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Abstract

A three-dimensional (3D) boundary element method (BEM) is developed for the analysis of composite laminates with holes. Instead of

using Kelvin-type Green's functions of anisotropic in®nite space, 3D layered Green's functions with the materials of each layer being

generally anisotropic, derived recently in the Fourier transform domain, are implemented into a 3D BEM formulation. A novel numerical

algorithm is designed to calculate layered Green's functions ef®ciently. It should be noted that since layered Green's functions satisfy exactly

the continuity conditions along the interfaces and top and bottom free surfaces a priori, the model becomes truly 2D and discretization is only

needed along the hole surface and prescribed traction and/or displacement boundaries. To test the validity and accuracy of the proposed

method, the present layered BEM formulation is applied to the problem of an in®nite anisotropic plate with a circular hole where the

analytical solution is available. It is found that even with a very coarse mesh, the present BEM can predict the hoop stress very accurately

along the hole surface. The BEM formulation is then applied to analyze two composite laminates (90/0)s and (245/45)s, under a remote in-

plane strain, that have been studied previously with different approaches. For the (90/0)s case, the hoop stresses along the hole surface

predicted by the present layered BEM formulation are in very close agreement with the previous results. For the (245/45)s case, however, it

is found that a nearly converged solution (less than 5% convergence by doubling the mesh) by the present method is at signi®cant variance

with the previous ones that are lack-of-convergence checks. It can be expected that for designing the bolted joints of composites with many

layers, a computational tool developed based on the present techniques would be robust and offer a much better solution with regard to

accuracy, versatility and design cycle time. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the design of aircraft structures using composites, the

structural components must be joined by fastening or

bonding for transferring load. Each technique has its own

advantages and limitations [11,22]. For example, many

components of the aircraft must be arranged so that they

can be disassembled for shipping, inspection, repair, or

replacement. Fasteners are usually used to join such compo-

nents. However, the weight advantages of composite struc-

tures are frequently eroded by using mechanical fasteners.

Adhesive bonding provides a desirable alternative to

mechanical fasteners in composite structures.

Joints are perhaps the most common source of failure in

aircraft structures and therefore it is important that all

aspects of joint design are given consideration during the

structural design. Joining metallic structures is a well-devel-

oped technology. However, advanced composite joints

introduce design concepts different from those common to

metal construction [7] because of low strain capability,

inhomogeneity, and anisotropy and thus exhibit complex

failure modes. Although industry and government research

agencies have been investigating the joining of composites,

and some of the data and testing methods have been estab-

lished in MIL-HDBK-17 and in the Advanced Composite

Design Guide, current capability to predict failure strength

is less than adequate.

Joint failures result from stress concentrations, secondary

stresses due to eccentricities, or a combination of both. Fail-

ure of bolted joints usually begins at locations immediately

adjacent to the contact points of bolts and laminates where

enhanced stress concentrations render fastener holes more

susceptible to crack initiation. These cracks represent the

most common origin of structural failures in aircraft. There-

fore, to fully develop the analytical design procedures of
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advanced composites in weight-critical aircraft structures,

an accurate assessment of the stresses for joints, either

fastened or bonded under general loading conditions with

these failure modes, is essential for reliable strength evalua-

tion and failure prediction.

Considerable effort has been made to investigate the fail-

ure of bolted joints in the last two decades. A large body of

experimental data has been generated. Three possible ulti-

mate in-plane failure modes, namely bearing, shear-out, and

tension, have been clearly identi®ed. A positive in¯uence on

strength due to lateral constraint, thereby clamping forces,

has been demonstrated by numerous researchers (e.g. Refs.

[24,3,6]). Stacking sequence and ply orientation [3,17,6],

and geometrical factors of clearance-®t oversize hole, hole

diameter (D), laminate thickness(h) and width (W), and edge

distance (e), e.g. D/h, W/D, e/D ratios, have been documen-

ted [9,5]. Stress analyses around a bolted hole have been

conducted using boundary layer solutions [25,26], anisotro-

pic elasticity solution [4,19], linear laminate ®nite element

methods (FEMs) [23,31], 3D discrete layer FEM

[20,21,13,18], and spline variational method [8].

