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Abstract

The implementation of WangÕs theoretical solution is presented for elastostatic displacement GreenÕs function for

three-dimensional solids of general anisotropy. Excerpts from the authorsÕ FORTRANFORTRAN code are included. A numerical

algorithm for the calculation of the derivatives of the GreenÕs displacements and stresses is also introduced. These

implementations have been incorporated into a boundary element method (BEM) code developed by the authors. The

numerical results of GreenÕs displacements, stresses and stress derivatives are in perfect agreement with closed-form

solutions for transversely isotropic solids. The BEM code results are also in very close agreement with both exact

solutions and other BEM formulations, even if coarse mesh discretizations are used. Ó 2001 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

Elastostatic displacement GreenÕs functions are im-

portant in the formulation of boundary integral equa-

tions and in the solution of those equations by the

boundary element method (BEM). GreenÕs functions for

3D anisotropic media (and their simpli®cations under

cubic and hexagonal symmetries) were apparently ®rst

derived in a seminal paper by Lifschitz and Rosenzweig

in 1947 [1]. From a computational point of view, how-

ever, various numerical algorithms have been put for-

ward [2,3] that are, in general, ine�cient because of the

computational burden involved.

After reviewing thoroughly this topic, Wang [4] de-

rived explicit expressions for three-dimensional elasto-

static GreenÕs displacement in general anisotropic solids

and integrals of GreenÕs displacement derivatives over

segments and rectangles. However, the GreenÕs dis-

placements obtained by Wang [4] are purely theoretical;

no numerical implementation has been carried out so

far.

At the outset, this paper reviews some of the basic

concepts inherent in WangÕs formulation for GreenÕs
displacements. A particularized account of the authorsÕ
implementation of these expressions follows, along with

examples of the authorsÕ own code written in FORTRANFORTRAN.

A numerical algorithm for the calculation of the de-

rivatives of the GreenÕs displacements and stresses is

subsequently introduced; it allows the discretization of

the boundary to be of the most general type in a BEM

formulation. The algorithm has been found to be very

simple, accurate, and robust.

Finally, numerical examples of GreenÕs displace-

ments, stresses and stress derivatives are presented for a
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transversely isotropic solid, so as to allow a comparison

with a previously available closed-form solution [5].

Numerical examples of BEM calculations are also given

and the results are compared with exact solutions and

previously published numerical results.

2. Outline of the analytic solution

2.1. Notation

Consider the geometry of Fig. 1a where (O, x1, x2, x3)

is a Cartesian coordinate system in a three-dimensional

Euclidean space R3, �u1; u2; u3� is the corresponding

right-handed orthonormal basis and x � �x1; x2; x3� is a

point in this space. We assume that the anisotropic body

is embedded in this space.

Let n � �n1; n2; n3� be a vector whose components in

R3 are n1, n2, n3, with respect to u1, u2, u3, respectively.

We can imagine n � �n1; n2; n3� also as a point in a

Cartesian coordinate system of a three-dimensional

Euclidean space, which will be called the n space. Let

X be any closed surface containing the origin of the n

space and dX�n� an in®nitesimal area element of this

surface around point n � �n1; n2; n3� as shown in Fig. 1b.

Throughout this paper, ``�'' indicates the dot product

of two vectors and ``�'' indicates the cross product.

Also, a comma indicates partial di�erentiation with re-

spect to a variable, i.e. f;i � of =oxi and summation over

repeated indices is assumed.

2.2. Basic equations

Consider an unbounded homogeneous anisotropic

linearly elastic solid subjected to a point load in the ®xed

coordinate system (O, x1, x2, x3) of Fig. 1a. GreenÕs
function will be denoted by gpk�x� and gives the dis-

placement in the xp direction at x produced by a point

load applied at the origin O in the xk direction. Let rij be

the stress tensor, ui the displacement ®eld and

epq � 0:5 up;q

ÿ � uq;p

� �1a�

the in®nitesimal strain. The stresses and strains are re-

lated as follows:

rij � cijpqepq; �1b�

where cijpq is the elastic tensor, which is fully symmetric

and positive de®nite.

Inserting the kinematics relation (1a) into the con-

stitutive relation (1b) and the latter into the equilibrium

equation, one obtains the following three second-order

partial di�erential equations (Fi is the body force per

unit volume):

cijpqup;jq � Fi � 0 �2�

once the symmetry of the elastic tensor is taken into

account. Because GreenÕs function is relative to a point

force, Eq. (2) becomes

cijpqgpk;jq x� � � ÿdikd x� �; �3�

where dik is the Kronecker delta and d�x� the Dirac delta

function.

In the subsequent implementation, the 6� 6 matrix

D of elastic constants is introduced such that

rk � Dek ; �4�
where rk � �r11k ; r22k ; r33k ; r23k ; r13k ; r12k�T
is GreenÕs stress vector (relative to a point force applied

Fig. 1. (a) Anisotropic elastic body (shown bounded for rep-

resentation convenience) referred to a ®xed Cartesian system.

Vectors p, q, and e are de®ned in Appendix B. (b) Closed sur-

face X containing the origin in the n space.
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in direction k at the origin) and ek � �e11k ; e22k ; e33k ;
2e23k ; 2e13k ; 2e12k�T is GreenÕs strain vector (relative

to a point force applied in direction k at the origin) with

its components being de®ned as

eijk � 0:5 gik;j

ÿ � gjk;i

�
: �5�

The components cijks are related to the elastic con-

stants Dab by means of well-known relationships [6].

2.3. Analytic solution

We notice that cijpqnjnq is symmetric and positive

de®nite, so that its inverse is well de®ned. We set

Cip n� � � cijpqnjnq; Cÿ1
ip n� � � cijpqnjnq

ÿ �ÿ1
: �6�

Consider now the following identities, in which in-

tegration is taken in the n space over any closed surface

X including the origin (Fig. 1b) and use is made of Eqs.

(A.6b) and (A.8) (see Appendix A):

cirps
o2

oxr oxs

Z
X

Cÿ1
pk n� �d n � x� �dX n� �

� cirps

Z
X

Cÿ1
pk n� �nrns

d2d s� �
ds2

����
s�n�x

dX n� �

�
Z

X
cirpsnrns cprqsnrns

ÿ �ÿ1 d2d s� �
ds2

����
s�n�x

dX n� �

� dik

Z
X

d2d s� �
ds2

����
s�n�x

dX n� �

� dikr
Z

X

d n � x� �
nj j2 dX n� �: �7�

Since the last member in Eq. (7) can be written in

terms of the plane representation of the delta function

(A.10), we have

cirps
o2

oxr oxs

Z
X

Cÿ1
pk n� �d n � x� �dX n� � � ÿ8p2dikd x� �: �8�

Comparing Eq. (3) with Eq. (8), we get the following

integral expression for GreenÕs displacement function:

gpk x� � � 1

8p2

Z
X

Cÿ1
pk n� �d n � x� �dX n� �: �9�

We now try to write Eq. (9) in a form suitable for

integration by means of the residue theorem. To this

end, we express the inverse tensor Cÿ1
pk n� � as

Cÿ1
pk n� � � Apk n� �

D n� � ; �10�

where Apk n� � and D n� � are the adjoint matrix and the

determinant of cijpqnjnq, respectively.

It is convenient to use the coordinates �n; f; g� in-

troduced in Appendix B. Using Eq. (B.4), Eq. (9) be-

comes

gpk x� � � 1

8p2

Z
X

Apk np� fq� ge� �
D np� fq� ge� � d rg� �dX n; f; g� �;

�11�
where r is the distance between the ®eld and source

points (see Eq. (B.1a)).

