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Exact Solution for Simply
Supported and Multilayered
Magneto-Electro-Elastic Plates
Exact solutions are derived for three-dimensional, anisotropic, linearly magneto-ele
elastic, simply-supported, and multilayered rectangular plates under static loadi
While the homogeneous solutions are obtained in terms of a new and simple form
that resemble the Stroh formalism, solutions for multilayered plates are expressed in
of the propagator matrix. The present solutions include all the previous solutions, su
piezoelectric, piezomagnetic, purely elastic solutions, as special cases, and can the
serve as benchmarks to check various thick plate theories and numerical methods us
the modeling of layered composite structures. Typical numerical examples are pres
and discussed for layered piezoelectric/piezomagnetic plates under surface and in
loads. @DOI: 10.1115/1.1380385#
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Introduction
Because of their analytical nature, exact solutions for simp

supported~layered! plates under static loadings are still of partic
lar values. These solutions can predict exactly the behavior
elastic deformations and stresses near or across the interfa
material layers, and can thus be used to check the accurac
various numerical methods for more complicated applicati
~@1#!. For anisotropic elastic composites, Pagano@2,3#, Srinivas
et al. @4#, and Srinivas and Rao@5# derived the classic solution
for both the cylindrical and rectangular plates. While the aut
~@6#! introduced the propagator matrix method~@7#! to handle the
corresponding multilayered case, Noor and Burton@8# derived
analytical solutions for laminated anisotropic plates.

Recent development of piezoelectric ceramics has stimul
considerable studies on the electric and mechanical behavio
piezoelectric structures. Again, analytical solutions, even tho
under certain assumptions, are still desirable. Extensions of
elastostatic solutions for simply-supported plates to the co
sponding piezoelectric cases were carried out by Ray and
workers @9,10#, Heyliger and co-workers@11,12#, Bisegna and
Maceri @13#, and Lee and Jiang@14#. Very recently, Vel and Batra
@15# presented an analytical solution for multilayered piezoelec
plates in terms of the double Fourier series to handle more gen
boundary conditions at the edges.

More recent advances are the smart or intelligent mater
where piezoelectric and piezomagnetic materials are involv
These materials have the ability of converting energy from o
form ~among magnetic, electric, and mechanical energies! to the
other ~@16–18#!. Furthermore, composites made of piezoelect
piezomagnetic materials exhibit magnetoelectric effect that is
present in single-phase piezoelectric or piezomagnetic mate
~@19–21#!. Although various inclusion-related problems in the
materials have been investigated in recent years~@20–24#!, no
three-dimensional solution is available for the simply suppor
plate made of piezoelectric/piezomagnetic materials.

In this paper, we derive the exact solutions for thre
dimensional, anisotropic magneto-electro-elastic, simp
supported, and multilayered rectangular plates under both su
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and internal loads. The general solution in a homogeneous pla
obtained in terms of a new and simple formalism that resemb
the Stroh formalism~@25–27#!. In order to treat a multilayered
plate, the propagator matrix method is introduced with which
corresponding multilayered solution has an elegant and sim
expression. To the best of the author’s knowledge, it is the fi
time that a piezoelectric and magnetostrictive multilayered p
under simple supporting conditions is analytically studied. It
also the first time that an internal loading case is investigated
compared to the surface loading case. The present solution
clude all the previous solutions, such as the piezoelectric, pie
magnetic, purely elastic solutions, as special cases. Since
present solutions are exact, they can serve as benchmarks t
various thick plate theories and various numerical methods, s
as the finite and boundary element methods, used for the mode
of layered composite structures.

