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SUMMARY

This paper presents a boundary element analysis of linear elastic fracture mechanics in three-dimensional
cracks of anisotropic solids. The method is a single-domain based, thus it can model the solids with multiple
interacting cracks or damage. In addition, the method can apply the fracture analysis in both bounded and
unbounded anisotropic media and the stress intensity factors (SIFs) can be deduced directly from the
boundary element solutions.

The present boundary element formulation is based on a pair of boundary integral equations, namely, the
displacement and traction boundary integral equations. While the former is collocated exclusively on the
uncracked boundary, the latter is discretized only on one side of the crack surface. The displacement and/or
traction are used as unknown variables on the uncracked boundary and the relative crack opening
displacement (COD) (i.e. displacement discontinuity, or dislocation) is treated as a unknown quantity on the
crack surface. This formulation possesses the advantages of both the traditional displacement boundary
element method (BEM) and the displacement discontinuity (or dislocation) method, and thus eliminates the
de"ciency associated with the BEMs in modelling fracture behaviour of the solids. Special crack-front
elements are introduced to capture the crack-tip behaviour. Numerical examples of stress intensity factors
(SIFs) calculation are given for transversely isotropic orthotropic and anisotropic solids. For a penny-
shaped or a square-shaped crack located in the plane of isotropy, the SIFs obtained with the present
formulation are in very good agreement with existing closed-form solutions and numerical results. For the
crack not aligned with the plane of isotropy or in an anisotropic solid under remote pure tension, mixed
mode fracture behavior occurs due to the material anisotropy and SIFs strongly depend on material
anisotropy. Copyright ( 2000 John Wiley & Sons, Ltd.
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INTRODUCTION

The boundary element method (BEM) is particularly attractive for linear elastic fracture mechan-
ics [1, 2] in which SIFs and other fracture parameters play an important role in characterizing
fracture behaviour of the solids. Accurate evaluation of singular state of stress near a crack tip has
challenged all the numerical modelling techniques. Especially for the conventional BEM, the
geometric coincidence of opposite nodes across the crack surfaces provides identical equations for
these nodal points. This yields a rank de"cient coe$cient matrix. To circumvent this di$culty,
several methods within the scope of BEM have been suggested [3]. These include the special
Green's function method [4] where the crack surface conditions are embedded into the Green's
function; the multi-domain technique [5] where each crack surface belongs to a distinct sub-
region; the displacement discontinuity or dislocation method [6, 7]; and the Galerkin symmetric
method [8].

Recently, several single-domain BEMs have been proposed for the study of cracked media [3].
These single-domain BEMs involve two sets of boundary integral equations (one is the displace-
ment integral equation, and the other is the traction type integral equation). One form of the
single-domain BEMs is the so-called Dual Boundary Element Method (DBEM) where the
displacement integral equation is collocated on the "nite uncracked boundary and on one side
of the crack surface, while the traction integral equation is collocated on the other side of the
crack surface. This DBEM has been developed for both two-dimensional [9] and three-dimen-
sional [10] isotropic cracked media, and it has been applied to various fracture mechanics
problems [2].

In the DBEM formulation, the displacements on each side of the crack surface are collocated as
unknown variables, which may be unnecessary for the SIF calculation. Therefore, an ideal
single-domain BEM formulation would be the one, which requires discretization only on one side
of the crack surface. Applying the displacement integral equation to the uncracked boundary
only, and the traction integral equation on one side of the crack surface can achieve such
single-domain BEM formulation. This single-domain BEM formulation has been proposed by
Pan and Amadei [11] and Pan [3] for two-dimensional anisotropic cracked solids. A similar
formulation was proposed recently by Qin et al. [12] for three-dimensional isotropic cracked
solids in which the "nite-part integral involved was evaluated exactly. The advantages of using
this new single-domain BEM formulation are two-fold: (i) the Cauchy-type singularity in the
displacement integral equation can still be calculated directly by the rigid-body motion method;
and (ii) for cracks in an in"nite domain, only the traction integral equation is needed to model the
problem [3]. The traction integral equation for in"nite domain problems resembles the displace-
ment discontinuity or dislocation method, as has been investigated for some three-dimensional
fracture problems [13}20].

Although BEM has been widely applied to various fracture problems in three-dimensional
isotropic solids, relatively little attention has been paid to the three-dimensional anisotropic case
[21] as to the authors' knowledge. A penny-shaped or elliptical crack in a linear elastic solid in an
in"nite three-dimensional space under a far-"eld stress or uniform traction along the crack
surfaces, exact stress intensity factors for modes I, II, and III are available for either an isotropic
solid or a transversely isotropic solid with the plane of isotropy coincident with the plane of the
crack surface [22}24]. However, when the plane of isotropy is not aligned with the crack surface,
the SIFs for an elliptical crack in an in"nite anisotropic solid can only be expressed by an integral
[23]. If the material property, geometry and boundary conditions are symmetric with respect to
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the crack surface, the displacement integral equation can be employed to analyse some of the
restricted 3-D crack problems in anisotropic media [25].