Since Cpk n� � is a 3� 3 matrix, each entry of its ad-

joint matrix Apk is a polynomial of order 4 in n, f and g.

Similarly, determinant D�n� is a polynomial of order 6

in n, f and g.

Following Wang [4], we choose X as a rectangular

parallelepiped having size 2L� 2L� 2 (Fig. 2) and let

the dimension L go to in®nity. Since over surfaces other

than S1 and S2 the integrand in Eq. (11) approaches zero

as 1=L2, the contribution of the integration over every

surface but S1 and S2 vanishes. Moreover, the integrand

in Eq. (11) is symmetric with respect to n, since only

even powers of n are involved. This leads to twice the

integration over S1�n � 1�:

gpk x� � � 1

4p2

Z
S1

Apk p� fq� ge� �
D p� fq� ge� � d rg� �dX n; f; g� �

� 1

4p2

Z 1

ÿ1

Z 1

ÿ1

Apk p� fq� ge� �
D p� fq� ge� � d rg� �dfdg

� 1

4p2r

Z 1

ÿ1

Apk p� fq� �
D p� fq� � df: �12�

The integral in Eq. (12) can be handled by means of

the residue theorem. The poles are the roots of the

polynomial equation of sixth order in f:

D p� � fq� � 0: �13�
If n 6� 0 is real, Cpk n� � is a real symmetric, positive

de®nite matrix; thus, its determinant can never be zero

Fig. 2. Parallelepiped over which contour integration is taken

in the n space. The surfaces S1 and S2 are bounded by n � �1,

S3 and S4 by f � �L, S5 and S6 by g � �L.
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for n 6� 0. For Eq. (13) to be satis®ed, f must therefore

be complex. A corollary of the fundamental theorem of

algebra [7] tells us that a real polynomial of order N has

N roots and that if f � a� ib is a root, its conjugate

f� � aÿ ib must also be a root [7]. In the present case,

there are three roots fm satisfying,

D p� � fmq� � 0 �14�

with

Imfm > 0; m � 1; 2; 3 �15�

and we may write

D p� � fq� �
X6

k�0

ak�1f
k � a7

Y3

m�1

f� ÿ fm� f
ÿ ÿ f�m

�
; �16�

where ak are the coe�cients of the sextic polynomial

D p� fq� � with respect to f. Eq. (13) is called the sextic

equation of elasticity and it has been shown that no

closed-form solution exists for its roots for general an-

isotropy [8]. Thus, this equation must be solved nu-

merically. Integral (12) can now be expressed in terms of

the residues at the poles, taking into account that it must

be real:

gpk x� � � ÿ Im

2pr

X3

m�1

Apk p� fmq� �
a7 fm ÿ f�m
ÿ �Q3

k�1
k 6�m

fm ÿ fk� � fm ÿ f�k
ÿ � :

�17�
In deriving GreenÕs displacement (17), we have as-

sumed that all the roots of the sextic equation are dis-

tinct. Should the roots be multiple, a slight change in the

elastic constants will result in single roots, with negligi-

ble errors in the computed GreenÕs tensor.

Some features of formula (17) need to be pointed out:

1. since Cpk n� � is symmetric, its adjoint matrix Apk is also

symmetric and so is the GreenÕs tensor gpk . As a con-

sequence, only six terms out of nine must be calcu-

lated;

2. for two points x1 and x2 aligned along the same line

passing through the origin, the summation over index

m has the same value;

3. as a consequence of (2), gpk approaches zero as 1=r
when r !1;

4. as a consequence of (2), gpk depends only on the rel-

ative position of the source point and ®eld point.

Thus, the implementation can proceed considering

the source point always at the origin, by an applicable

translation; this leads to an important simpli®cation

of the implementation itself;

5. the numerical solution of a polynomial of sixth order

is the only numerical step required in order to obtain

the entire GreenÕs function.

3. Implementation of the analytic solution

The key steps in the implementation of the analytic

formulation fall essentially into two groups:

1. entries of Cij p� fq� � in terms of elastic constants Dab,

coordinates of ®eld point x, and variable f;

2. coe�cients ai (i � 1±7) of the sextic polynomial (16).

In order to keep the expressions as simple as possible,

vector v introduced in Appendix B must coincide with

one of the base vectors u1, u2, and u3. In the following,

we have assumed that v is either (1, 0, 0) or (0, 1, 0); the

choice between them must be made on the basis of x and

a�ects step 1 only.

3.1. Entries of matrix Cij p� fq� �

Each entry of matrix Cij p� fq� � is a polynomial of

order two in f of the form:

Cij p� � fq� � bij1 � bij2f� bij3f
2: �18�

As an example, coe�cients b1jk are given in Appendix C

in FORTRANFORTRAN format for the case when v � �1; 0; 0�; they

are functions of the entries of matrix D, which are much

more manageable than the fourth-order tensor cijpq.

Coe�cients bijk are also functions of the ®eld point co-

ordinates. The correspondence between notation used in

the text and notation used in the FORTRANFORTRAN code is es-

tablished in Table 1. MATHEMATICAMATHEMATICA 2.2 was used to get

the expression of coe�cients bijk.

3.2. Coe�cients of the sextic polynomial

Although it is possible to get the expressions of co-

e�cients ai (i � 1±7) directly in terms of the elastic

constants Dab and of the ®eld point coordinates, this

leads to expressions as long as 40 pages, which cannot be

handled easily by the compiler and are not computa-

tionally e�cient. Thus, the idea is to derive them in

terms of the bijk coe�cients introduced in Eq. (18).

Determinant D p� fq� � can in fact be written as the sum

of trinomials:

Table 1

Correspondence between notation used in the text and notation

used in the fortran code

Notation used in the

text

Notation used in the FORTRANFORTRAN

code

bijk b�i;j;k�
Dij cd�i;j�
x � (x1, x2, x3) xf;yf;zf

ai a�i�
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D p� � fq� � ÿC13C22C31 � 2C12C23C31

ÿ C11C23C32 ÿ C12C21C33

� C11C22C33: �19�

If we put Eq. (18) into Eq. (19), we realize that each

coe�cient ai (relative to fiÿ1) is a sum of trinomials of

bijk coe�cients. Let l, m, n be the last indexes of the

coe�cients of a trinomial, we found that these indexes

have to satisfy l� m� n � iÿ 2 in order for the product

to be of order iÿ 1. For example, only coe�cients bijk

such that k � 1 contribute to a1. Thus, in general,

ai � ÿ
X

l;m;n:l�m�n�iÿ2

b13ib22jb31k � 2
X

l;m;n:l�m�n�iÿ2

b12ib23jb31k

ÿ
X

l;m;n:l�m�n�iÿ2

b11ib23jb32k ÿ
X

l;m;n:l�m�n�iÿ2

b12ib21jb33k

�
X

l;m;n:l�m�n�iÿ2

b11ib22jb33k :

�20�
Examples of coe�cients ai (i � 1±4) calculated ac-

cording to Eq. (20) are given in Appendix D in FOR-FOR-

TRANTRAN format (see Table 1 for notation correspondence).

It is to be noted that the present implementation of the

analytic solution is quite simple, when compared to the

complexity of the problem in hand.

4. Derivatives of the Green's displacements and stresses

Analytic solutions for the integral over segments and

rectangles of the GreenÕs displacement derivatives were

proposed by Wang [4]. However, expressions of the

derivatives of the GreenÕs displacements are necessary if

the boundary discretization must be more general. Sev-

eral attempts were made by the authors in order to get a

closed-form solution of the GreenÕs function derivatives.