As a numerical illustration, a piezoelectric and homogene
plate under surface and internal loads and a sandwich plate m
of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 under a
surface mechanical load are analyzed. It is very interesting
even for a relatively thin plate, responses from an internal load
quite different to those from a surface load. For the sandwich p
made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4, it is
observed that responses from different stacking sequences
completely different, especially for the electric and magne
quantities. These new numerical results should be of special in
est to the design of magneto-electro-elastic composite lamina

Problem Description and Basic Equations
Let us consider an anisotropic, magneto-electro-elastic,

N-layered rectangular plate with horizontal dimensionsLx andLy
and total thicknessH ~in the vertical direction! with its four sides
being simply supported. A Cartesian coordinate system (x,y,z)
5(x1 ,x2 ,x3) is attached to the plate in such a way that its orig
is at one of the four corners on the bottom surface and the pla
in the positivez region. Let layerj be bonded by the lower inter
face zj and the upper interfacezj 11 with thicknesshj5zj 11
2zj . It is obvious thatz150 andzN115H. Material properties in
each layer can be different, and internal and/or surface loads~me-
chanical, electric or magnetic! can be applied. Along the interface
the extended displacement and traction vectors~to be defined
later! are assumed to be continuous, with the exception of
internal loading level, which will be discussed later. Without lo
of generality, we also assume that the surface load is applied
the top surface of the layered plate.

,
n on
nt of
ill
E

01 by ASME Transactions of the ASME



p

i

i

t

the

in
und-

erm
For an anisotropic and linearly magneto-electro-elastic so
the coupled constitutive relation can be written as~@16#!

s i5Cikgk2ekiEk2qkiHk

Di5eikgk1« ikEk1dikHk

Bi5qikgk1dikEk1m ikHk (1)

wheres i , Di , and Bi are the stress, electric displacement, a
magnetic induction~i.e., magnetic flux!, respectively;g i , Ei , and
Hi are the strain, electric field, and magnetic field, respective
Ci j , « i j , andm i j are the elastic, dielectric, and magnetic perm
ability coefficients, respectively;ei j , qi j , anddi j are the piezo-
electric, piezomagnetic, and magnetoelectric coefficients, res
tively. It is obvious that various uncoupled cases can be redu
from Eq. ~1! by setting the appropriate coefficients to zero.

For an orthotropic solid, with transverse isotropy being
special case, the material constant matrices of Eq.~1! are ex-
pressed by

@C#53
C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

Sym C55 0

C66

4 ,

@e#53
0 0 e31

0 0 e32

0 0 e33

0 e24 0

e15 0 0

0 0 0

4 , @q#53
0 0 q31

0 0 q32

0 0 q33

0 q24 0

q15 0 0

0 0 0

4 (2)

@«#5F «11 0 0

0 «22 0

0 0 «33

G , @d#5F d11 0 0

0 d22 0

0 0 d33

G ,

@m#5F m11 0 0

0 m22 0

0 0 m33

G . (3)

The extended strain~using tensor symbol for the elastic stra
g ik!-displacement relation is

g i j 50.5~ui , j1uj ,i !

Ei52f ,i , Hi52c ,i (4)

whereui , f, andc are the elastic displacement, electric potent
and magnetic potential, respectively.

The equations of equilibrium, including the balance of the bo
force and electric charge and current, can be written as

s i j , j1 f i50

D j , j2 f e50

Bj , j2 f m50 (5)

where f i , f e , and f m are the body force, electric charge densi
and electric current density, respectively. The electric current d
sity is also called magnetic charge density as compared to
electric charge density.
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General Solutions
For a simply-supported and homogeneous plate, we seek

solution of the extended displacement vector in the form of

u[F u1

u2

u3

f

c

G5eszF a1 cospx sinqy

a2 sinpx cosqy

a3 sinpx sinqy

a4 sinpx sinqy

a5 sinpx sinqy

G (6)

where

p5np/Lx , q5mp/Ly (7)

andn andm are two positive integers.
It is noted that solution~6! represents only one of the terms

a double Fourier series expansion when solving a general bo
ary value problem. Therefore, in general, summations forn andm
over suitable ranges are implied whenever the sinusoidal t
appears.

