3ÿd�iq11 ÿ �C1heÿi �p�1�� gx3i�q1:

�33�

For x3 < 0 (in material 2):

~u2�y1; y2; x3� � igÿ1A2heÿip�2�� gx3iq2;

~t2�y1; y2; x3� � B2heÿip�2�� gx3iq2;

~s2�y1; y2; x3� � C2heÿip�2�� gx3iq2;

�34�

where again, subscripts 1 and 2 denote the quantities in materials 1 and 2, respectively, and

q11 � AT
1 f : �35�

The complex vectors �q1 and q2 in Eqs. (32)±(34) are determined by

q1 � G1heip�1�� gdiAT
1 f ;

q2 � G2heip�1�� gdiAT
1 f ;

�36�

G1 � ÿA
ÿ1

1 �M1 �M2�ÿ1�M1 ÿM2�A1;

G2 � Aÿ1
2 �M1 �M2�ÿ1�M1 �M1�A1;

�37�

where Ma are the extended impedance tensors de®ned as

Ma � ÿiBaAÿ1
a �a � 1; 2�: �38�
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Eqs. (32)±(34) are the anisotropic piezoelectric bimaterial GreenÕs displacements and stresses in
the Fourier transformed domain. Similar to the purely elastic bimaterial case, several important
features pertaining to these GreenÕs functions are highlighted below.
1. For the solutions in material 1 (x3 > 0), the ®rst terms in Eqs. (32) and (33) (with a superscript
1) are the GreenÕs function in the transformed domain for the anisotropic piezoelectric full
space. The inverse of this GreenÕs function, i.e., the physical-domain solutions, has been devel-
oped recently by Pan and Tonon [2] in an explicit form. Therefore, the Fourier inverse trans-
form needs to be carried out only for the second terms of the solutions, which are similar to the
complementary part of MindlinÕs solution [14]. This observation is critical in that the singular-
ities involved in the physical-domain bimaterial GreenÕs function actually appear only in the
full-space GreenÕs function. Since the latter function has an explicit-form representation, such
singularities can be evaluated easily. Thus, the complementary part of the bimaterial GreenÕs
function is regular everywhere in its assigned region with the only exception of x3 � d � 0.
However, this special case can be addressed in a similar way as for the purely elastic case
[1, Appendix].

2. The current anisotropic piezoelectric bimaterial GreenÕs functions can be reduced to the un-
coupled purely elastic and purely electric solutions by setting the piezoelectric coe�cients
eijk equal to 0.

3. When the material properties in materials 1 and 2 are identical, G1� 0 and G2� I, the expres-
sions of the coe�cients in Eq. (36) are reduced to

�q1 � 0;

q2 � heip�1�� gdiAT
1 f :

�39�

Thus, the bimaterial GreenÕs functions are reduced automatically to the solutions in the full
space.
4. When d ! 0�, the solutions in the region 06 x3 < d disappear, and the remaining GreenÕs

functions are reduced to the interfacial GreenÕs functions with an extended point force applied
at the interface of material 1.

5. Eqs. (32)±(34) can also be reduced to the half-space GreenÕs functions by ignoring Eq. (34) (i.e.,
solutions in material 2) and letting B2� 0. In this case, G1 in Eq. (37) is simpli®ed to

G1 � B
ÿ1

1 B1: �40�

6. Bimaterial Greens functions in the physical domain

Having obtained GreenÕs functions in the transformed domain, we now apply the inverse
Fourier transform to Eqs. (32)±(34). To handle the double in®nite integrals, the polar coordinate
transform is introduced so that the in®nite integral with respect to the radial variable can be
carried out exactly [1]. Thus, the ®nal bimaterial GreenÕs functions in the physical domain can be
expressed in terms of regular line integrals over [0, 2p]. In the following, we will use only the

E. Pan, F.G. Yuan / International Journal of Engineering Science 38 (2000) 1939±1960 1947



extended displacement solution in region x3 > d of material 1 to illustrate the derivation, and then
list the ®nal results for other GreenÕs functions.