Despite research on the failure of joints, the fundamental

physics and the basic mechanics principles of the failure

process have remained largely inaccessible. These engineer-

ing approaches to strength prediction are mainly phenom-

enological, i.e. empirical strength characterization data with

only indirect association were established between the true

representation and the physics or mechanics of the failure

process. The damage adjacent to the holes, which affects the

stress redistribution and leads to the ultimate failure, has

been neglected. Since the failure of joints is clearly a 3D

phenomenon, it is obvious that, to be useful in predicting

failure, an accurate 3D stress analysis, including the damage

along the curved bolted boundary, is required.

The FEM has experienced a tremendous growth in

composite structural design. It is known as one of the

`domain'-type techniques in which discretizations are intro-

duced in the whole domain. An alternative way to solve

composite structural problems is by using the boundary

element method (BEM) which discretizes the boundary of

a problem only. This technique is developed based on a

transformation of the governing partial differential equa-

tions, which involve unknown ®elds inside and on the

boundary of a domain, into an integral equation involving

®elds on the boundary only. In recent years, the BEM tech-

nique has been gaining increasing popularity among the

numerical methods. The advantages of a BEM over a

domain-based method include:

1. reduced problem dimensionality by one;

2. smaller amount of computer storage requirement;

3. no discretization error inside the domain;

4. accurate stress prediction for stress concentration

problems.

However, the traditional BEM formulation has its

limitations when applied directly to a multilayered compo-

site structure with damage, due to certain inherent

de®ciencies associated with this type of BEM formulation

such as:

(a) the fundamental solution used is for full-space (i.e.

Kelvin-type) Green's functions;

(b) because of (a), all interfaces between different layers

need to be discretized;

(c) because of (b), the resulting system of algebraic equa-

tions may become very large for multilayered 3D compo-

site structures, inhibiting a solution on the current PC

computers.

To resolve these shortcomings, layered Green's functions

that satisfy the interfacial conditions and hence eliminate

the need for interface discretization need to be developed.

Previously, various methods were proposed to derive

Green's functions of this type (for a brief review, see Ref.

[14]). Benitez and co-workers [1,2] attempted the imple-

mentation of one type of layered Green's functions into a

BEM formulation.

In this paper, we present stress analyses of composite

laminates with holes using a non-traditional BEM formu-

lation. That is, instead of using full-space (Kelvin-type)

Green's functions, layered Green's functions recently

developed by Yuan and Yang [32] are implemented into

our BEM formulation. These Green's functions are

derived in the Fourier-transformed domain based on the

Stroh formalism [27]. To obtain physical-domain Green's

functions, an adaptive quadrature properly connected to

the BEM formulation is proposed. Since the displacement

and traction continuity conditions are exactly satis®ed

along the layer interfaces and the top and bottom free

surfaces, discretization is only needed around the holes

and on the prescribed traction and/or displacement bound-

aries. To check the accuracy and ef®ciency, our method is

®rst applied to the problem where an in®nite, homoge-

neous, and anisotropic plate with a circular hole is under

a far-®eld stress. It is found that even with a very coarse

mesh, the results obtained by our BEM formulation are

very close to the exact solutions. The formulation is then

applied to analyze two composite laminates (90/0)s and

(245/45)s, with a central hole under a remote uniform

in-plane strain. For the (90/0)s composite laminates, the

hoop stresses along the hole surface predicted by the

present layered BEM formulation are in very close agree-

ment with the previous results. For the (245/45)s compo-

site laminates, however, it is found that a nearly

converged solution (less than 5% convergence by

doubling the mesh) by the present method differs signi®-

cantly from the previous ones. The present method

provides an accurate and ef®cient numerical tool that

can be applied to more complicated problems where

other methods may not be able to access with the current

computer power.
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2. 3D boundary element formulation