The most promising of them started from the derivation

of Eq. (12) and led to the expression:

gpk;s x� � � xs

2pr3
Im
X3

m�1

Apk p� fmq� �
a7 fm ÿ f�m
ÿ �Q3

k�1
k 6�m

fm ÿ fk� � fm ÿ f�k
ÿ �

ÿ 1

2pr
Im
X3

m�1

oApk p�fmq� �
oxs

a7 fm ÿ f�m
ÿ �Q3

k�1
k 6�m

fm ÿ fk� � fm ÿ f�k
ÿ �

� 1

2pr
Im
X3

m�1

lim
f!fm

d

df
f�

�
ÿ fm�2 Apk

D2

oD
oxs

�
:

�21�
In this equation, the last term is very complicated,

therefore, a numerical algorithm based on the Lagrange

polynomials was proposed [9]. Despite of its simplicity,

this approach has been proven to be e�cient, accurate,

and robust [9].

Following [9], let a function f �x� be known at n

points x1 < x2 < � � � < xn. Let us call yi � f �xi� i � 1,. . .,
n and set

F x� � �
Yn

k�1

x� ÿ xk�; Fk x� � �
Yn

r�1
r 6�k

x� ÿ xr�;

Fk xk� � �
Yn

r�1
r 6�k

xk� ÿ xr�: �22�

The complete Lagrange interpolation function is

f x� � � P x� � � F x� � � f
�n� n x� �� �

n!
; �23�

where

P x� � �
Xn

k�1

Fk x� �
Fk xk� � � yk : �24�

By taking the derivative of Eq. (23) and evaluating it at

xr, we get

f 0 xr� � � P 0 xr� � � F 0 xr� � � f
�n� n xr� �� �

n!
: �25�

Thus, the error in the ®rst derivative is

F 0 xr� � � f
�n� n xr� �� �

n!
; �26�

where F 0 xr� � is nothing but the product of the distances

between xr and the other chosen abscissas. Therefore, if

the intervals between the chosen abscissas is constant, its

minimum value is attained at the mid point (or two mid-

points if n is even) of the segment between x1 and xn. It

follows that the best approximation of the value of f 0 xr� �
obtainable using the polynomial derivative is attained at

the mid-point (or two mid-points if n is even) of the

segment between x1 and xn. It can be shown that the

derivative of the Lagrange polynomial is

P 0 xr� � �
Xn

k�1
k 6�r

1

xr ÿ xk
yr

�
ÿ yk

F 0 xr� �
F 0 xk� �

�
: �27�

If we choose a polynomial of order 2, i.e. 3 abscissas,

from Eqs. (25) and (27), we get

f 0 x2� � � 1

2h
� ÿ f x1� � � f x3� �� ÿ h2

6
f �3� n2� �; �28�

where h is the distance between two consecutive abscis-

sas and n2 is a point comprised between x1 and x3.

Now, let x be the ®eld point at which we want to

calculate GreenÕs stress component rijk de®ned in Sec-

tion 2.2. To this end, the expression of GreenÕs strain

component eijk at x is necessary in order to calculate rijk

by means of Eq. (4). Using Eq. (28), the following
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expressions of GreenÕs strain component eijk at x are

obtained:

e11k x� � � g1k x� D1� � ÿ g1k xÿ D1� �
2h

; �29�

e22k x� � � g2k x� D2� � ÿ g2k xÿ D2� �
2h

; �30�

e33k x� � � g3k x� D3� � ÿ g3k xÿ D3� �
2h

; �31�

e23k x� � �
g3k x� D2� � ÿ g3k xÿ D2� � � g2k x� D3� � ÿ g2k xÿ D3� �

4h
;

�32�

e13k x� � �
g1k x� D3� � ÿ g1k xÿ D3� � � g3k x� D1� � ÿ g3k xÿ D1� �

4h
;

�33�

e12k x� � �
g1k x� D2� � ÿ g1k xÿ D2� � � g2k x� D1� � ÿ g2k xÿ D1� �

4h
;

�34�

where D1 � �h; 0; 0�, D2 � �0; h; 0�, D3 � �0; 0; h�.
In order to get the complete GreenÕs stress and strain

at point x, it is thus necessary to compute the GreenÕs
tensor at six points in the neighborhood of x. The choice

of interval h is a crucial decision. An extensive numerical

investigation has led us to the conclusion that the best

value of the interval is

h � r � 10ÿ6; �35�

where r is the distance between the ®eld and source

points.

It is also noteworthy that the attempts aimed at in-

creasing the accuracy of the approximation by adding

other terms to Eqs. (29)±(34) led to no appreciable im-

provement. In the authorsÕ opinion, the reason for the

good performance of this scheme lies primarily in the

smooth and monotonic behavior of GreenÕs displace-

ments.

In order to calculate the internal stresses, the deriv-

atives of GreenÕs stresses and displacements are needed

with respect to the coordinates of the source point (see

Section 5). By virtue of observation 4 in Section 2, these

derivatives are equal but opposite in sign to the deriva-

tives taken with respect to the ®eld point xi. According

to Eq. (28), the derivatives of GreenÕs stresses are ap-

proximated as

rijk;l x� � � rijk x� Dl� � ÿ rijk xÿ Dl� �
2h

; l � 1; 2; 3;

�36a�

and the derivatives of GreenÕs displacements as

gij;l x� � � gij x� Dl� � ÿ gij xÿ Dl� �
2h

; l � 1; 2; 3: �36b�

5. Boundary element method formulation

Consider an elastic body (®nite or in®nite) with the

following displacement and traction conditions imposed

on the boundary C � Cu � Ct:

uj x� � � uj x� �; x 2 Cu; �37a�

rij x� �nj x� � � T j x� �; x 2 Ct �37b�

with nj being the external normal to Ct.

For each internal point xp the following integral

equation holds [10]:

ui xp

ÿ �� Z
C

T �ij xp; x
ÿ �

uj x� �dC x� �

�
Z

C
U �ij xp; x
ÿ �

Tj x� �dC x� �; �38�

where U �ij xp; x
ÿ �

and T �ij xp; x
ÿ �

are GreenÕs displacements

and tractions, respectively. By virtue of observation 4 in

Section 2, U �ij xp; x
ÿ �

and T �ij xp; x
ÿ �

are equal to

U �ij xp; x
ÿ � � gij x

ÿ ÿ xp

�
; �39�

T �ij xp; x
ÿ � � rikj x

ÿ ÿ xp

�
nk x� �: �40�

If xp approaches a point xb on the boundary, Eq. (38)

must be replaced by

dijuj xb� � �
Z

C
T �ij xb; x� �uj x� �dC x� �

�
Z

C
U �ij xb; x� �Tj x� �dC x� �; �41�

where dij are coe�cients that depend only on the local

geometry of the boundary at xb.

The term on the right-hand side of Eq. (41) has weak

singularity (see observation 3, Section 2) and can thus be

integrated by means of a usual Gauss quadrature tech-

nique. The rigid-body motion method [10,11] can be

used to overcome the Cauchy-type singularity in the ®rst

integrand and at the same time to avoid the calculation

of coe�cients dij.

Eq. (41) can be discretized and, once boundary

conditions (37) are taken into account, the resulting al-

gebraic system of equations can be solved for the un-
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known boundary displacements and tractions. Then, Eq.

(38) can be used to calculate the internal displacements.