In this paper, we present a single-domain BEM formulation for linear elastic fracture mechan-
ics analysis in three-dimensional anisotropic solids. This formulation is an extension of two-
dimensional analysis [3] to the three-dimensional case and it is similar to Qin et al. [12] but
extended to anisotropic solids. In this formulation, the displacement integral equation is collo-
cated on the uncracked boundary and the traction integral equation on one side of the crack
surface. The Cauchy-type singularity involved in the displacement integral equation is calculated
directly by the rigid-body motion method; the "nite-part integral associated with the traction
boundary integral equation is evaluated by Kutt's numerical quadrature [26, 27]. To illustrate
the utility of the method, numerical examples are carried out for a penny-shaped and a square-
shaped crack in transversely isotropic, orthotropic and anisotropic solids. The SIF values are in
good agreement with previously published results. Strong dependency of the SIFs on the material
anisotropy is demonstrated in the numerical examples.

BEM FORMULATION FOR THREE-DIMENSIONAL ANISOTROPIC
CRACKED SOLIDS

For a linearly elastic medium, we express the total displacements, stresses, and tractions through
linear superposition as follows:
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where the superscript t denotes the total solution, h the homogeneous solution, and p a particular
solution corresponding to the body forces and/or the far-"eld stresses. The advantage of using the
linear superposition (1) is the exact handling for the in"nite domain problem, as will soon become
clear.

Following the procedure of Pan and Amadei [28] one can show that the total internal
displacement solution at x

p
can be expressed by the following integral
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where;*
ij

and ¹*
ij

represent the Green's functions for displacements and tractions which are given
exactly for a transversely isotropic solid with arbitrarily oriented isotropic plane (see Appendix
A), and are given explicitly for a generally anisotropic solid (see Appendix B); summation from
1 to 3 is implied on the repeated index; S and ! (&!

i
) are the uncracked boundary of the body and

the crack surfaces, respectively, with the corresponding points being distinguished by subscript
S and ! (Figure 1); and a point on the positive (or negative) side of the crack is denoted by x!` (or
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Figure 1. Geometry of three-dimensional cracks in an anisotropic body. S is the uncracked boundary;
!`
i

and !~
i

are the two sides of the crack surfaces !
i
.

x!~); In deriving Equation (2), we have assumed that the tractions on the two surfaces of a crack
are equal and opposite.

Let xp approach a point y
S
on the uncracked boundary, we arrive at the following displacement

boundary integral equation [3]:
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where b
ij

are coe$cients that depend only upon the local geometry of the uncracked boundary
at y

S
. It is noteworthy that all the terms on the right-hand side of Equation (3) have only weak

singularities, thus, are integrable. Although the second term on the left-hand side of Equation (3)
has a strong singularity, it can be treated by the rigid-body motion method. At the same time, the
calculation of b

ij
can also be avoided.

A direct application of the standard or displacement boundary integral equation to fracture
problems yields a mathematically degenerate formulation. In order to remedy this di$culty, the
traction integral equation of Pan [3] can be employed and extended to a three-dimensional case.
Assume that y! is a smooth point on the crack surface, the traction integral equation can be
derived as
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where n
m

is the unit outward normal of the positive side of the crack surface at y!` and c
lmik

is the
fourth-order sti!ness tensor of the anisotropic medium; ;*

ij,k
and ¹*

ij,k
are the derivatives of the

Green's functions for displacements and tractions with respect to the source point respectively.
Again these Green's functions are given exactly for a transversely isotropic solid with any
oriented isotropic plane (see Appendix A) and explicitly for a generally anisotropic solid (see
Appendix B).

Equations (3) and (4) form a pair of boundary integral equations and are similar to the single-
domain BEMs of Mi and Aliabadi [10] for an isotropic medium. In this paper, however, the
displacement integral equation is collocated exclusively on the uncracked boundary and the
traction integral equation on one side of the crack surface only. Furthermore, this formulation
can be applied to generally anisotropic media with the Cauchy-type integral being evaluated
exactly by the rigid-body motion method. It is also worth mentioning that the e!ect of the body
force and/or far-"eld stresses have been included by superposing the corresponding particular
solution, which makes the problem very similar to the one associated with the homogeneous
governing equations. The only di!erence is that for the body force and/or far-"eld stress cases,
two extra integral terms related to the particular solution need to be added to the homogeneous
integral equations. The advantage of using Equations (3) and (4) is that for the far-"eld stress case,
the arti"cial truncation of the in"nite domain or transferring of the far-"eld stress onto the
problem boundary can be avoided. While the former method increases the size of the problem
and also introduces errors because of the truncation of the region, the latter may not be suitable
for the cases where the boundary has a complex shape. In the following analysis, the superscript t
associated with the physical quantities will be omitted for simplicity, with the understanding that
the physical quantities are the total ones.

For problems containing crack surfaces only, i.e. cracks in an in"nite space, only Equation (4)
is required with the uncracked boundary integral terms being omitted. The resulting equation
resembles the displacement discontinuity method [6] and the dislocation method [14, 19, 20, 29].
For problems in an uncracked domain, only Equation (3) is required with the crack surface
integral terms being omitted. Equation (3) is then reduced to the traditional displacement
boundary integral equation [30].