Substitution of Eq.~6! into the strain-displacement relation~4!
and subsequently into the constitutive relation~1! yields the ex-
tended traction vector

t[F s13

s23

s33

D3

B3

G5eszF b1 cospx sinqy

b2 sinpx cosqy

b3 sinpx sinqy

b4 sinpx sinqy

b5 sinpx sinqy

G . (8)

Introducing two vectors

a5@a1 ,a2 ,a3 ,a4 ,a5# t, b5@b1 ,b2 ,b3 ,b4 ,b5# t (9)

we then find that the vectorb is related toa by

b5~2Rt1sT!a52
1

s
~Q1sR!a (10)

where the superscriptt denotes matrix transpose, and

R5F 0 0 pC13 pe31 pq31

0 0 qC23 qe32 pq32

2pC55 2qC44 0 0 0

2pe15 2qe24 0 0 0

2pq15 2qq24 0 0 0

G ,

T5F C55 0 0 0 0

C44 0 0 0

C33 e33 q33

2«33 2d33

2m33

G (11)
JULY 2001, Vol. 68 Õ 609



Q5F 2~C11p
21C66q

2! 2pq~C121C66! 0 0 0

2~C66p
21C22q

2! 0 0 0

2~C55p
21C44q

2! 2~e15p
21e24q

2! 2~q15p
21q24q

2!
2 2 2 2 G . (12)
«11p 1«22q d11p 1d22q

m11p
21m22q
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We mention that matricesQ andT are symmetric.
The in-plane stresses and electric and magnetic displacem

are obtained as

3
s11

s12

s22

D1

D2

B1

B2

4 5esz3
c1 sinpx sinqy
c2 cospx cosqy
c3 sinpx cosqy
c4 cospx sinqy
c5 sinpx cosqy
c6 cospx sinqy
c7 sinpx cosqy

4 (13)

where

3
c1

c2

c3

c4

c5

c6

c7

4 53
2C11p 2C12q C13s e31s q31s

C66q C66p 0 0 0

2C12p 2C22q C23s e32s q32s

e15s 0 e15p 2«11p 2d11p

0 e24s e24q 2«22q 2d22q

q15s 0 q15p 2d11p 2m11p

0 q24s q24q 2d22q 2m22q

4 F a1

a2

a3

a4

a5

G .

(14)

These extended stresses~Eqs. ~8! and ~13!! should satisfy the
equations of equilibrium~assuming zero body force and zero ele
tric and magnetic charge densities!, which in terms of the vectora,
yields the following eigenequation:

@Q1s~R1R8!1s2T#a50 (15)

whereR852Rt.
It is noted that Eq.~15!, derived for a simply supported plate

resembles the Stroh formalism~@25,26#!. However, their solution
structures are different because of the slightly different feature
theR matrix ~in the Stroh formalism,R85Rt!. It is known that in
the Stroh formalism, positive internal energy requirement guar
tees that the characteristic roots of Eq.~15! should be complex
numbers with nonvanishing imaginary parts; they cannot be
~@26#!. In the present formalism, however, such a feature does
exist. Instead, since a matrix and its transpose have the s
determinant value, we conclude that ifs is an eigenvalue of Eq
~15!, so is2s. Furthermore, ifs is a complex~or purely imagi-
nary! eigenvalue, then its complex conjugate is also an eigenv
since all the coefficient matrices in Eq.~15! are real. We name Eq
~15! as the pseudo-Stroh formalism because of its similarity to
Stroh formalism.

With aid of Eq.~10!, Eq. ~15! can now be recast into a 10310
linear eigensystem

NFa
bG5sFa

bG (16)

where

N5F 2T21R8 T21

2Q1RT21R8 2RT21G . (17)

Depending upon the given material property, the ten eigen
ues of Eq.~16! may not be distinct. Should repeated roots occu
610 Õ Vol. 68, JULY 2001
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slight change in the material constants would result in disti
roots with negligible error~@28#! so that the following simple
solution structure can still be applied.