Applying the Fourier inverse transform, the extended GreenÕs displacement in Eq. (32) becomes

u1�x1; x2; x3� � ÿ i

4p2

Z Z
fgÿ1 �A1heÿi �p�1�� g�x3ÿd�i�q11 eÿi�x1y1�x2y2�gdy1 dy2

ÿ i

4p2

Z Z
fgÿ1 �A1heÿi �p�1�� gx3i�q1eÿi�x1y1�x2y2�gdy1 dy2:

�41�

The ®rst integral in Eq. (41) corresponds to the full-space extended GreenÕs displacement that
is available in an explicit form [2]. Consequently, the inverse transform needs to be carried out
only for the second regular integral, or the complementary part. The singularities involved in
the bimaterial GreenÕs function appear only in the full-space solution that can be evaluated
easily because of its explicit-form expression. Denoting the full-space GreenÕs function by
u11 �x1; x2; x3� and introducing a polar coordinate transform consistent with the one de®ned in
Eq. (16), i.e.,

y1 � gcosh;

y2 � g sinh:
�42�

Then Eq. (41), also with use of (36a), becomes [1]

u1�x1; x2; x3� � u11 �x1; x2; x3�

ÿ i

4p2

Z 2p

0

dh
Z 1

0

�A1heÿi �p�1�� gx3iG1heip�1�� gdieÿig�x1 cos h�x2 sin h�AT
1 dg

� �
f : �43�

Since the matrices A1 and G1 are independent of the radial variable g, the integral with respect
to g can actually be performed analytically. Assuming that x3 6� 0 or d 6� 0, Eq. (43) can be
reduced to a compact form

u1�x1; x2; x3� � u11 �x1; x2; x3� � 1

4p2

Z 2p

0

�A1G �1�u AT
1 dh

� �
f ; �44�

where

�G �1�u �IJ �
�G1�IJ

ÿ�p�1�I x3 � p�1�J d ÿ �x1 cosh� x2 sinh�
: �45�

Using a similar procedure, other bimaterial GreenÕs functions can be derived and the results are
listed below:
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t1�x1; x2; x3� � t11 �x1; x2; x3� � 1

4p2

Z 2p

0

�B1G �1�t AT
1 dh

� �
f ;

s1�x1; x2; x3� � s11 �x1; x2; x3� � 1

4p2

Z 2p

0

�C1G �1�t AT
1 dh

� �
f ;

�46�

u2�x1; x2; x3� � ÿ 1

4p2

Z 2p

0

A2G �2�u AT
1 dh

� �
f ;

t2�x1; x2; x3� � ÿ 1

4p2

Z 2p

0

B2G �2�t AT
1 dh

� �
f ;

s2�x1; x2; x3� � ÿ 1

4p2

Z 2p

0

C2G �2�t AT
1 dh

� �
f :

�47�

In Eqs. (46) and (47), t11 �x1; x2; x3� and s11 �x1; x2; x3� are GreenÕs stresses in the full space and

�G �1�t �IJ �
�G1�IJ

�ÿ�p�1�I x3 � p�1�J d ÿ �x1 cosh� x2 sinh��2
; �48�

�G �2�u �IJ �
�G2�IJ

ÿp�2�I x3 � p�1�J d ÿ �x1 cosh� x2 sinh�
; �49�

�G �2�t �IJ �
�G2�IJ

�ÿp�2�I x3 � p�1�J d ÿ �x1 cosh� x2 sinh��2
: �50�

Therefore, the complementary part of the extended bimaterial GreenÕs displacements and
stresses can be expressed in terms of regular line integrals over [0, 2p]. With regard to these
physical-domain bimaterial GreenÕs functions, Eqs. (44), (46) and (47), the following important
observations similar to the purely elastic counterpart can be made:
1. In deriving the results, we have assumed that the extended point force (source point) is located

at (0, 0, d). For an extended force located at �x0
1; x

0
2; d�, the variables x1 and x2 in the above

expressions need to be replaced by x1 ÿ x0
1 and x2 ÿ x0

2, respectively.
2. Similar to the procedures made on the transformed-domain GreenÕs functions, the physical-

domain GreenÕs functions presented here can be reduced to the half-space, interfacial, and
homogeneous GreenÕs functions by a suitable substitution of the involved vectors and matri-
ces. Furthermore, the uncoupled purely elastic and purely electric solutions can be obtained by
letting the piezoelectric coe�cients eijk equal to 0.