Consider a horizontally layered structure with each layer

being homogeneous, anisotropic, and linearly elastic,

bounded by an internal lateral surface Sin, an external lateral

surface Sex, a top surface St, and a bottom surface Sb. For

such a structure, the internal displacement can be expressed

by the following integral:

ui�Xp�1
Z

S
Tp

ij�Xp;Xs�uj�Xs� dS�Xs�

�
Z

S
Up

ij�Xp;Xs�tj�Xs� dS�Xs�; �1�

where uj and tj are the displacement and traction on the total

boundary S � Sin 1 Sex 1 St 1 Sb; and Up
ij�Xp;Xs� is the

layered Green's displacement in i-direction at ®eld point

Xs caused by a point force in j-direction at source point

Xp. A similar de®nition holds for the layered Green's trac-

tion Tp
ij�Xp;Xs�: These Green's functions have been derived

recently by Yuan and Yang [32] in the Fourier transform

domain and a brief description will be given in the next

section. In deriving Eq. (1), a zero body-force has been

assumed for the sake of simplicity.

Let Xp approach a point Ys on the boundary, we arrive at

the boundary integral equation

bij�Ys�uj�Ys�1
Z

S
Tp

ij�Ys;Xs�uj�Xs� dS�Xs�

�
Z

S
Up

ij�Ys;Xs�tj�Xs� dS�Xs�; �2�

where bij are coef®cients that depend only upon the local

geometry of the boundary at Ys. For a smooth boundary,

bij � 0:5dij; in which d ij is the Kronecker delta. Discretizing

the total boundary S with N nodal points and NE elements,

Eq. (2) can then be reduced to a set of linear algebraic

equations (for i � 1; 2;¼;N�

{b}{u}i 1
XNE

j�1

{Ĥ}ij{u}j �
XNE

j�1

{G}ij{t}j
; �3�

where matrices {HÃ } and {G} are the integrals of the layered

Green's traction and displacement on the generic element,

i.e.

Ĥ �
Z1

2 1

Z1

2 1
TpFuJu dj1 dj2 �4�

G �
Z1

2 1

Z1

2 1
UpFuJu dj1 dj2: �5�

In Eqs. (4) and (5), F(j 1,j 2) is the shape function matrix and

J(j 1,j 2) the Jacobian of the mapping from �x; y; z� to �j1; j2�:
It is noteworthy that since the Green's displacement, Up,

has only a weak singularity, the integral for G on the right-

hand side of Eq. (5) can be easily carried out numerically.

Although the right-hand side of Eq. (4) involves a Cauchy-

type singularity, it can be treated by the rigid body motion

method. At the same time, the calculation of {b} in Eq. (3)

can be avoided [15]. Therefore, Eq. (3) can be arranged and

solved for the unknown boundary values uj and/or tj. It is

emphasized that since layered Green's functions satisfy

exactly the displacement and traction continuities along

the layer interfaces, discretization is only needed on the

real problem boundaries, which therefore greatly reduces

the problem size and increases the accuracy of the solution.

Furthermore, if the top and bottom surfaces are traction free,

which is the common situation in composite structure analy-

sis, no discretization will be necessary on these two

surfaces. Therefore, the only discretization needed is

along the lateral internal and external surfaces, i.e. S �
Sin 1 Sex in Eq. (2).

3. Green's functions for composite laminates

Green's functions in multilayered anisotropic plates

have been derived recently by Yuan and Yang [32].

They are based on the Stroh formalism and 2D Fourier

transforms. For the sake of easy description of the follow-

ing sections, a brief presentation of Green's functions is

given below.

Consider a composite laminate that consists of n horizon-

tal layers of different anisotropic elastic materials (Fig. 1).