The boundary integral equations (3) and (4) can be discretized and solved numerically for the
unknown boundary displacements (or displacement discontinuities on the crack surface) and
tractions. It is emphasized that in deriving Equation (4), we have assumed a smooth crack surface.
If the crack surface possesses discontinuous tangential planes at certain points or along certain
lines, discontinuous elements are required in which the collocation points are moved away from
these points or lines. The hypersingular integral term in Equation (4) also requires special
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Figure 2. Four element types for the uncracked boundary.

attention and its handling by Kutt's [26, 27] numerical quadrature formulae will be discussed in
a later section.

NUMERICAL SCHEME

Nine-node quadrilateral curved elements are employed to discretize both the uncracked bound-
aries and crack surfaces. On each element, the displacement and/or traction on the uncracked
boundary, and the relative crack opening displacement (COD) on the crack surfaces can be
approximated by their nodal values. For example, the total displacement on each element can be
expressed as
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(k"1}9) are the shape functions, uk
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, and *ul

i
are the nodal displacements, nodal

tractions, and nodal crack opening displacements at nodal point k and l, respectively.
In order to handle the possible discontinuities of the geometric and boundary conditions of the

uncracked boundary and the crack surface, four and "ve types of nine-node quadrilateral
elements are introduced respectively (Figures 2 and 3). It is noted that while element type I is
continuous, others are discontinuous elements. The four sets of shape functions for the uncracked
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Figure 3. Five element types for the crack surface.

boundary are listed in Appendix C where the discontinuous nodes are at a distance of 1/3 from
the element edge. Assuming isoparametric elements, the coordinates at any point in one element
are then related to its element nodal co-ordinates as follows:

x"
9
+
k/1

/
k
xk
1
, y"

9
+
k/1

/
k
xk
2
, z"

9
+
k/1

/
k
xk
3

(6)

Furthermore, in order to capture the speci"c characteristics of the COD near a crack front, we
constructed four sets of crack-front shape functions corresponding to the element type II}V
shown in Figure 3. For crack-front element types II}IV, the following shape functions are
introduced to approximate the COD
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where d is the order of the stress singularity near the crack front [31]; *u
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are the CODs, u
k
(k"1}9) are the nine shape functions which are similar to the corresponding

shape functions for the uncracked boundary, except for the di!erent coe$cients for each shape
function, and *uk

i
are the CODs at nodal point k.
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Figure 4. Geometric relation between local crack-front co-ordinates (x
1
, x

2
, x

3
) and the

global coordinates (x, y, z).

Similarly, on the crack-front element of type <, the COD is approximated as
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with u
k
(k"1}9) being the shape functions corresponding to this type of element. Again, this set

of shape functions is similar to the type III shape functions for the uncracked boundary.
When calculating the SIFs, we employ an extrapolation method of the CODs, which requires

an asymptotically analytical expression of the crack-front CODs in terms of the SIFs. Let (x
1
,

x
2
, x

3
) be a local Cartesian co-ordinate system attached to the crack tip shown in Figure 4. The

x
2
-axis is normal to the crack surface, the x

3
tangential to the crack front. The x

1
-axis is thus

formed by the interaction of the plane normal to the crack front and the plane tangential to the
crack plane. Suppose the crack front is smooth and the crack tip is away from the corner where
the crack front meets a face on the uncracked boundary. It is assumed that the leading singular
term in the asymptotic expansion of the stress and displacement "elds near the crack tip is
amenable to the generalized plane strain analysis. Therefore, for a crack tip in a homogeneous
and anisotropic solid (d"!1/2), the relation of the CODs at a distance r behind the crack tip
and the SIFs can be expressed as [31}34]
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Expression (9) is based on Stroh formalism. L is one of the Barnett}Lothe tensors which depends
only on the anisotropic properties of the solid in the local crack-front co-ordinates, and
*u"[*u

1
, *u

2
, *u

3
]T is the COD in the local crack-front co-ordinates. On the crack-front

element, equating the CODs from the numerical calculation (7) or (8) to the analytical expression
(9), one then obtains a set of algebraic equations from which the SIFs, K

I
, K

II
, and K

III
, can be

solved.

TREATMENT OF HYPERSINGULAR INTEGRAL EQUATIONS

In solving the pairs of boundary integral Equations (3) and (4), special attention needs to be paid
to the singular terms involved. As mentioned earlier, the Cauchy-type singularity in Equation (3)
can be directly evaluated by the rigid-body motion method. For the "nite-part integrals in
Equation (4), a Kutt's [26, 27] numerical quadrature is proposed to solve the hypersingular
integral equations.

On each isoparametric element, the "nite-part integral can be expressed as
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functions and J is the Jacobian transformation. The collocation point x(mc, gc) in Equation (11)
coincides with one of the nodal points on the element.