Therefore, let us assume that the first five eigenvalues h
positive real parts~if the root is purely imaginary, we then pick u
the one with positive imaginary part! and the remainder have op
posite signs to the first five. We distinguish the corresponding
eigenvectors by attaching a subscript toa andb. Then the general
solution for the extended displacement and traction vectors~of the
z-dependent factor! are derived as

Fut G5FA1 A2

B1 B2
G ^es* z&FK1

K2
G (18)

where

A15@a1 ,a2 ,a3 ,a4 ,a5#, A25@a6 ,a7 ,a8 ,a9 ,a10#

B15@b1 ,b2 ,b3 ,b4 ,b5#, B25@b6 ,b7 ,b8 ,b9 ,b10#

^es* z&

5diag@es1z,es2z,es3z,es4z,es5z,e2s1z,e2s2z,e2s3z,e2s4z,e2s5z#

and K1 and K2 are two 531 constant column matrices to b
determined.

Equation ~18! is a general solution for a homogeneou
magneto-electro-elastic, and simply-supported plate, and con
previous piezoelectric and purely elastic solutions as its spe
cases. Clearly, in spite of the complicated nature of the probl
the general solution is remarkably simple. Furthermore, cer
thin plate results can also be reduced from this solution by
panding the exponential term in terms of a Taylor series~@29,30#!.
This is particularly easy since one needs only to replace the d
onal exponential matrix with its Taylor series expansion~@6,13#!.
We mention that although other methods, such as the state s
approach~@14#!, may also be employed to derive a general so
tion for such a plate, more algebraic manipulations are nee
Furthermore, reduction to the thin plate result is complicated
state space approach is followed.

With Eq. ~18! being served as a general solution for a homo
neous and magneto-electro-elastic plate, solutions for the co
sponding multilayered plate can be obtained using the contin
conditions along the interface and the boundary conditions on
top and bottom surfaces of the plate. In doing so, a system
linear equations for the unknowns can be formed and sol
~@3,12#!. However, for structures with relatively large numbers
layers~say, up to a hundred layers!, the system of linear equation
then becomes very large, and the propagator matrix method
veloped exclusively for layered structures can be conveniently
efficiently applied~for a brief review, see@31#!. We discuss this
matter in the next section.

Propagator Matrix and Solution of Layered System
Since the matrixN, defined in Eq.~17!, is not symmetric, the

eigenvectors of Eq.~16! are actually the right ones. The left eigen
vectors are found by solving the following eigenvalue system

Nth5lh. (19)
Transactions of the ASME
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It is a matter of simple fact that ifs and@a,b# t are the eigenvalue
and eigenvector of Eq.~16!, thenl52s andh5@2b,a# t are the
corresponding solutions of Eq.~19!. Since the left and right eigen
vectors are orthogonal to each other, we then come to the foll
ing important relation:

F2B2
t A2

t

B1
t 2A1

t G FA1 A2

B1 B2
G5F I 0

0 I G (20)

where I is a 535 unit matrix, and the eigenvectors have be
normalized according to

2B2
t A11A2

t B15I (21)

Equation ~20! resembles the orthogonal relation in the Str
formalism ~@26#! and provides us with a simple way of invertin
the eigenvector matrix, which is required in forming the propa
tor matrix.

Let us assume that Eq.~18! is a general solution in the homo
geneous layerj, with the top and bottom boundaries locally ath
and 0, respectively. Letz50 in Eq. ~18! and solve for the un-
known constant column matrix, we find that

FK1

K2
G5FA1 A2

B1 B2
G21Fut G

0
5F2B2

t A2
t

B1
t 2A1

t G Fut G
0
. (22)

The second equation follows from Eq.~20!. Therefore, the solu-
tion in the homogeneous layerj at any levelz can be expressed b
that atz50 as

Fut G
z

5P~z!Fut G
0

(23)

where

P~z!5FA1 A2

B1 B2
G ^es* z&F2B2

t A2
t

B1
t 2A1

t G (24)

is called the propagator matrix~@7,31#!. Listed below are three
important features of the propagator matrix, which can be pro
easily.