Let a Cartesian coordinate system (x1, x2, x3) be chosen such

that the x1±x2 plane lies on the bottom surface of the lami-

nate and the composite occupies x3 $ 0: Each layer of the

laminate occupies the region hj21 # x3 # hj; j � 1; 2;¼; n

with 0 � h0 , h1 , ¼ , hn: Along each interface x3 � hj

� j � 1; 2;¼; n 2 1�; the displacements and the tractions are

continuous. The ®rst step is to derive Green's functions in

the Fourier-transformed domain with the transform being

de®ned as

~uk�y1; y2; x3� �
ZZ

uk�x1; x2; x3� eiy´x dx1 dx2; �6�

where y � �y1; y2� is the transform vector, x denotes (x1, x2),

and y´x � y1x1 1 y2x2:

Assuming that the laminate is subjected to a concentrated

force at a point �x0
1; x

0
2; d� in the kth layer �hk21 , d , hk�

shown in Fig. 1, Green's functions (displacements and trac-

tions on an (x1,x2)-plane) in the transformed domain were

obtained, based on the Stroh formalism, as

~um�y1; y2; x3� e2iy´x0 � ih21 �Amke2i �p�m�p h�x32hm21�l �qm

1 ih21Amke2ip�m�p h�x32hm�lq 0m

~tm�y1; y2; x3� e2iy´x0 � �Bmke2i �p�m�p h�x32hm21�l �qm

1 Bmke2ip�m�p h�x32hm�lq 0m

m � 1; 2;¼; n and m ± k

�7�
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for any layer m ± k, and

~uk�y1; y2; x3� e2iy´x0 � ih21Akke2i �p�k�p h�x32d�lq1

1 ih21 �Akke2i �p�k�p h�x32hk21�l �qk

1 ih21Akke2ip�k�p h�x32hk�lq 0k �8�

~tk�y1; y2; x3� e2iy´x0 � Bkke2ip�k�p h�x32d�lq1

1 �Bkke2i �p�k�p h�x32hk21�l �qk

1 Bkke2ip�k�p h�x32hk�lq 0k

for hk21 # x3 , d

~uk�y1; y2; x3� e2iy´x0 � 2ih21 �Akke2ip�k�p h�x32d�l �q1

1 ih21 �Akke2i �p�k�p h�x32hk21�l �qk

1 ih21Akke2ip�k�p h�x32hk�lq 0k

~tk�y1; y2; x3� e2iy´x0 � 2 �Bkke2i �p�k�p h�x32d�l �q1

1 �Bkke2i �p�k�p h�x32hk21�l �qk

1 Bkke2ip�k�p h�x32hk�lq 0k

�9�

for d , x3 # hk;

where

q1 � �BkA21
k 2 �Bk

�A21
k �21f

ke2ipphx3 l � diag�e2ip1hx3 ; e2ip2hx3 ; e2ip3hx3 �

x0 � �x0
1; x

0
2�

y � hn; n �
n1

n2

0

2664
3775; (10)

where the overbar denotes the complex conjugate; subscript

or superscript m and k represent the mth and the kth layer,

respectively; n is a unit vector; A and B are known 3 £ 3

Stroh matrices; and pa �a � 1; 2; 3� the eigenvalues for a

given material layer in the transform variable y. It is noted

that for the solutions in the source layer k, the ®rst term in

Eqs. (8) and (9), proportional to q1 or �q1
; is the Fourier

transform of the in®nite Green's function with material

property of the source layer. �qj and q 0j �j � 1; 2;¼; n� in

Eqs. (7)±(9) are complex 3 £ 1 unknown vectors that can

be determined from the displacement and traction continuity

conditions at each interface, and the traction-free boundary

conditions on the top and bottom surfaces:

t1 � 0; at x3 � 0

u1 � u2; t1 � t2; at x3 � h1

..

.

un21 � un; tn21 � tn; at x3 � hn21

tn � 0; at x3 � hn

: �11�
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2; d� in the kth layer.



Note that the conditions

u�1�k � u�2�k ; t�1�k 2 t�2�k � d�x1 2 x0
1�d�x2 2 x0

2�f at x3 � d

�12�
are satis®ed by Eqs. (8) and (9). In Eqs. (12), superscripts (1)

and (2) denote the regions hk21 # x3 , d and d , x3 # hk;

respectively.

After obtaining Green's functions in the transformed

domain, an adaptive quadrature technique is then employed

to evaluate physical-domain Green's functions.