Introducing the following polar coordinates transform
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Equation (11) can then be rewritten as
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where the summation on m is for all the triangles needed on the element. For instance, if the
collocation point is one of the corner points of the element, the element is then divided into two
triangles, and the summation on m is from 1 to 2. On the other hand, if the collocation point is an
internal point, the element needs to be divided into four triangles. Consequently, the summation
on m in Equation (14) is from 1 to 4. It is observed now that the integrand is O(1/r2). Therefore,
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Kutt's [26, 27] numerical quadrature can be utilized to evaluate the inner "nite-part integral with
respect to r. The outer integral with respect to h is regular and can be calculated by the regular
Gauss quadrature.

For a given Gauss point h
j
, the inner integral in Equation (14) can be approximated by Kutt's

N-point equispace quadrature as
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where w
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are the weights and c
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the coe$cients given by Kutt, and the integrand is given by
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In applying Kutt's N-point equispace quadrature (15), it has been assumed that the integrand
f (r)3C0[0, R] and f (r)3C2 in the neighbourhood of r"0 [26, 27]. Therefore, if the crack surface
is #at, continuous elements can be used to discretize the interior crack surface, with discontinuous
elements for the crack-fronts only. However, if the crack surface is curved, then discontinuous
elements are needed for the whole crack surface in order to satisfy the continuity requirement for
f (r). In the following numerical examples, Kutt's 20-point equispace quadrature is used to the
"nite-part integral with respect to r, and 20 Guassian points for the regular outer integral with
respect to h. Since we restrict ourselves in this paper to the #at crack surfaces only, continuous
elements are used to discretize the interior crack surface.

NUMERICAL RESULTS AND DISCUSSION

The Green's functions for transversely isotropic solids with arbitrarily oriented isotropic plane
[28, 35] and for generally anisotropic solids [36] have been incorporated into the displacement
and traction integral equations, and the resulting formulation has been programmed for numer-
ical calculation. In this section, several numerical examples including the solids with in"nite
domain and "nite geometry are presented to verify the program and to show the e$ciency and
accuracy of the present BEM formulation in calculating the SIFs in transversely isotropic and
anisotropic media. In all the examples, a uniaxial normal stress is applied normal to the crack
surface. The e!ects of material anisotropy, material orientation, crack geometry and "nite
geometry on the SIFs are demonstrated. Numerical results also show that material anisotropy
can have a profound e!ect on the SIFs.

Example 1: A penny-shaped crack in an in,nite space

The "rst example considers a penny-shaped crack (with radius a"5 in.) located in the x}y plane
in an in"nite space under a far-"eld uniform stress p= applied in the z-direction. Forty-eight
nine-node quadrilateral elements are used to discretize the crack surface (Figure 5). Geometric
nodes and collocation points are also shown in the "gure. For the isotropic solid (E"4 Msi and

l"0.25 are used in modelling), the normalized mode-I stress intensity factor, K
I
/(2p=Ja/n),

along the crack front varies from 0.99 to 1.01, compared with the value of unity in the analytical
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Figure 5. Discretization of a penny-shaped crack (radius a"5 in.) with 48 nine-node
quadrilateral elements.

solution K3%&
I
"2p=Ja/n [37]. The largest deviation for the SIFs using the 3D BEM formulation

is only about 1 per cent, even with only 48 elements modelled in the crack region (16 elements
along the crack front). It is noted that for the penny-shaped or elliptical crack, [37] the mode-I
SIF in an in"nite isotropic solid is independent of the material property.

Two classes of transversely isotropic (TI) solids are then selected to study the e!ect of material
anisotropy on the SIFs.

For class I material, E
X
/E

Z
"3, l

XY
"0.25, l

YZ
"0.25 and G

YZ
/E

Z
"0.4

For class II material, E
X
/E

Z
"0.5, l

XY
"0, l

YZ
"0.4 and G

YZ
/E

Z
"0.8

The material properties for classes I and II are chosen from the papers by Pan and Amadei, [11]
and Hoenig, [23] respectively. X, > and Z refer to longitudinal, transverse and normal direction
respectively. (X, >, Z) are often called principal material axes and the plane X}> is termed as
principal material plane of the plane of isotropy in this case. In the transversely isotropic solids,
E
X
"E

Y
, G

XZ
"G

YZ
, l

XZ
"l

YZ
, and G

XY
"E

X
/2(1#l

XY
). l

XY
is the Poisson's ratio for trans-

verse strain in the >-direction when stressed in the X-direction (Figure 6).
For the plane of isotropy parallel to the penny-shaped crack surface (x}y plane), TI-0, the 3-D

BEM results also predict a nearly constant SIF close to the analytical solution, K3%&
I
"2p=Ja/n,

along the crack front (Figure 7). However, for the plane of isotropy not parallel to the crack
surface, TI-90, the SIFs then vary along the crack front. In the case of the orientation angle
b"903 and inclination angle t"903 (Figure 6), which corresponds to the plane of isotropy
being normal to the crack plane (or parallel to the space "xed x}z plane), the crack is under pure
mode-I subjected to a remote uniform stress p= in the z-direction. The variation of K