P~0!5F I 0

0 I G (25)

P~z32z1!5P~z32z2!P~z22z1! (26)

P~z32z1!5P21~z12z3! (27)

The propagating relation~23! can be used repeatedly so th
one can propagate the physical quantities from the bottom sur
z50 to the top surfacez5H of the layered plate. Consequentl
we have

Fut G
H

5PN~hN!PN21~hN21! . . . . . .P2~h2!P1~h1!Fut G
0

(28)

wherehj5zj 112zj is the thickness of layerj and Pj the propa-
gator matrix of the same layer.

Equation~28! is a surprisingly simple relation and, for give
boundary conditions, can be solved for the unknowns involv
As an example, we assume that, on the top surface (z5H) the
z-direction traction component is applied, i.e.,

szz5s0 sinpx sinqy (29)

which may represent one of the terms in the double Fourier se
solution for a general loading case~uniform or point loading!, and
all other traction components on both surfaces are zero~i.e., the
second-type boundary value problem!. Equation~28! is then re-
duced to

Fu~H !

t~H ! G5FC1 C2

C3 C4
G Fu~0!

0 G (30)
Journal of Applied Mechanics
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where the four submatricesCj are the multiplications of the
propagator matrices in Eq.~28!, and t(H) is the given boundary
condition on the top surface, i.e.,

t~H !5@0,0,s0 sinpx sinqy,0,0# t. (31)

Solving the unknown extended displacements on both surface
the layered plate, we find

u~0!5C3
21t~H !

u~H !5C1C3
21t~H !. (32)

In order to obtain the extended displacement and traction vec
at any depth, sayzk<z<zk11 in layer k, we propagate the solu
tion from the bottom of the surface to thez-level ~@31#!, i.e.,

Fut G
z

5Pk~z2zk21!Pk21~hk21! . . . . . .P2~h2!P1~h1!Fut G
0
.

(33)

With the extended displacement and traction vectors at a g
depth being solved, the corresponding in-plane quantities ca
evaluated using Eqs.~13! and ~14!.

Similar solutions can also be obtained for the first-type bou
ary value problem~i.e., for given extended displacement vecto
on both surfaces! and for the third-type, i.e., the mixed bounda
value problem as well. Therefore, for an anisotropic, magne
electro-elastic, and simply-supported multilayered rectangu
plate, we have derived the exact solution based on the pse
Stroh formalism and the propagator matrix method.

The present methodology can also be equally and easily
tended to the corresponding internal loading case, which is
significance to the Green’s function study. We now seek suc
solution.

If there is an internal source~force, charge, dislocation, etc.!
located atz5d0 level within layer j (zj 11 ,zj ), we artificially di-
vide this layer into two sublayersj 1(d0 ,zj ) ~with hj 15d02zj !
and j 2(zj 11 ,d0) ~with hj 25zj 112d0!, and define the disconti-
nuities across the source level as

FDu
Dt G[Fu~d010!

t~d010! G2Fu~d020!

t~d020! G . (34)

Again, propagating the propagator matrices from the bottom to
top of the surfaces and making use of the discontinuity relat
~34! ~@31,32#!, we arrive at the following important equation:

Fut G
H

2PN~hN!PN21~hN21! . . . . . .P2~h2!P1~h1!Fut G
0

5PN~hN!PN21~hN21! . . . . . .Pj 11~hj 11!Pj 2~hj 2!FDu
Dt G .

(35)

Clearly, this equation is more general and includes Eq.~28! as a
special case~when there is no discontinuity!. Similar to the sur-
face loading case, this equation can be solved for the unkn
quantities involved~@31#!.

Before carrying out numerical studies using the present form
lation, we remark that the present solution is valid for any integ
n and m as defined by Eq.~7!. In other words, the solution we
have derived can be regarded as for one of the terms in a Fo
series expansion. Because of the linearity, the solution co
sponding to a general loading~uniform or point loading! can be
obtained by expanding the loading as a finite double Fourier se
~@13,33#! and adding the responses together term by term.