In order to get the internal stresses, it is necessary to

take the derivative of Eq. (38) with respect to the in-

ternal coordinates xp. This yields [11]

ui;l xp

ÿ �� Z
C

T �ij;l xp; x
ÿ �

uj x� �dC x� �

�
Z

C
U �ij;l xp; x

ÿ �
Tj x� �dC x� �; �42�

where

T �ij;l xp; x
ÿ � � ÿrikj;l x

ÿ ÿ xp

�
nk x� �; �43a�

U �ij;l xp; x
ÿ � � ÿgij;l x

ÿ ÿ xp

� �43b�

with rikj;l xÿ xp

ÿ �
given by Eq. (36a) and gij;l xÿ xp

ÿ �
by

Eq. (36b).

Once ui;l xp

ÿ �
are obtained, the internal stresses are

calculated by means of the following equation similar to

Eqs. (4) and (5):

r � De; �44a�
where

r � �r11; r22; r33; r23; r13; r12�T ; �44b�

e � �e11; e22; e33; 2e23; 2e13; 2e12�T ; �44c�

eij � 1
2

ui;j

ÿ � uj;i

�
: �44d�

The implementation described in Sections 3 and 4

was incorporated into an existing three-dimensional

BEM code (see Ref. [11] for its description) according to

the procedure presented in this Section. In Ref. [11], only

transversely isotropic 3D media (with any oriented plane

of transverse isotropy) was considered and implemented

in the code; in this paper, WangÕs solution for generally

anisotropic media has been implemented.

6. Numerical examples

6.1. Green's displacements, stresses and derivatives of the

stresses

Let us consider a transversely isotropic and linearly

elastic solid, whose plane of transverse isotropy is par-

allel to the x1x2 plane. A closed-form solution exists in

this case for the GreenÕs displacements, stresses [5] and

derivatives of the stresses [11]. This solution will be used

(as implemented in Ref. [11]) to validate the proposed

formulation.

The material properties are as follows: E � 20�
104 kN/m2, E0 � 4� 104 kN/m2, m � 0:25, m0 � 0:25,

G0 � 1:6� 104 kN/m2, where E and E0 are YoungÕs
moduli in the plane of transverse isotropy and in the

direction normal to it, respectively; m and m0 are the

PoissonÕs ratios characterizing the lateral strain response

in the plane of transverse isotropy to a stress acting

parallel and normal to it, respectively; and G0 is the shear

modulus in planes normal to the plane of symmetry. The

corresponding elastic-constant matrix D is (only the

upper half is given)

88 72 40 0 0 0
88 40 0 0 0

24 0 0 0
16 0 0

sym: 16 0
8

0BBBBBB@

1CCCCCCA� 104 kN=m2: �45�

The ®eld point is placed at x � �ÿ1; 0:8; 1:5� m. The

displacements, stresses, stress derivatives are listed in

Tables 2±4, respectively. The agreement between the

closed-form solution and the present formulation is very

good for all three quantities. Only for some components

of the derivatives of the stresses (Table 4) is the relative

di�erence not negligible; however, it must be noted that

the magnitude of these components is small with respect

to the remaining components, thus leading to negligible

Table 2

GreenÕs displacements (�10ÿ4 m) calculated according to PanÕs and ChouÕs closed-form solution [5] as implemented in Ref. [11] and

with the present formulation. The source point is at the origin, the ®eld point is at x � (ÿ1, 0.8, 1.5) m

(i, j) gij transversely isotropic formulation gij present formulation Relative di�erence

1, 1 4.0141588565Eÿ03 4.0141588610Eÿ03 1.1Eÿ09

1, 2 ÿ2.9315529284Eÿ04 ÿ2.9315529143Eÿ04 4.8Eÿ09

1, 3 ÿ2.1517885087Eÿ03 ÿ2.1517885172Eÿ03 3.9Eÿ09

2, 1 ÿ2.9315529284Eÿ04 ÿ2.9315529143Eÿ04 4.8Eÿ09

2, 2 3.8822389747Eÿ03 3.8822389799Eÿ03 1.3Eÿ09

2, 3 1.7214308070Eÿ03 1.7214308137Eÿ03 3.9Eÿ09

3, 1 ÿ2.1517885087Eÿ03 ÿ2.1517885172Eÿ03 3.9Eÿ09

3, 2 1.7214308070Eÿ03 1.7214308137Eÿ03 3.9Eÿ09

3, 3 1.9003220124Eÿ02 1.9003220284Eÿ02 8.4Eÿ09
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Table 3

GreenÕs stresses (kN/m2) calculated according to PanÕs and ChouÕs closed-form solution [5] as implemented in Ref. [11] and the present

formulation. The source point is at the origin, the ®eld point in x � (ÿ1, 0.8, 1.5) m

ijk rijk transversely isotropic formulation rijk present formulation Relative di�erence

111 3.0534645334Eÿ03 3.0534575287Eÿ03 2.3Eÿ06

221 5.5516532436Eÿ03 5.5516460542Eÿ03 1.3Eÿ06

331 6.9594542712Eÿ03 6.9594505349Eÿ03 5.4Eÿ07

231 2.5160305656Eÿ03 2.5160307422Eÿ03 7.0Eÿ08

131 ÿ3.3933330101Eÿ03 ÿ3.3933332396Eÿ03 6.8Eÿ08

121 ÿ1.8033628216Eÿ03 ÿ1.8033626725Eÿ03 8.3Eÿ08

112 ÿ5.6717491681Eÿ03 ÿ5.6717487868Eÿ03 6.7Eÿ08

222 ÿ1.2123450534Eÿ03 ÿ1.2123450967Eÿ03 3.6Eÿ08

332 ÿ5.5675634169Eÿ03 ÿ5.5675634915Eÿ03 1.3Eÿ08

232 ÿ2.2611192556Eÿ03 ÿ2.2611192104Eÿ03 2.0Eÿ08

132 2.5160305656Eÿ03 2.5160306251Eÿ03 2.4Eÿ08

122 7.1617031049Eÿ04 7.1617003567Eÿ04 3.8Eÿ07

113 ÿ1.7147827999Eÿ02 ÿ1.7147807646Eÿ02 1.2Eÿ06

223 ÿ8.3655438558Eÿ03 ÿ8.3655210747Eÿ03 2.7Eÿ06

333 ÿ2.2078536037Eÿ02 ÿ2.2078524002Eÿ02 5.4Eÿ07

233 ÿ1.1775219220Eÿ02 ÿ1.1775219467Eÿ02 2.1Eÿ08

133 1.4719024025Eÿ02 1.4719024871Eÿ02 5.7Eÿ08

123 1.9516186984Eÿ02 1.9516189072Eÿ02 1.1Eÿ07

Table 4

Derivatives of the GreenÕs stresses (kN/m3) calculated according to the exact closed-form solution derived and implemented in Ref. [11]

and the present formulation. The source point is at the origin, the ®eld point in x � (ÿ1, 0.8, 1.5) m

ijk, l rijk;l transversely isotropic formulation rijk;l present formulation Relative di�erence