I
along the

crack front is also shown in Figure 7 for the two classes of transversely isotropic solids. It is
interesting to note from Figure 7 that the variation of the SIF for class II is similar (but not the
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Figure 6. Relationship between the principal material co-ordinates (X, >, Z) and the space-"xed global
coordinates (x, y, z). b and t are the orientation and inclined angles, respectively. (X, >) is the principal

material plane or plane of isotropy.

same!) to that obtained by Hoenig [23]; variation of the SIF for classes I and II material follows
a function

A
i
#B

i
cos 2h, i"I or II (17)

where h is measured counterclockwise from the x-axis. Due to the di!erent material anisotropy
ratio, E

X
/E

Z
, between these two materials, the maximum (minimum) values of K

I
for class I occur

at h"90 and 2703 (0 and 1803) respectively; reverse trend for class II.

Example 2: A square-shaped crack in an in,nite space

A square-shaped crack in the x}y plane in an in"nite space is studied in this example. The side
length of the square is 2a ("6 in.), and a far-"eld stress p= is applied in the z-direction. The
square-shaped crack can be seen in Figure 13 which will be discussed in the next example. One
hundred (10]10) nine-node quadrilateral elements are used to discretize the square with
the meshes shown in Figure 8. To gain an insight into the stress intensity factors a!ected by the
material anisotropy, two sets of material properties, transversely isotropic and anisotropic
materials, are studied for this shape of the crack. The "rst set of numerical results utilizes
a transversely isotropic (TI) material whose material properties are the same as the class I in
Example 1. Three material orientations for the transversely isotropic material under normal
loading are studied: (i) TI-0 corresponds to the plane of isotropy parallel to the crack surface;
(ii) TI-90 represents the plane of isotropy normal to the crack surface (b"903 and t"900),
respectively; and (iii) TI-45 corresponds to b"453 and t"453 where the sti!ness matrix is fully

populated. The normalized SIFs, K
I
/(p=Jna), along x"$a and y"$a for three material

orientations are shown in Figure 9.
The variation of mode-I SIFs along the crack front for TI-0 either along x"$a or y"$a is

shown in Figure 9. For comparison, the SIFs for isotropic materials are also calculated and
shown in the "gure. Note that for either a penny-shaped or an elliptical crack with crack plane
parallel to the plane of isotropy in an in"nite space, the analytical forms for the mode-I stress
intensity factor [22, 23] are independent of material properties. In this case of a square-shaped
crack in an in"nite space, the variation of mode-I SIFs along the crack front for the TI-0 shown in
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Figure 7. Variation of K
I
/(2p=Ja/n) along the penny-shaped crack front of transversely isotropic solids

(TI-0 and TI-90) in an in"nite space under a far-"eld normal stress p=.

Figure 8. Discretization of a square-shaped crack (side length 2a"6 in.) with 100 nine-node
quadrilateral elements.

Figure 9, as expected, is the same as that for the isotropic case, i.e. independent of material
properties. The values are almost the same as that obtained by Weaver using a dislocation
method. The maximum value occurs at the middle of the square side and decrease to zero at the
corners (x"$a, y"$a). The maximum SIF value that predicted from the 3-D BEM is 0.7626,
as compared with 0.74 in Weaver [38] and 0.76 in Murakami [39] for isotropic solids.

The e!ect of material anisotropy on mode-I SIFs can be demonstrated in the TI-90 case. In this
case, the mode-I SIF along the crack front y"$a is much larger than that along x"$a, about

BOUNDARY ELEMENT ANALYSIS OF THREE-DIMENSIONAL CRACKS 223

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 2000; 48:211}237



Figure 9. Variation of K
I
/(p=Jna) along the square-shaped crack front of a transversely isotropic solid in

an in"nite space under a far-"eld normal stress p=.

30 per cent greater when compared with their maximum values. It is also expected that the SIFs
for the cases of isotropic, TI-0 and TI-90 materials are symmetrical about x"0 and y"0, the
SIFs for TI-45 also shown in Figure 9 are unsymmetric with respect to either x"0 or y"0. Due
to the material orientation for TI-45, the mode-I SIFs along the crack front y"$a are the same
as those along x"$a. In addition, the fracture exhibits mixed mode-I, II and III behaviour. The
variation of mode-II and III stress intensity factors along the crack front x"!a is shown in
Figure 10. In this "gure, the maximum absolute value of mode-II SIF is about 15 per cent of the
maximum value for mode-I SIF. The values of K

II
and K

III
follow the relations

K
II
(x"a, y)"!K

II
(x"!a, y), K

III
(x"a, y)"!K

III
(x"!a, y)

K
II
(x, y"!a)"K

II
(x"!a, y), K

III
(x, y"!a)"!K

III
(x"!a, y)

K
II
(x, y"a)"!K

II
(x, y"!a), K

III
(x, y"a)"!K

III
(x, y"!a)

It is emphasized at this point that in the procedure of deriving the BEM formulation, no
assumption has been made regarding the material anisotropy. Therefore, the present formulation
can be equally well applied to either orthotropic or general anisotropic solids. The only di!erence
in the numerical calculation is the Green's functions. For a transversely isotropic solid with any
oriented isotropic plane, these Green's functions are given in exact-closed forms (Appendix A).
However, for either orthotropic or general anisotropic solids, they can only be evaluated
explicitly through a sixth-order polynomial (Appendix B).
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Figure 10. Variation of K
II
/(p=Jna) and K

III
/(p=Jna) along the square crack front x"!a of a trans-

versely isotropic solid in an in"nite space under a far-"eld normal stress p= .