Numerical Examples
Having derived the exact and simple solutions, we now pres

some numerical results. Before using our formalism, we fi
checked our solutions with some previously published results
JULY 2001, Vol. 68 Õ 611
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Fig. 1 Variation of the elastic displacement u x„Äu y… along the thickness di-
rection in a homogeneous and piezoelectric plate caused by an internal load on
the middle plane and a surface load on the top surface

Fig. 2 Variation of the electric displacement Dx„ÄDy… along the thickness di-
rection in a homogeneous and piezoelectric plate caused by an internal load on
the middle plane and a surface load on the top surface

Table 1 Material coefficients of the piezoelectric BaTiO 3 „Cij in 109 NÕm2, eij in C Õm2, « i j in
10À9C2Õ„Nm2

…, and m i j in 10À6Ns2ÕC2
…

C115C22 C12 C135C23 C33 C445C55 C6650.5(C112C12)
166 77 78 162 43 44.5

e315e32 e33 e245e15

24.4 18.6 11.6

«115«22 «33 m115m22 m33

11.2 12.6 5 10
JULY 2001 Transactions of the ASME
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Fig. 3 Variation of the stress component szz along the thickness direction in a
homogeneous and piezoelectric plate caused by an internal load on the middle
plane and a surface load on the top surface

Fig. 4 Variation of the electric potential f along the thickness direction in the
sandwich piezoelectric Õpiezomagnetic plate caused by a surface load on the
top surface

Table 2 Material coefficients of the magnetostrictive CoFe 2O4 „Cij in 109NÕm2, q ij in N Õ„Am …, « i j
in 10À9C2Õ„Nm2

…, and m i j in 10À6Ns2ÕC2
…

C115C22 C12 C135C23 C33 C445C55 C6650.5(C112C12)
286 173 170.5 269.5 45.3 56.5

q315q32 q33 q245q15

580.3 699.7 550

«115«22 «33 m115m22 m33

0.08 0.093 2590 157
ied Mechanics JULY 2001, Vol. 68 Õ 613
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Fig. 5 Variation of the magnetic potential c along the thickness direction in the
sandwich piezoelectric Õpiezomagnetic plate caused by a surface load on the top
surface
s

n
s

e
of

be
fixed

ce-
both purely elastic and piezoelectric plates~@3,12,14,34#!, and
found that the present formulation agrees with these solution

The first example is for a homogeneous and transversely iso
pic piezoelectric plate. The symmetry axis of the material is alo
the z-direction with material properties being listed in Table
~@14#!. The dimension of the plate isLx3Ly3H513130.2 m.
Two cases are studied:~1! A z-direction surface load is applied o
the top surface of the platez5H. That is, the extended traction i
given by Eq.~31! with m5n51 ~i.e., p5p/Lx , q5p/Ly! and
001
.
tro-
ng
1

amplitude s051 N/m2. The bottom surface is assumed to b
traction-free.~2! An internal load is applied on the middle plane
the plate (z50.1 m). The extended traction discontinuityDt has a
similar expression as Eq.~31! with amplitudeDszz equal to 1
N/m2. Both the top and bottom surfaces are assumed to
traction-free. For both cases, responses are calculated for
horizontal coordinates (x,y)5(0.75Lx,0.25Ly).

Figures 1, 2, and 3 show the variations of the elastic displa
ment ux , electric displacementDx , and normal stressszz along
Fig. 6 Variation of the electric displacement Dx„ÄDy… along the thickness di-
rection in the sandwich piezoelectric Õpiezomagnetic plate caused by a surface
load on the top surface
Transactions of the ASME
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Fig. 7 Variation of the electric displacement Dz along the thickness direction in
the sandwich piezoelectric Õpiezomagnetic plate caused by a surface load on the
top surface
e

n

s
e to
oad

ing
ading

lec-
the thickness direction of the plate. It is clear that these two lo
ing cases produce quite different responses in the plate, e
though the plate is relative thin~with a ratio of thickness to hori-
zontal dimension equal to 0.2!. For instance, while the interna
loading solution is strictly symmetric or antisymmetric with r
spect to the middle plane~i.e., the loading plane!, the surface
loading solution does not possess such features. The latter~for the
elastic displacementux and electric displacementDx! is only ap-
proximately symmetric or antisymmetric about the middle pla
hanics
ad-
ven

l
-

e.