4. Treatment of singularity in layered Green's functions

On calculating layered Green's functions using the adap-

tive quadrature, we found that it is very dif®cult, if not

impossible, to obtain accurate results with the use of numer-

ical integration when the ®eld point is close to the source

point (singular point). Since the contribution from the singu-

lar point is very critical in the BEM analysis, we propose

here a method to evaluate this singular value accurately.

First, in the transformed domain, we remove the singularity

in layered Green's functions by subtracting them with full-

space Green's functions (Green's functions in a homoge-

neous and in®nite space with material property of the source

layer). After successfully performing the adaptive integra-

tion, full-space Green's functions are then added analyti-

cally to layered Green's functions. This approach can be

explained clearly in terms of equations.

First, we write the layered Green's displacements, Up
ij;

and tractions, Tp
ij ; as

Up
ij � �Up

ij 2 Uinf
ij �1 Uinf

ij Tp
ij � �Tp

ij 2 T inf
ij �1 T inf

ij ; �13�
where Uinf

ij and T inf
ij are the Green's displacements and trac-

tions in a full-space solid with material property of the

source layer. These Green's functions can be evaluated

very accurately and ef®ciently by the methods described

either by Tonon et al. [29] based on Wang's formulation

[30] using Radon transform or by Malen [12] and Ting and

Lee [28] using the Stroh formalism. Since in the source

layer, layered Green's functions and full-space Green's

functions possess the same singularity behavior, the terms

in the brackets of Eq. (13) are regular and can, therefore, be

evaluated at any point in the source layer. In the double

Fourier-transformed domain, Eq. (13) becomes

~Up
ij � � ~Up

ij 2 ~Uinf
ij �1 ~Uinf

ij
~Tp

ij � � ~Tp
ij 2 ~T inf

ij �1 ~T inf
ij :

�14�
As can be observed clearly, for any point belonging to the

source layer, our numerical integration is applied to regular

functions only, the terms in the brackets in Eq. (14). These

non-singular terms actually correspond to the Fourier-

transformed Green's functions in Eqs. (8) and (9) without

the terms proportional to q1 or qÅ 1. Applying the adaptive

numerical integration to the terms in the brackets in Eq. (14),

we obtain non-singular Green's functions in the physical

domain, i.e. the terms in the brackets in Eq. (13). Subse-

quently, full-space Green's functions are superimposed to

obtain layered Green's functions in the physical domain, as

shown in Eq. (13). Therefore, the handling of singularities in

layered Green's functions is transferred to the treatment of

singularities in full-space Green's functions. Since the latter

functions have explicit expressions, the numerical treatment

becomes a trivial task.

5. Calculation of layered Green's functions

Calculation of the aforementioned Green's functions for

layered composite structure involves the inverse of the

Fourier transform that will be done with an adaptive quad-

rature (e.g. Ref. [16]). For the transformed-domain Green's

displacement, ~uk�y1; y2; x3�; in Eq. (6), we apply the inverse

of the Fourier transform to obtain

uk�x1; x2; x3� � 1

4p2

ZZ
~uk�y1; y2; x3� e2iy´x dy1 dy2: �15�

Expressing the integral variables (y1,y2) in terms of polar

coordinates (h ,u), we arrive at

uk�x1; x2; x3�

� 1

4p2

Z2p

0
du
Z1

0
~uk�h; u; x3� e2ih�x1 cos u1x2 sin u�h dh:

�16�
For Green's functions in Eqs. (7)±(9), integration similar

to Eq. (16) needs to be carried out for any given pair of d and

x3, where d is the z-coordinate of the source point. It is

obvious that repeated and unnecessary calculation of

Eq. (16) may be involved if layered Green's functions are

called without proper ordering of the boundary coordinates

when forming the coef®cient matrices in Eqs. (4) and (5).

On the other hand, due to the complexity of the problem, a

relatively large amount of calculation time is spent on eval-

uating Fourier-transformed Green's functions (i.e. the ®rst

factor of the integrand in Eq. (16) and similar expressions).

Therefore, it is necessary to reduce the number of times

required for these evaluations to be carried out.