3. For the complementary part of the solution in material 1 and the solution in material 2, the
dependence of the solutions on the ®eld point (x1, x2, x3) and source point �x0

1; x
0
2; d� appears

only through matrices G �1�u ;G �1�t ;G �2�u , and G �2�t as de®ned in Eqs. (45),(48)±(50). Therefore, the
derivatives of the bimaterial GreenÕs functions with respect to either the ®eld or source point
can be exactly carried out under the integral sign. These derivatives are required in the bound-
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ary integral equation method for the internal stress and fracture analyses in piezoelectric bima-
terial solids.

4. The piezoelectric bimaterial GreenÕs functions for the extended displacements and stresses are
inversely proportional to, respectively, a linear and quadratic combination of the ®eld and
source coordinates. These features resemble the behavior of the full-space extended GreenÕs dis-
placement (/ 1=r) and stress (/ 1=r2) where r is the distance between the source and ®eld points.

5. The integrals in Eqs. (44), (46) and (47) for performing the complementary part of GreenÕs
functions are regular and thus can be easily carried out by a standard numerical integral meth-
od such as the Gauss quadrature.

6. In deriving the physical-domain bimaterial GreenÕs functions, x3 6� 0 or d 6� 0 has been as-
sumed. For the special case of x3 � d � 0, i.e., both the ®eld and source points are located
on the interface for the bimaterial case or on the surface for the half-space case, GreenÕs func-
tions presented above need to be modi®ed. Again, this special case can be treated in a
similar way as for the purely elastic case [1, Appendix]. In particular, a real form line-
integral expression of the extended displacement on the surface of an anisotropic piezoelectric
half space can be derived in terms of the generalized Barnett±Lothe tensors S, H and L for the
piezoelectric materials, a counterpart of the elastic solution derived by Barnett and Lothe [17].

7. Numerical examples

Before using the present solutions to the half space and bimaterial cases, we validated our
formulation for the following special cases:
1. A half-space case where the extended traction-free conditions must be satis®ed.
2. An arti®cial bimaterial full-space case with identical material properties in materials 1 and 2

where the present solution must reduce to the full-space GreenÕs function solutions.
3. The uncoupled case where the current solutions must reduce to the purely elastic bimaterial

GreenÕs functions [1].
Two types of piezoelectric materials are selected for the numerical studies: Material A is

transversely isotropic [18], and material B is anisotropic [15], with the material properties being
given in Eqs. (51a)±(52c), respectively:

Material A

�C� �

1:39 0:778 0:743 0 0 0
0:778 1:39 0:743 0 0 0
0:743 0:743 1:15 0 0 0

0 0 0 0:256 0 0
0 0 0 0 0:256 0
0 0 0 0 0 0:306

2666664

3777775�1011 N=m
2�; �51a�

�e� �
0 0 0 0 12:7 0

0 0 0 12:7 0 0

ÿ5:2 ÿ 5:2 15:1 0 0 0

264
375�C=m

2�; �51b�
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�e� �
0:64605 0 0

0 0:64605 0

0 0 0:561975

264
375�10ÿ8 C=Vm�: �51c�

Material B

�C� �

0:8674 ÿ 0:0825 0:2715 ÿ 0:0366 0 0

ÿ0:0825 1:2977 ÿ 0:0742 0:057 0 0

0:2715 ÿ 0:0742 1:0283 0:0992 0 0

ÿ0:0366 0:057 0:0992 0:3861 0 0

0 0 0 0 0:6881 0:0253

0 0 0 0 0:0253 0:6881

2666666664

3777777775
�1011 N=m

2�; �52a�

Fig. 2. Extended GreenÕs displacements due to a point force in the x-direction. ux in (a), uz in (b), and / in (c).
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�e� �
0:171 ÿ 0:152 ÿ 0:0187 0:067 0 0