Another set of numerical results is investigated for anisotropic solids (or composites). The
composite material was made by stacking layers of a carbon warp-knit fabric that was stitched
with Kevlar-29 thread prior to introducing 3501-6 epoxy resin. The resin was introduced in an
autoclave using a resin "lm infusing process. In the NASA Advanced Composites Transport
Program, Boeing is using this material to develop a composite wing box for a transport aircraft.
The "bre areal weight of each fabric layer was equivalent to 10 layers of 145 g/m2 prepreg. The
fabric contained 44 per cent 03 yarns, 44 per cent $453 yarns, and 12 per cent 903 yarns. The
resulting orthotropic material properties are:

E
X
"11.773 Msi, E

Y
"5.162 Msi, E

Z
"1.53 Msi,

G
XY

"2.479 Msi, G
XZ

"0.64 Msi, G
YZ
"0.57 Msi,

l
XY

"0.401, l
XZ

"0.22, l
YZ
"0.29

Three di!erent material orientations are studied, For class I (orthotropic material), E
X
, E

Y
, and

E
Z

are along the z, x and y-axis, respectively (b"!903 and t"903); for class II, E
X

and E
Y

are
in the x}y plane respectively, and E

X
is rotated 453 counterclockwise with respect to the x-axis

(b"453 and t"03). In this case, the sti!ness tensor c
ijkl

in the structural co-ordinates (x, y, z) is
monoclinic with symmetry plane at z"0. In the class III material, E

X
and E

Y
are in the x}z plane,

and E
X

is rotated 453 counterclockwise with respect to the x-axis. The global elastic property for
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Figure 11. Variation of K
I
/(p=Jna) along the square-shaped crack front of anisotropic solids in an in"nite

space under a far-"eld normal stress p=.

the class III is monoclinic having symmetry plane at y"0. This material orientation simulates an
o!-axis composite.

For the same square-shaped crack but in anisotropic solids, the anisotropic Green's functions

are calculated accurately in Appendix B. The normalized SIFs, K
I
/(p=Jna), along the crack

fronts are shown in Figure 11 for classes I and II. It is worth mentioning that under remote
normal stress p

z
"p= the crack is pure mode-I for class I. The variation of mode-I SIFs along the

rack front for class I (i.e. the orthotropic case) is, however, di!erent from that for the isotropic or
the TI-0 case in the in"nite space shown in Figure 9. For the orthotropic case, the maximum
values of the mode-I SIF along x"$a and y"$a are, respectively, 0.5953 and 0.8833,
compared to 0.7626 for the isotropic or the TI-0 case. For class II where z"0 is the material
symmetry plane, the problem is also under pure mode-I deformation, but the SIF values are
unsymmetric on either y"0 or x"0. The SIFs are symmetric with respect to x"y. The SIFs
along x"!a or y"!a are also shown in Figure 11.

For class III where y"0 is the material symmetry plane, however, the fracture exhibits mixed
mode-I, II and III behaviour. The mode-I SIFs along the crack front x"$a are much larger
than those along y"$a. They are symmetric with respect to x"0 and y"0. The correspond-
ing variations of mode-II and III SIFs along the crack front x"!a and y"!a for class III are
shown in Figure 12. The mode-II SIF values are anti-symmetric about x"0 and symmetric
about y"0. For mode-III SIF values, they are symmetric about x"0 and anti-symmetric about
y"0. While these SIF values have the same order of magnitude, their maximum absolute values
are less than 10 per cent of the maximum values for the corresponding mode-I SIFs.
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Figure 12. Variation of K
I
/(p=Jnc), K

II
/(p=Jna) and K

III
/(p=Jna) along the square crack front of an

anisotropic solid in an in"nite space under a far-"eld normal stress p=.
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Figure 12. Continued.

Example 3: A square-shaped crack in a ,nite cube

To study the e!ect of "nite geometry on the SIFs, a square-shaped crack in a "nite cube under
a uniform tensile stress p= applied at the top and bottom faces in the z-direction (Figure 13) is
studied. The cube has a height 2H and a width=. The side length of the square crack is 2a. In the
numerical example, the geometry is such that 2a/="0.5, H/="1, and the material is assumed
to be isotropic with E"4 Msi and l"0.3. Twenty-four and 36 elements are used to discretize,
respectively, the uncracked boundary and the crack surface. It is noted that, while for
Examples 1 and 2, only Equation (4), with the uncracked boundary integral being discarded is
needed. For this example, however, both Equations (3) and (4) are required to model the problem.
The normalized mode-I SIF along the y-axis is shown in Figure 14 and compared with that in the
corresponding in"nite medium. As expected, the normalized SIF value is larger in a "nite cube
than that in an in"nite domain, with a maximum di!erence of 6.8 per cent occurring at the middle
of the square side for the chosen geometry and material property. Also in the middle of the square
side, the normalized SIF in the "nite cube is 0.8183, as compared to about 0.81 from a paper by
Wen and Aliabadi [40] for the same geometry.