In order to reduce the time for evaluating Fourier-

transformed Green's functions (i.e. the ®rst factor of the

integrand in Eq. (16)), we examined in detail some features
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Fig. 2. A circular hole with radius r � 1 in an in®nite and anisotropic plate

under a far-®eld stress s1 in x-direction.



associated with these functions. One of the important

features is that Fourier-transformed Green's functions

depend only upon the vertical coordinates of the source

and ®eld points (i.e. d and x3), not on the horizontal coordi-

nates. Such a feature can, therefore, be utilized when

designing the BEM program. The discussion is explained

as follows.

First, we order all the boundary nodes properly. For a

given vertical coordinate (or a horizontal plane), we ®nd

and order all the boundary nodes on this horizontal plane.

We then go from this horizontal plane to the next and again

order all the corresponding boundary nodes. We repeat this

procedure for all the boundary nodes.

Second, we calculate the coef®cient matrices in Eqs. (4)

and (5). To this end, an outer loop is ®rst performed over all

vertical coordinates (i.e. all the horizontal planes) on the

boundary. Within this loop, all the nodes on the same hori-

zontal planes (i.e. those nodes having the same pair of d and

x3) are performed. Since this inner loop is executed for the

same pair of d and x3, the Fourier-transformed Green's func-

tion, e.g. the ®rst factor of the integrand in Eq. (16), needs to

be called only once. In other words, to calculate the physi-

cal-domain Green's function (Eq. 16) for a given vertical

coordinate pair (and, of course, for the given integral vari-

ables h and u ), we need to call only once the Fourier-

transformed Green's functions.

The handling of layered Green's functions and the corre-

sponding coef®cient matrices in the BEM formulation,

based on the adaptive integration approach with suitable

boundary node ordering, has been found to be very ef®cient.

It is also more accurate (or the accuracy can be controlled)

than the inverse FFT method [2]. Numerical examples given

in the next section justi®ed these statements.

6. Numerical examples

In order to test the accuracy and ef®ciency of layered

Green's functions and the corresponding boundary integral

equations, the formulations presented above have been imple-

mented and applied to an anisotropic and in®nite plate with a
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circular hole. If this plate is subjected to an in-plane uniaxial

far-®eld tension s1 in the x-direction (Fig. 2), then the exact

closed-form solution for the hoop stress along the hole can be

found [10]. In our 3D model, we assume that the plate has a

thickness of 0.2r (i.e. only 1/5 of the radius of the hole) and

discretize the hole with constant elements. More speci®cally,

we discretize the hole in the vertical direction with two

constant elements and in the circumferential direction with

32 constant elements. Therefore, a total of 64 constant

elements (in 3D) are used to discretize the surface of the

hole. Numerical results obtained with the present BEM formu-

lation are shown in Figs. 3±6 and are compared to the corre-

sponding exact closed-form solutions [10]. It is shown that

even with only 32 constant elements in the circumferential

direction, the present numerical results are nearly identical

to the exact solutions, with the only exception at the peak of

the stress where the numerical results are about 5% larger than

the corresponding exact solutions. As for the peak stress,

however, a re®ned mesh or a high-order shape function can

be implemented to improve the results. This is observed in Fig.

6 where the use of linear elements with the same node number

as for the constant elements has improved the stress value at

the peak.

With the layered BEM formulation being tested success-

fully for the homogeneous plate case, we now apply this

formulation to a four-layered symmetric composite lami-

nate. Fig. 7 shows the geometry of an in®nite laminated

plate with a through-the-thickness circular hole of diameter

D. The four orthotropic plies (90/0)s have equal thickness of

h/4 each, where h�� 0:4D� is the total thickness of the plate.

A uniform far-®eld strain 11 is applied in the x-direction.

The orthotropic material properties in the material coordi-

nates are selected to be E1 � 206:84 GPa; E2 � E3 �
20:684 GPa; G13 � G23 � G12 � 6:895 GPa; and n13 �
n23 � n12 � 0:336 [13].