111, 1 ÿ0.59622259271Eÿ02 ÿ0.59629572705Eÿ02 1.2Eÿ04

111, 2 ÿ0.45086940696Eÿ02 ÿ0.45074656599Eÿ02 ÿ2.7Eÿ04

111, 3 ÿ0.56414664921Eÿ02 ÿ0.56411267186Eÿ02 ÿ6.0Eÿ05

221, 1 0.44694421882Eÿ02 0.44685063303Eÿ02 ÿ2.0Eÿ04

221, 2 ÿ0.11811731607Eÿ02 ÿ0.11798500052Eÿ02 ÿ1.1Eÿ03

221, 3 ÿ0.37926171802Eÿ02 ÿ0.37921063932Eÿ02 ÿ1.3Eÿ04

331, 1 0.16987884233Eÿ02 0.16982433466Eÿ02 ÿ3.2Eÿ04

331, 2 ÿ0.69265941556Eÿ02 ÿ0.69258768984Eÿ02 ÿ1.0Eÿ04

331, 3 ÿ0.44525631963Eÿ02 ÿ0.44523121121Eÿ02 ÿ5.6Eÿ05

231, 1 0.79385810234Eÿ03 0.79379727638Eÿ03 ÿ7.7Eÿ05

231, 2 0.49712727263Eÿ03 0.49714271358Eÿ03 3.1Eÿ05

231, 3 ÿ0.30906032310Eÿ02 ÿ0.30906216080Eÿ02 5.9Eÿ06

131, 1 0.39554359236Eÿ02 0.39554842055Eÿ02 1.2Eÿ05

131, 2 0.18677123922Eÿ02 0.18676962357Eÿ02 ÿ8.6Eÿ06

131, 3 0.61652880201Eÿ02 0.61653303015Eÿ02 6.8Eÿ06

121, 1 0.42717763920Eÿ02 0.42718112393Eÿ02 8.1Eÿ06

121, 2 ÿ0.20306209291Eÿ03 ÿ0.20300240322Eÿ03 ÿ2.9Eÿ04

121, 3 0.53606344730Eÿ02 0.53607252836Eÿ02 1.7Eÿ05

112, 1 ÿ0.30768883497Eÿ02 ÿ0.30775369921Eÿ02 2.1Eÿ04

112, 2 0.84038676742Eÿ03 0.84094663232Eÿ03 6.7Eÿ04

112, 3 0.50628670483Eÿ02 0.50629208004Eÿ02 1.6Eÿ05

222, 1 ÿ0.26129788805Eÿ02 ÿ0.26137365442Eÿ02 2.9Eÿ04

222, 2 ÿ0.48936107600Eÿ02 ÿ0.48931499059Eÿ02 ÿ9.4Eÿ05

222, 3 0.24843998895Eÿ02 0.24845314971Eÿ02 5.3Eÿ05

332, 1 ÿ0.69265941556Eÿ02 ÿ0.69269468094Eÿ02 5.9Eÿ05

332, 2 ÿ0.14181789466Eÿ02 ÿ0.14179740950Eÿ02 ÿ1.4Eÿ04

332, 3 0.35620505570Eÿ02 0.35621376993Eÿ02 2.4Eÿ05
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errors in the computation of the internal stresses, as will

be shown in Section 6.2.

6.2. Boundary element method models

The following two examples have the same geometry.

A cube of transversely isotropic material, whose edge is

1 m long, is discretized very coarsely with six nine-node

isoparametric elements and with a total of 26 nodes

(Fig. 3). The faces of the block are parallel to the co-

ordinate planes. The block is subjected to a uniform

compression of 1 kN/m2 on the two faces parallel to the

x1x2 plane. For this case, an exact solution exists [12].

In the ®rst example, we adopt the same material

constants as considered in Section 6.1. However, the

plane of symmetry is no longer parallel to the x1x2

plane, but is inclined with a dip direction angle u � 60�

and a dip angle w � 45� (Fig. 4). Consequently, the

elastic-constant matrix D referred to the x1, x2, and x3

axes is now fully populated (only the upper half is

given):

14:5 9:9 9:6 ÿ0:2 ÿ3:1177 ÿ1:5588
18:5 9:6 ÿ2:2 ÿ1:0392 ÿ1:9052

12:8 ÿ1:6 ÿ2:7713 0
3:2 0 ÿ1:0392

sym: 3:2 ÿ0:2
3:5

0BBBBBB@

1CCCCCCA
� 104 kN=m2:

�46�

This case was also considered in [11] where it was solved

using the closed-form GreenÕs displacements, stresses [5]

Table 4 (continued)

ijk, l rijk;l transversely isotropic formulation rijk;l present formulation Relative di�erence

232, 1 ÿ0.84519058971Eÿ03 ÿ0.84518000388Eÿ03 ÿ1.2Eÿ05

232, 2 ÿ0.43559086593Eÿ02 ÿ0.43559177742Eÿ02 2.9Eÿ06

232, 3 0.47745165660Eÿ02 0.47746037165Eÿ02 1.8Eÿ05

132, 1 0.79385810234Eÿ03 0.79378559587Eÿ03 ÿ9.1Eÿ05

132, 2 0.49712727263Eÿ03 0.49718754586Eÿ03 1.2Eÿ04

132, 3 ÿ0.30906032312Eÿ02 ÿ0.30906169537Eÿ02 4.4Eÿ06

122, 1 0.11909419404Eÿ03 0.11905631360Eÿ03 ÿ3.2Eÿ04

122, 2 0.61674915810Eÿ02 0.61674862040Eÿ02 ÿ8.7Eÿ07

122, 3 ÿ0.41648264611Eÿ02 ÿ0.41648490465Eÿ02 5.4Eÿ06

113, 1 0.71134008460Eÿ02 0.71131995957Eÿ02 ÿ2.8Eÿ05

113, 2 0.33341653291Eÿ01 0.33342792915Eÿ01 3.4Eÿ05

113, 3 0.98238228068Eÿ02 0.98259170804Eÿ02 2.1Eÿ04

223, 1 ÿ0.29318534460Eÿ01 ÿ0.29319149219Eÿ01 3.0Eÿ05

223, 2 ÿ0.15577546399Eÿ01 ÿ0.15576273564Eÿ01 ÿ8.2Eÿ05

223, 3 ÿ0.83606419668Eÿ04 ÿ0.81186914690Eÿ04 ÿ2.9Eÿ02

333, 1 ÿ0.27302017639Eÿ01 ÿ0.27302079852Eÿ01 2.3Eÿ06

333, 2 0.21841614111Eÿ01 0.21842236628Eÿ01 2.8Eÿ05

333, 3 ÿ0.41215790310Eÿ03 ÿ0.41093285237Eÿ03 ÿ3.0Eÿ03

233, 1 ÿ0.14561076074Eÿ01 ÿ0.14560962479Eÿ01 ÿ7.8Eÿ06

233, 2 ÿ0.30701631651Eÿ02 ÿ0.30703156075Eÿ02 5.0Eÿ05

233, 3 0.76303285982Eÿ02 0.76304202029Eÿ02 1.2Eÿ05

133, 1 0.34823210683Eÿ02 0.34819436621Eÿ02 ÿ1.1Eÿ04

133, 2 ÿ0.14561076074Eÿ01 ÿ0.14560935326Eÿ01 ÿ9.7Eÿ06

131, 3 ÿ0.95379107477Eÿ02 ÿ0.95379106793Eÿ02 ÿ7.2Eÿ09

123, 1 0.79472178014Eÿ02 0.79465584372Eÿ02 ÿ8.3Eÿ05

123, 2 0.24245099017Eÿ02 0.24250012946Eÿ02 2.3Eÿ04

123, 3 ÿ0.22016509392Eÿ01 ÿ0.22016463462Eÿ01 ÿ2.1Eÿ06

Fig. 3. Cube having edge of length l � 1 m discretized with six

nine-node quadrilateral elements with a total of 26 nodes.
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and stress derivatives [11]. The results obtained with

these formulations and with the present one are listed in

Tables 5 and 6; they indicate that for both the dis-

placements (on the boundary and internal) and internal

stresses, the exact values, the values calculated with the

present implementation and the values calculated in Ref.