0 0 0 0 0:108 ÿ 0:095
0 0 0 0 ÿ 0:0761 0:067

24 35�C=m
2�; �52b�

�e� �
0:3921 0 0

0 0:3982 0:0086
0 0:0086 0:4042

24 35�10ÿ10 C=Vm�: �52c�

In these equations, [C] and [e] represent the elastic constants and piezoelectric coe�cients in a
contracted matrix notation, respectively. It is observed that while the elastic constants for these
two materials have the same order of magnitude, the piezoelectric and dielectric constants in the
anisotropic material are, respectively, two orders of magnitude smaller than those in the trans-
versely isotropic material. It is further noted that since the di�erence in the magnitudes of [C] and

Fig. 3. GreenÕs normal stresses due to a point force in the x-direction. rxx in (a), ryy in (b), and rzz in (c).
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[e] is substantial, a suitable normalization is introduced when calculating GreenÕs functions using
the present formulation.

With these material properties, we have been able to check our formulation for the three special
cases. Indeed, for a half-space case, the traction-free boundary conditions were satis®ed exactly.
This can also be observed from the numerical examples given below. As the second check of our
formulation, we calculated GreenÕs functions in an arti®cially bimaterial full space. From our
derivations given above, we noted that when the source and ®eld points are not at the same half
space, GreenÕs functions contain only the complementary part. These GreenÕs functions have been
calculated for several pairs of source and ®eld points, and the results are exactly the same as those
obtained based on the full-space GreenÕs functions [2,6]. Finally, assuming the piezoelectric co-
e�cients [e] to be zero, we have been able to use our formulation to derive the same purely elastic
bimaterial GreenÕs functions as presented by Pan and Yuan [1].

Having tested our GreenÕs functions for the special cases, we now present the numerical results
for the extended GreenÕs displacements and stresses in a half space and bimaterial full space, with

Fig. 4. GreenÕs electric displacements due to a point force in the x-direction. Dx in (a), Dy in (b), and Dz in (c).
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material properties being either transversely isotropic (material A) or anisotropic (material B).
Four cases are considered below:

Case I: A half space with transverse isotropy (HF: Ti).
Case II: A half space with anisotropy (HF: Anis).
Case III: Bimaterials with transverse isotropy in material 1 and anisotropy in material 2 (BI: Ti/
Anis).
Case IV: Bimaterials with anisotropy in material 1 and transverse isotropy in material 2 (BI:
Anis/Ti).
The extended GreenÕs displacements and normal stresses are presented in Figs. 2±4, Figs. 5±7

and Figs. 8±10, respectively, for a x- (or x1-) direction point force, z-direction (or x3-) point force,
and a negative point electric charge. In these ®gures, a point force of 1 N/m3 (or a negative point
charge of 1 C/m3) is applied at (0, 0, 1 m). The extended displacements and stresses are plotted at
®eld points (1 m, 1 m, z) with z varying from 0 to 3 m for Cases I and II, and from )3 to 3 m for
Cases III and IV.

Fig. 5. Extended GreenÕs displacements due to a point force in the z-direction. ux in (a), uz in (b), and / in (c).
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From Figs. 2±4, and Figs. 8±10, we observed that under the x-direction point force and a
negative point charge, the variation of the extended displacements and stresses in material 1 are
similar to each other for Cases I and III, and for Cases II and IV, respectively. In other words,
they are similar to each other if their piezoelectric properties are the same in material 1, despite
whether the domain is half space or bimaterial. This behavior is more obvious when the ®eld
point is relatively far away from the source and the plane x3 � 0 (or z� 0). This implies that
under the horizontal point force (x- or y-direction) or point charge, GreenÕs functions are more
materially dominant. Under the vertical point force (z-direction), however, GreenÕs functions are
similar to each other for Cases I and II (half space) and for Cases III and IV (bimaterials),
respectively. In other words, GreenÕs functions due to z-direction point force are more likely
regionally dominant.