Due to the symmetry of the layered con®guration and

loading, the BEM model needs to be applied to only half

of the layered system (i.e. two plies). Furthermore, using

layered Green's functions as the kernel functions in the

BEM formulation, we need only to discretize the surface

of the hole. For this problem, we discretize in the vertical

direction with six constant elements, and in the circumfer-

ential direction with 48 and 64 constant elements, respec-

tively, for the (90/0)s and (245/45)s cases. Thus, for the

former case, we use totally 288 constant elements only,

and for the latter, 384 constant elements only.

The normalized hoop stresses suu=s
1 around the hole in

the mid-plane of the 08-ply �z � 3h=8� and 908-ply �z � h=8�
are shown in Figs. 8 and 9, respectively, with s1 being the

equivalent far-®eld stress corresponding to the far-®eld

strain u1. The results obtained by Nishioka and Atluri

[13] using the special-hole-®nite elements and by Iarve

[8] using the spline variational method are also shown in

the ®gure. It is obvious that the stress distributions predicted

by the present layered BEM formulation are in good agree-

ment with those by Nishioka and Atluri [13] and Iarve [8].
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However, the stress distributions obtained by the present

formulation are much smoother than the previous ones.

Furthermore, it is interesting to compare Figs. 8 and 9

with Figs. 4 and 6, respectively. One can easily observe

from these ®gures that while the stress shapes are similar

for both the layered and the homogeneous cases, their

magnitudes are quite different because of material layering

in the former case.

For the four-layered (245/45)s composite laminate, the

geometry and orthotropic material properties are the same

as those for the (90/0)s composite laminate, except for the

ply orientation. Again, as mentioned earlier, totally 384

constant elements are used to discretize the whole surface

of the through the thickness hole. Fig. 10 shows the varia-

tion of the normalized hoop stress suu =s
1 around the hole

in the mid-plane �z � h=2� of the laminate, as compared to

those obtained by Nishioka and Atluri [13] and Rybicki and

Hopper [20] using the FEM. It is observed that the stress

variation predicted by the present BEM formulation is at

great variance with the previous ones. For instance, the

location of the maximum stress concentration predicted by

the present formulation is approximately at 1308, while the

results of Nishioka and Atluri [13], and Rybicki and Hopper

[20] are about 120 and 908, respectively. It is noteworthy

that the present result is closer to the exact 2D solution (at

1278 in Fig. 5) than the previous results. To justify further

the present BEM solution, we have run our BEM program

by varying the mesh sizes, and found that the results are

consistent with each other and convergent within a less than

5% relative error, as illustrated in Fig. 11.

7. Conclusions

A 3D BEM has been developed for the analysis of

composite laminates with holes. 3D layered Green's func-

tions, derived previously by Yuan and Yang [32] in the

Fourier transform, have been implemented into the BEM

formulation. In order to obtain physical-domain Green's

functions, an adaptive quadrature properly connected to

the BEM formulation has been proposed. Since layered

Green's functions satisfy exactly the interlaminar continuity

conditions along the interfaces and top and bottom free

surfaces a priori, discretization along these interfaces and

surfaces is avoided.

To test the ef®ciency and accuracy, we applied the

present BEM formulation to an analytical case where an

anisotropic and in®nite plate with a circular hole is under

a far-®eld in-plane stress. It has been shown that even with a

very coarse mesh, the hoop stresses along the hole predicted

by the present BEM formulation are very close to the analy-

tical solutions.

In order to illustrate the utility of the method, numerical

examples were then carried out for two laminates (90/0)s

and (245/45)s, under a remote uniform in-plane strain.

For the (90/0)s case, the hoop stresses along the hole

predicted by the present BEM formulation are in very

close agreement with the previous results. For the (245/

45)s case, however, it is found that a nearly converged solu-

tion (less than 5% convergence by doubling the mesh) by

the present method is at signi®cant variance with the
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previous ones that are lack-of-convergence checks. The

application of such a BEM analysis to layered composite

structures with discrete damage is currently under investi-

gation and the results will be reported in a forthcoming

paper.
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