[11] are in very good agreement.

The second example resembles the one reported

in Ref. [13]. Here, a (transversely isotropic) zinc cube

is considered, whose plane of symmetry is parallel to

the x1x2 plane. The elastic-constant matrix referred to

the x1, x2, and x3 axes is now (only the upper half is

given)

161:00 34:20 50:10 0 0 0
161:00 50:10 0 0 0

61:00 0 0 0
38:3 0 0

38:30 0
63:40

0BBBBBB@

1CCCCCCAGPa:

�47�

It is to be noted that zinc has a negative Poisson ratio

m12 � ÿ0:06. In Table 7, the results obtained by Schclar

[13] with a di�erent numerical formulation for general

anisotropic bodies are given in the second column.

Comparison between columns 1 and 3 and 2 and 3 in-

dicates that the present formulation and implementation

is much more precise.

7. Conclusions

The implementation of a theoretical solution for

GreenÕs displacements in general anisotropic solids is

presented. Its detailed illustration has been accompanied

with excerpts from the authorsÕ own FORTRANFORTRAN code, in

order for the implementation to be available and readily

usable by as many readers as possible. Many features

distinguish the present implementation from existing

numerical formulations:

1. the procedure is completely analytic, the only numer-

ical step is associated with the determination of the

roots of a sixth-order polynomial;

Table 7

Zinc block under uniform compression. Example 2: boundary

displacements at node A (�10ÿ7 m)

Present Anisotropic

formulation [13]

Exact [12]

u1 7.278 7.291 7.274

u2 ÿ7.277 ÿ7.291 ÿ7.274

u3 ÿ28.35 ÿ28.42 ÿ28.34

Table 6

Block under uniform compression. Example 1: internal dis-

placements along the vertical center line (Panel A) and stresses

along the vertical centerline (Panel B±D)

z (m) Present Transversely iso-

tropic formula-

tion [11]

Exact [12]

Panel A: u3 (�10ÿ5 m)

0.75 ÿ0.5210 ÿ0.5208 ÿ0.5209

0.625 ÿ0.2604 ÿ0.2604 ÿ0.2604

0.5 0.0000 0.0000 0.0000

0.375 0.2604 0.2604 0.2604

0.25 0.5208 0.5208 0.5208

Panel B: r11 (kN/m2)

0.75 0.0005 0.0011 0.0000

0.625 0.0006 ÿ0.0000 0.0000

0.5 ÿ0.0023 ÿ0.0000 0.0000

0.375 0.0096 ÿ0.0000 0.0000

0.25 0.0013 0.0014 0.0000

Panel C: r22 (kN/m2)

0.75 ÿ0.0060 ÿ0.0040 0.0000

0.625 ÿ0.0021 ÿ0.0000 0.0000

0.5 ÿ0.0007 0.0000 0.0000

0.375 0.0084 ÿ0.0000 0.0000

0.25 ÿ0.0045 ÿ0.0044 0.0000

Panel D: r33 (kN/m2)

0.75 ÿ0.999 ÿ1.001 ÿ1.000

0.625 ÿ0.992 ÿ1.000 ÿ1.000

0.5 ÿ1.002 ÿ1.000 ÿ1.000

0.375 ÿ1.000 ÿ1.000 ÿ1.000

0.25 ÿ1.003 0.988 ÿ1.000

Fig. 4. Orientation of the plane of transverse isotropy. Dip

angle w is the angle between the plane of symmetry and x1x2

plane; dip direction angle u is the angle between x2 and the

orthogonal projection of the dip vector on the x1x2 plane.

Positive angles are shown.

Table 5

Block under uniform compression. Example 1: surface dis-

placements at node A (�10ÿ5 m)

Present Transversely isotro-

pic formulation [11]

Exact [12]

u1 ÿ0.5496 ÿ0.5496 ÿ0.5496

u2 ÿ0.7029 ÿ0.7032 ÿ0.7031

u3 ÿ1.0417 ÿ1.0417 ÿ1.0417

478 F. Tonon et al. / Computers and Structures 79 (2001) 469±482



2. once the roots of this polynomial are known, the en-

tire GreenÕs tensor is immediately calculated;

3. the procedure is very robust, since no problem arose

even with transversely isotropic materials;

4. the implementation is very e�cient, since less than 16

s were necessary to run 10,000 calculations of the en-

tire GreenÕs tensor in a PC featuring a 266 MHz Pen-

tium II processor and 64 MB RAM;

5. an extensive numerical validation (one example of

which was included in the paper) has shown its high

accuracy.

A numerical algorithm has also been proposed for

GreenÕs stresses and their derivatives. Despite its sim-

plicity, it has been proven to be

1. robust, since no problem arose even with transversely

isotropic materials;

2. very accurate even with degenerate (transversely iso-

tropic) materials and/or when the ®eld point is very

close to or very far from the source point;

3. very e�cient, since less than 80 s were necessary to

run 10,000 calculations of the complete GreenÕs
stresses in a PC featuring a 266 MHz Pentium II pro-

cessor and 64 MB RAM.

The performance of the proposed implementations

within a previously developed three-dimensional BEM

code [11] turned out to be highly accurate when com-

pared to both exact solutions and transversely isotropic

BEM formulations for which closed-form expressions of

GreenÕs displacements, stresses and stress derivatives

were used. When compared to previously published re-

sults obtained with completely di�erent numerical for-

mulations, the present implementation turned out to be

much more precise.

Finally, our GreenÕs functions have just been suc-

cessfully implemented into a general program called

BEFE, a coupled boundary and ®nite element program

developed by Beer and co-workers [14]. While BEFE

program will now be applied to solve more complex

problems involving material anisotropy [15], a compar-

ison study of our GreenÕs function implementation with

others [16] is currently under investigation. Also, the

authors are looking at the possible advantages in im-

plementing the recent developments in the analysis of

anisotropic media using StrohÕs formalism [17,18]. The

explicit three-dimensional GreenÕs function in a general

anisotropic in®nite space was derived by Ting and Lee

[17] using the Stroh eigenvalues.
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Appendix A. Radon transform and plane representation of

the Dirac delta function

The Radon transform [19±23] is of fundamental im-

portance in order to work out the analytic solution of

the problem at hand.

Let f �x� be a function de®ned in R3 and s a real

number; the Radon transform of f �x� is de®ned as

f̂ s; n� � � R f x� �� � �
Z

f x� � � d s� ÿ n � x�dx; �A:1�

where d� � is the one-dimensional Dirac delta function.

It follows that, when s varies over the real line, the

Radon transform is an integration of f �x� over all

planes de®ned by n � x � s, i.e., having normal n and

distant s=jnj from the origin O.

The inverse Radon transform is an integration in the n

space over the closed surface X containing the origin and

de®ned as

f x� � � R� f̂ 00
� �

� ÿ 1

8p2

Z
X

f̂ 00 n � x; n� �dX n� �; �A:2�

where

f̂ 00 n � x; n� � � o2f̂ s; n� �
os2

�����
s�n�x

: �A:3�

Let d x� � � d x1; x2; x3� � be the Dirac delta centered in

the origin, i.e. the functionalZ
R3

d x� �f x� �dV � f o� �; �A:4�

where o � �0; 0; 0�.
We will use the same symbol d for both one-di-

mensional and three-dimensional Dirac delta, with the

convention that if the argument is a scalar, the one-

dimensional Dirac delta is involved and if the argument

is a vector, the three-dimensional Dirac delta is involved.