CONCLUSIONS

A single-domain three-dimensional BEM formulation has been proposed for fracture mechanics
analysis in anisotropic elastic cracked media. The formulation consists of a pair of integral
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Figure 13. Geometry of a "nite cube with a central square-shaped crack under a uniform normal stress p=.

equations, namely, the displacement and traction integral equations. While the Cauchy-type
singularity was calculated directly by the rigid-body motion method, the "nite-part integral was
evaluated by Kutt's numerical quadrature. Special crack-front elements have been introduced to
capture the crack-tip behaviour of the crack opening displacement, and an extrapolation method
of the COD is employed for the calculation of the stress intensity factors.

Numerical examples of the calculation of the SIFs for a penny-shaped and a square-shaped
crack in transversely isotropic, orthotropic and anisotropic solids were conducted. The
e!ects of material anisotropy, material orientation, crack geometry and "nite geometry on the
SIFs have been demonstrated. The SIF values are in very good agreement with previously
published results. Material anisotropy can have a signi"cant e!ect on the SIFs. It is the authors'
belief that the single-domain BEM formulation presented in this paper can be a powerful
numerical tool, which can apply to various complex three-dimensional geometries of com-
posite structures with cracks or damage under mixed-mode loading. Some of the related
problems are currently under investigation by the authors and results will be published in
a separate paper.

APPENDIX A: GREEN'S FUNCTIONS IN TRANSVERSELY ISOTROPIC SOLIDS

In this appendix, the Green's functions in a transversely isotropic solid with any oriented
isotropic plane are presented based on the results of Pan and Chou [35] and Pan and Amadei
[28].
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Figure 14. Comparison of K
I
/(p=Jna) along the square-shaped crack front in an in"nite domain and

a "nite cube.

For a transversely isotropic solid with the Z-axis being the axis of material symmetry, X}>
plane is the plane of isotropy. The constitutive relation between the stress p

ij
and strain e

ij
can be

expressed in terms of contracted sti!ness matrix as

p
XX

p
YY

p
ZZ

p
YZ

p
XZ

p
XY

"

c
11

c
12

c
13

0 0 0

c
11

c
13

0 0 0

c
33

0 0 0

c
44

0 0

Symmetric c
44

0

c
66

e
XX
e
YY

e
ZZ

2e
YZ

2e
XZ

2e
XY

(A1)

where c
66
"(c

11
!c

12
)/2. Assuming that there is a unit point force applied at the origin of the

co-ordinate system, the corresponding Green's displacements have been obtained by Pan and
Chou [35] using the potential function method.

(i) For a point force applied at the origin in the Z-direction, the Green's displacements are

;*
XZ

(X, >, Z)"
2
+
i/1
CliAi

X

R
i
R*

i

!l
i
(A

i
#B

i
)
XZ

i
R3

i
D

;*
YZ

(X, >, Z)";*
XZ

(>, X, Z) (A2)
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where ;*
ij
(X, >, Z) is the Green's function for displacement in the i-direction at the "eld point

(X, >, Z) caused by a point force in the j-direction applied at the origin (0, 0, 0), i.e. the source
point. In Equation (A2)

R*
i
"R

i
#Z

i

R
i
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i
(A3)

Z
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and the constants A
i
and B

i
are determined as
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In Equations (A2)}(A5), the parameters l
i
are related to the elastic constants c

ij
as
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(ii) For a point force applied at the origin in the X-direction, the Green's function for
displacements are
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where
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(iii) For a point force applied at the origin in the >-direction, the Greens function for
displacement can be obtained by interchanging X and > in equation (A9), i.e.

;*
XY

(X, >, Z)";*
YX

(>, X, Z)

;*
YY

(X, >, Z)";*
XX

(>, X, Z) (A12)

;*
ZY

(X, >, Z)";*
ZX

(>, X, Z)

With these Green's functions being known exactly, their derivatives with respect to either
a source or "eld point can be directly carried out. For Green's functions in an in"nite space, as for
the current case here, their derivatives with respect to a source point are opposite to those with
respect to the corresponding "eld point.

It is observed clearly from the de"nition of R*
i

(i.e. Equation (A3)) that for "eld points (X, >, Z)
located on the negative Z-axis, the above Green's functions breakdown. In such a case, Green's
functions at the image point are calculated and imaged back to those corresponding to the "eld
point on the negative Z-axis.

The above Green's functions are valid only in a principal material co-ordinate with the Z-axis
being the axis of elastic symmetry. For an in"nite solid of transverse isotropy with arbitrarily
oriented isotropic plane, the Green's functions expressed in terms of the local co-ordinates
(X,>,Z) need to be transformed to the global co-ordinates (x, y, z). The relationship of the global
(x, y, z) and local (X,>,Z) co-ordinate systems is illustrated in Figure 6, i.e.