Another interesting feature of GreenÕs functions is associated with the response of the electric
displacements. It is observed that (Figs. 4, 7, and 10) for the given material properties all the

Fig. 6. GreenÕs normal stresses due to a point force in the z-direction. rxx in (a), ryy in (b), and rzz in (c).
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electric displacements in the region with anisotropic material properties are about two orders
smaller (10ÿ2) than those in the transversely isotropic region. Therefore, the electric displacements
in the anisotropic region are negligible compared to those in the transversely isotropic region
(although they appear as straight lines in Figs. 4, 7, and 10 in the anisotropic region, they should
not be misunderstood as zero values). This is due to the fact that the piezoelectric and dielectric
constants in the anisotropic region are, respectively, two orders smaller than those in the trans-
versely isotropic region.

A ®nal feature of GreenÕs functions is related to the electric potential due to a negative point
charge (Fig. 8c). It is interesting that only in the source region with anisotropic material prop-
erties, can the electric potential variation be observed. For all other cases, the electric potentials
are on the order of 107 V, two orders smaller (the straight lines should not be mistreated as zeros)
than those in the source region with anisotropic material properties. This feature again is directly
associated to the material properties we have chosen.

Fig. 7. GreenÕs electric displacements due to a point force in the z-direction. Dx in (a), Dy in (b), and Dz in (c).

1956 E. Pan, F.G. Yuan / International Journal of Engineering Science 38 (2000) 1939±1960



8. Conclusions

In this paper, three-dimensional GreenÕs functions of point forces and point charge in aniso-
tropic piezoelectric bimaterials are derived in terms of a regular line integral. We ®rst derived the
transformed-domain GreenÕs functions in exact closed forms using the Stroh formalism. In order
to obtain the physical domain GreenÕs functions, the Fourier inverse transform using a polar
coordinate system is proposed to reduce the double in®nite integrals to a ®nite line integral over
[0, 2p]. MindlinÕs superposition method [14] is also employed to handle the singularities in the
piezoelectric bimaterial GreenÕs functions so that the involved singularities appear only in the full-
space GreenÕs function that can be evaluated accurately using its explicit form expression (without
numerical integral!). Therefore, the ®nal physical piezoelectric bimaterial GreenÕs functions are
expressed as a sum of the explicit full-space GreenÕs function and a complementary part. The
complementary part of the bimaterial GreenÕs functions is represented in terms of a regular line
integral that can be easily carried out by the regular numerical Gauss quadrature. In addition,

Fig. 8. Extended GreenÕs displacements due to a negative point charge. ux in (a), uz in (b), and / in (c).
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derivatives of the complementary part of GreenÕs functions with respect to either the source or
®eld point can be carried out exactly under the line integral. Some important features related to
the piezoelectric bimaterial GreenÕs functions and their reduction to special cases have been
discussed.

Numerical examples are also presented for both half-space and bimaterial cases with trans-
versely isotropic and anisotropic material properties. The responses of GreenÕs functions for
di�erent half-space and bimaterial cases due to di�erent types of point sources are discussed. It is
observed that some of these GreenÕs functions are material-dependent (i.e., in the source region
with the same material properties, the GreenÕs functions behave similarly for both the half-space
and bimaterial cases), others are case-dependent (i.e., the GreenÕs functions behave similarly for a
half-space case or bimaterial case despite whether the material property is transversely isotropic or
anisotropic). Another interesting feature, although strongly tied to the selected material proper-
ties, is associated with the responses of the GreenÕs electric displacements where the electric dis-
placements in the anisotropic region are negligible compared to those in the transversely isotropic
region.

Fig. 9. GreenÕs normal stresses due to a negative point charge. rxx in (a), ryy in (b), and rzz in (c).
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