The Radon transform of the Dirac delta is

d̂ s; n� � � R d x� �� � �
Z

d x� � � d s� ÿ n � x�dx

� d s� ÿ n � o� � d s� �: �A:5�

Now
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od n � x� �
oxi

� ni
dd
ds

����
s�n�x

;

o2d n � x� �
ox2

i
� n2

i

d2d

d2s

����
s�n�x

:

�A:6a; b�

Thus,

X3

i�1

o2d n � x� �
ox2

i
�
X3

i�1

n2
i

d2d
ds2

����
s�n�x
� d2d

ds2

����
s�n�x

X3

i�1

n2
i

� nj j2 d2d
ds2

����
s�n�x

: �A:7�

Since the ®rst member of Eq. (A.7) is Laplacian of d, Dd,

Eq. (A.3) becomes

d̂00 � d2d
ds2

����
s�n�x
� Dd n � x� �

nj j2 : �A:8�

According to Eq. (A.2), the inverse Radon transform is

d x� � � ÿ 1

8p2

Z
X

Dd n � x� �
nj j2 dX n� �

� ÿ 1

8p2
D
Z

X

d n � x� �
nj j2 dX n� �; �A:9�

the last passage is due to the fact that the variable of

integration is n, not x.

Thus, we have the very notable relation, called

``plane representation for d�x�'':

d x� � � ÿ 1

8p2
D
Z

X

d n � x� �
nj j2 dX n� � �A:10�

that coincides with Eq. (6) in Wang [4].

Appendix B. Change of coordinate system

The Radon transform is an integration over the

planes whose normal is n. The inverse Radon transform,

for a ®xed x, is an integration involving all the normal

vectors n. Therefore, a convenient coordinate system

when we perform the inverse transform is such that an

axis is parallel to x [4] (Fig. 1a). Let us de®ne

r � xj j; e � x

r
: �B:1�

If v is an arbitrary unit vector di�erent from

e �v 6� e�, two normal vectors orthogonal to e are

p � e� v

e� vj j ; �B:2�

q � e� p: �B:3�

Let n, f, g be the components of vector n in the new

coordinate system of R3, then

n � np� fq� ge; �B:4a�

n � x � p � xn� q � xf� e � xg � rg: �B:4b�

This transformation induces a transformation of

coordinates in the n space with (n, f, g) being the coor-

dinates of point n in the new coordinate system in the n

space as shown in Fig. 1b. The determinant of the

Jacobian of the latter transformation is obviously equal

to 1.

Appendix C. Coe�cients b1jk

If v� (1, 0, 0) then

b(1, 1, 1)�(yf��2�cd(5,
5)ÿ2�yf�zf�cd(5, 6)�zf��2�cd(6, 6))/

(yf��2�zf��2)
c

b(1, 1, 2)�2�(yf��3�cd(1, 5)

�yf�zf��2�cd(1, 5)ÿyf��2�zf�cd(1, 6)

ÿzf��3�cd(1, 6)ÿxf�yf�zf�cd(5, 5)

ÿxf�yf��2�cd(5, 6)�xf�zf��2�cd(5, 6)

�xf�yf�zf�cd(6, 6))/((yf��2�zf��2)
�Sqrt(xf��2�yf��2�zf��2))

c

b(1, 1, 3)�(yf��4�cd(1, 1)

�2�yf��2�zf��2�cd(1, 1)�zf��4�cd(1, 1)

ÿ2�xf�yf��2�zf�cd(1, 5)

ÿ2�xf�zf��3�cd(1, 5)ÿ2�xf�yf��3�cd(1, 6)

ÿ2�xf�yf�zf��2�cd(1, 6)

�xf��2�zf��2�cd(5, 5)

�2�xf��2�yf�zf�cd(5, 6)

�xf��2�yf��2�cd(6, 6))/

((yf��2�zf��2)�(xf��2�yf��2�zf��2))
c

b(1, 2, 1)�(ÿ(yf�zf�cd(2, 5))

�zf��2�cd(2, 6)�yf��2�cd(4, 5)

ÿyf�zf�cd(4, 6))/(yf��2�zf��2)
c

b(1, 2, 2)�(ÿ(yf��2�zf�cd(1, 2))

ÿzf��3�cd(1, 2)�yf��3�cd(1, 4)

�yf�zf��2�cd(1, 4)ÿxf�yf��2�cd(2, 5)

�xf�zf��2�cd(2, 5)�2�xf�yf�zf�cd(2, 6)

ÿ2�xf�yf�zf�cd(4, 5)ÿ xf�yf��2�cd(4, 6)

�xf�zf��2�cd(4, 6)�yf��3�cd(5, 6)

�yf�zf��2�cd(5, 6)ÿyf��2�zf�cd(6, 6)

ÿzf��3�cd(6, 6))/((yf��2�zf��2)
�Sqrt(xf��2�yf��2�zf��2))
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Appendix D. Examples of coe�cients ai �i � 1±4�

c

b(1, 2, 3)�(ÿ(xf�yf��3�cd(1, 2))

ÿxf�yf�zf��2�cd(1, 2)ÿxf�yf��2�zf�cd(1, 4)
ÿxf�zf��3�cd(1, 4)�yf��4�cd(1, 6)

�2�yf��2�zf��2�cd(1, 6)�zf��4�cd(1, 6)

�xf��2�yf�zf�cd(2, 5)�xf��2�yf��2�cd(2, 6)
�xf��2�zf��2�cd(4, 5)�xf��2�yf�zf�cd(4, 6)
ÿxf�yf��2�zf�cd(5, 6)ÿ xf�zf��3�cd(5, 6)

ÿxf�yf��3�cd(6, 6)ÿxf�yf�zf��2�cd(6, 6))/
((yf��2�zf��2)�(xf��2�yf��2�zf��2))

c

b(1, 3, 1)�(yf��2�cd(3, 5)ÿ
yf�zf�cd(3, 6)ÿyf�zf�cd(4, 5)

�zf��2�cd(4, 6))/(yf��2�zf��2)
c

b(1, 3, 2)�(yf��3�cd(1, 3)

�yf�zf��2�cd(1, 3)ÿ yf��2�zf�cd(1, 4)

ÿzf��3�cd(1, 4)ÿ2�xf�yf�zf�cd(3, 5)ÿ
xf�yf��2�cd(3, 6)�xf�zf��2�cd(3, 6)

ÿxf�yf��2�cd(4, 5)�xf�zf��2�cd(4, 5)

�2�xf�yf�zf�cd(4, 6)�yf��3�cd(5, 5)

�yf�zf��2�cd(5, 5)ÿyf��2�zf�cd(5, 6)

ÿzf��3�cd(5, 6))/

((yf��2�zf��2)�Sqrt(xf��2�yf��2�zf��2))
c

b(1, 3, 3)�(ÿ(xf�yf��2�zf�cd(1, 3))ÿ
xf�zf��3�cd(1, 3)ÿxf�yf��3�cd(1, 4)

ÿxf�yf�zf��2�cd(1, 4)�yf��4�cd(1, 5)

�2�yf��2�zf��2�cd(1, 5)�zf��4�cd(1, 5)

�xf��2�zf��2�cd(3, 5)�xf��2�yf�zf�cd(3, 6)
�xf��2�yf�zf�cd(4, 5)�xf��2�yf��2�cd(4, 6)
ÿ xf�yf��2�zf�cd(5, 5)ÿxf�zf��3�cd(5, 5)