C
x

y

z D"H C
X

>

Z D (A13)
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where the elements of matrix H are

H"C
!cost cosb sinb sint cosb

!cost sinb !cosb sint sinb

sint 0 cost D (A14)

With the co-ordinate transformation matrix H, the Green's functions for displacements, ;*
ij
, in

terms of global co-ordinates can be obtained as

U*
'-0"!-

"HU*
-0#!-

HT (A15)

The Green's functions for tractions, ¹*
ij
, can be derived in a similar procedure.

APPENDIX B: GREEN'S FUNCTIONS IN ANISOTROPIC SOLIDS

The Green's functions in an anisotropic in"nite space have been derived recently by Tonon et al.
[36] based on the theory of the residues. Here we outline only the displacements Green's
functions. Assuming that there is a unit point force applied at the origin in the j-direction, the
Green's function for displacement in the i-direction at the "eld point x can be expressed in terms
of the following integral:

;*
ij
(x)"

1

8n2 P)
!~1

ij
(n)d (n )x) d) (n) (B1)

where ) is any closed surface in a three-dimensional n-space which encloses the origin point
n"0. D (x) is the delta function, and
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(n)"(c
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n
k
n
l
)~1 (B2)

with c
ikjl

being the sti!ness tensor of the anisotropic solid. It was shown in Tonon et al. [36] that
Equation (B1) can be reduced to an one-dimensional in"nite integral with the latter integral being
evaluated by the theory of the residues. Therefore, the Green's functions for displacement (B1) can
be obtained as

;*
ij
(x)"!

1

2nr
Im C 3

+
m/1

A
ij
(p#f

m
q)

a
7
(f

m
!fM

m
)

3
<
k/1kOm

(f
m
!f

k
) (f

m
!fM

k
)D (B3)

where the overbar denotes the complex conjugate,
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] (B4)
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p and q are two vectors related to the "eld points, and a
k
are the coe$cients of the sixth-order

polynomial D(n), i.e.

D(p#fq)"
6
+
k/0

a
k`1

fk"a
7

3
<
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(f!f
m
) (f!fM

m
) (B5)

The three roots f
m
(m"1, 2, 3) are chosen with Im f

m
'0. Expressions for the traction Green's

functions and their derivatives are much complicated, and they can be obtained by the e$cient
and accurate numerical method proposed in Tonon et al. [36].

APPENDIX C: SHAPE FUNCTIONS FOR UNCRACKED BOUNDARY

Shape functions for type I element on the uncracked boundary

/
1
"0.25mg (m!1) (g!1)

/
2
"0.5g (1!m2) (g!1)

/
3
"0.25mg (m#1) (g!1)

/
4
"0.5m (1!g2) (m!1)

/
5
"(1!m2) (1!g2) (C1)

/
6
"0.5m (1!g2) (m#1)

/
7
"0.25mg (m!1) (g#1)

/
8
"0.5g (1!m2) (g#1)

/
9
"0.25mg (m#1) (g#1)

Shape functions for type II element on the uncracked boundary

/
1
"0.45mg(m!1) (g!1)

/
2
"0.9g(1!m2) (g!1)

/
3
"0.45mg(m#1) (g!1)

/
4
"0.75m(1!g) (2/3#g) (m!1)

/
5
"1.5(m2!1) (g!1) (2/3#g) (C2)

/
6
"0.75m(1!g) (2/3#g) (m#1)

/
7
"0.3mg(m!1) (2/3#g)

/
8
"0.6g(1!m2) (2/3#g)

/
9
"0.3mg(m#1) (2/3#g)
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Shape functions for type III element on the uncracked boundary

/
1
"0.81mg(m!1) (g!1)

/
2
"1.35g(1!m) (2/3#m) (g!1)

/
3
"0.54mg(2/3#m) (g!1)

/
4
"1.35m(1!g) (2/3#g) (m!1)

/
5
"2.25(1!m) (2/3#m) (1!g) (2/3#g) (C3)

/
6
"0.9m(1!g) (2/3#g) (2/3#m)

/
7
"0.54mg(m!1) (2/3#g)

/
8
"0.9g(2/3#g) (1!m) (2/3#m)

/
9
"0.36mg(2/3#m) (2/3#g)

Shape functions for type IV element on the uncracked boundary

/
1
"0.54mg(m!2/3) (g!1)

/
2
"!1.35g(1#m) (m!2/3) (g!1)

/
3
"0.81mg(m#1) (g!1)

/
4
"0.9m(1!g) (2/3#g) (m!2/3)

/
5
"!2.25(1#m) (m!2/3) (1!g) (2/3#g) (C4)

/
6
"1.35m(1!g) (2/3#g) (m#1)

/
7
"0.36mg(m!2/3) (2/3#g)

/
8
"!0.9g(2/3#g) (1#m) (m!2/3)

/
9
"0.54mg(m#1) (2/3#g)
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