ÿxf�yf��3�cd(5, 6)ÿxf�yf�zf��2�cd(5,
6))/((yf��2�zf��2)�(xf��2�yf��2�zf��2))

a(1)�ÿ(b(1, 3, 1)�b(2, 2, 1)�b(3, 1, 1))
�2�b(1, 2, 1)�b(2, 3, 1)�b(3, 1, 1)

b(1, 1, 1)�(2, 3, 1)�b(3, 2, 1)b(1, 2, 1)
�b(2, 1, 1)�b(3, 3, 1)�b(1, 1, 1)
�b(2, 2, 1)�b(3, 3, 1)

c

a(2)�ÿ(b(1, 3, 2)�b(2, 2, 1)�b(3, 1, 1)
�b(1, 3, 1)�b(2, 2, 2)�b(3, 1, 1)

�b(1, 3, 1)�b(2, 2, 1)�b(3, 1, 2))

�2�(b(1, 2, 2)�b(2, 3, 1)�b(3, 1, 1)

�b(1, 2, 1)�b(2, 3, 2)�b(3, 1, 1)

�b(1, 2, 1)�b(2, 3, 1)�b(3, 1, 2))(b(1, 1, 2)
�b(2, 3, 1)�b(3, 2, 1)�b(1, 1, 1)�b(2, 3,
2)�b(3, 2, 1)�b(1, 1, 1)�b(2, 3, 1)�b(3, 2,
2))(b(1, 2, 2)�b(2, 1, 1)�b(3, 3, 1)
�b(1, 2, 1)�b(2, 1, 2)�b(3, 3, 1)�b(1, 2, 1)
�b(2,1,1)�b(3,3,2))�(b(1,1,2)�b(2,2,1)
�b(3, 3, 1)�b(1, 1, 1)�b(2, 2, 2)�b(3, 3, 1)
�b(1, 1, 1)� b(2, 2, 1)� b(3, 3, 2))

c

a(3)�ÿ(b(1, 3, 3)�b(2, 2, 1)�b(3, 1, 1)
�b(1, 3, 1)�b(2, 2, 3)�b(3, 1, 1)

�b(1, 3, 1)�b(2, 2, 1)�b(3, 1, 3)�b(1, 3, 2)
�b(2, 2, 2)�b(3, 1, 1)�b(1, 3, 1)�b(2, 2, 2)
�b(3, 1, 2)�b(1, 3, 2)�b(2, 2, 1)�b(3, 1, 2))
�2�(b(1, 2, 3)�b(2, 3, 1)�b(3, 1, 1)
�b(1, 2, 1)�b(2, 3, 3)�b(3, 1, 1)�b(1, 2, 1)
�b(2, 3, 1)�b(3, 1, 3)�b(1, 2, 2)�b(2, 3, 2)
�b(3, 1, 1)�b(1, 2, 1)�b(2, 3, 2)�b(3, 1, 2)
�b(1, 2, 2)�b(2, 3, 1)�b(3, 1, 2))(b(1, 1, 3)
�b(2, 3, 1)�b(3, 2, 1)�b(1, 1, 1)�b(2, 3, 3)
�b(3, 2, 1)�b(1, 1, 1)�b(2, 3, 1)�b(3, 2, 3)
�b(1, 1, 2)�b(2, 3, 2)�b(3, 2, 1)
�b(1, 1, 1)�b(2, 3, 2)�b(3, 2, 2)
�b(1,1,2)�b(2,3,1)�b(3,2,2))ÿ(b(1,2,3)
�b(2, 1, 1)�b(3, 3, 1)�b(1, 2, 1)b(2, 1, 3)
b(3, 3, 1)�b(1, 2, 1)�b(2, 1, 1)�b(3, 3, 3)
�b(1, 2, 2)�b(2, 1, 2)�b(3, 3, 1)�b (1, 2, 1)
�b(2, 1, 2)�b(3, 3, 2)�b(1, 2, 2)�b(2, 1, 1)
�b(3,3,2))�(b(1,1,3)�b(2,2,1)�b(3,3,1)
� b(1, 1, 1)�b(2, 2, 3)�b(3, 3, 1)�b(1, 1, 1)
�b(2, 2, 1)�b(3, 3, 3)�b(1, 1, 2)�b(2, 2, 2)
�b(3, 3, 1)�b(1, 1, 1)�b(2, 2, 2)�b(3, 3, 2)
� b(1, 1, 2)�b(2, 2, 1)�b(3, 3, 2))

c

a(4)�ÿ (b(1, 3, 3)�b(2, 2, 2)�b(3, 1, 1)
�b(1, 3, 2)�b(2, 2, 3)�b(3, 1, 1)�b(1, 3, 1)
�b(2, 2, 2)�b(3, 1, 3)�b(1, 3, 1)�b(2, 2, 3)
�b(3, 1, 2)�b(1, 3, 2)�b(2, 2, 1)�b(3, 1, 3)
�b(1, 3, 3)�b(2, 2, 1)�b(3, 1, 2)
�b(1, 3, 2)�b(2, 2, 2)�b(3, 1, 2))
�2�(b(1, 2, 3)�b(2, 3, 2)�b(3, 1, 1)
�b(1, 2, 2)�b(2, 3, 3)�b(3, 1, 1)�b(1, 2, 1)
�b(2, 3, 2)�b(3, 1, 3)�b(1, 2, 1)�b(2, 3, 3)
�b(3, 1, 2)�b(1, 2, 2)�b(2, 3, 1)�b(3, 1, 3)
�b(1, 2, 3)�b(2, 3, 1)�b(3, 1, 2)
�b(1, 2, 2)�b(2, 3, 2)�b(3, 1, 2))(b(1, 1, 3)
�b(2, 3, 2)�b(3, 2, 1)�b(1, 1, 2)�b(2, 3, 3)
�b(3, 2, 1)�b(1, 1, 1)�b(2, 3, 2)�b(3, 2, 3)
�b(1, 1, 1)�b(2, 3, 3)�b(3, 2, 2)
�b(1, 1, 2)�b(2, 3, 1)�b(3, 2, 3)�b(1, 1, 3)
�b(2, 3, 1)�b(3, 2, 2)�b(1, 1, 2)�b(2, 3, 2)
�b(3, 2, 2)(b(1, 2, 3)�b(2, 1, 2)�b(3, 3, 1)
�b(1, 2, 2)�b(2, 1, 3)�b(3, 3, 1)
�b(1, 2, 1)�b(2, 1, 2)�b(3, 3, 3)�b(1, 2, 1)
�b(2, 1, 3)�b(3, 3, 2)�b(1, 2, 2)�b(2, 1, 1)
�b(3, 3, 3)�b(1, 2, 3)�b(2, 1, 1)�b(3, 3, 2)
�b(1, 2, 2)�b(2, 1, 2)�b(3, 3, 2))
�(b(1, 1, 3)�b(2, 2, 2)�b(3, 3, 1)
�b(1, 1, 2)�b(2, 2, 3)�b(3, 3, 1)
�b(1, 1, 1)�b(2, 2, 2)�b(3, 3, 3)
�b(1, 1, 1)�b(2, 2, 3)�b(3, 3, 2)
�b(1, 1, 2)�b(2, 2, 1)�b(3, 3, 3)
�b(1, 1, 3)�b(2, 2, 1)�b(3, 3, 2)
�b(1, 1, 2)�b(2, 2, 2)�b(3, 3, 2))
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