While the normal stressszz due to the surface load is continuou
and increases monotonically from zero on the bottom surfac
the applied value on the top surface, that due to the internal l
is discontinuous across the loading planez50.1 m and it has op-
posite sign on both sides of the middle plane. The internal load
case has never been studied and compared to the surface lo
case in the literature.

The second example is for sandwich plates made of piezoe
tric BaTiO3 and magnetostrictive CoFe2O4. The three layers have
Fig. 8 Variation of the magnetic induction B x„ÄB y… along the thickness direc-
tion in the sandwich piezoelectric Õpiezomagnetic plate caused by a surface
load on the top surface
JULY 2001, Vol. 68 Õ 615
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Fig. 9 Variation of the magnetic induction B z along the thickness direction in
the sandwich piezoelectric Õpiezomagnetic plate caused by a surface load on
the top surface
d

tric
nd-

/B
equal thickness of 0.1 m~with a total thicknessH50.3 m!. While
the material properties for the piezoelectric BaTiO3 are those
listed in Table 1, the properties for the magnetostrictive CoFe2O4
are given in Table 2~@35#!. Similar to the piezoelectric BaTiO3,
the magnetostrictive CoFe2O4 is also a transversely isotropic soli
with its symmetry axis along thez-axis.

Two sandwich plates with stacking sequences BaTiO3 /
CoFe2O4 /BaTiO3 ~called B/F/B! and CoFe2O4 /BaTiO3 /CoFe2O4
~called F/B/F! are investigated. The surface loading as for the fi
001
rst

example is assumed here~that is, az-direction traction with am-
plitude s051 N/m2 is applied on the top surfacez50.3 m while
all other components on both surfaces are zero!. Again, responses
are calculated for fixed horizontal coordinates (x,y)
5(0.75Lx,0.25Ly).

Figures 4 and 5 show, respectively, the variations of the elec
and magnetic potentials along the thickness direction in the sa
wich plate. It is obvious that the potential variations for the B/F
Fig. 10 Variation of the normal stress szz along the thickness direction in the
sandwich piezoelectric Õpiezomagnetic plate caused by a surface load on the top
surface.
Transactions of the ASME
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and F/B/F cases are completely different, demonstrating cle
the role played by the material stacking sequences. Furtherm
the slopes of these quantities can be discontinuous across th
terface, even though the potentials themselves are continuou

While Figs. 6 and 7 show the electric displacementsDx
(5Dy) andDz , the magnetic displacements~magnetic induction!
Bx(5By) and Bz are plotted in Figs. 8 and 9. The followin
general features are observed from these figures:

1 The horizontal electric and magnetic displacements are
continuous across the interfaces~Figs. 6 and 8!.

2 The magnitude of horizontal electric~magnetic! displace-
ment is very small in magnetostrictive CoFe2O4 ~piezoelectric
BaTiO3! layer ~Figs. 6 and 8!. This is due to the fact that for the
magnetostrictive CoFe2O4 ~piezoelectric BaTiO3! material, the pi-
ezoelectricei j ~piezomagneticqi j ! coefficients are zero.

3 Within the outer layers, the horizontal and vertical elect
displacements~magnetic inductions! change dramatically for the
B/F/B ~F/B/F! case~Figs. 6–9!.

4 For these dramatically changed physical quantities, the
tical components reach their maximum magnitudes in the mid
of the outer layers~Figs. 7 and 9!, while for the horizontal com-
ponents, the maximums are on the top and bottom surfaces
the minima at the interfaces.

While the electric and magnetic quantities have been gre
influenced by the stacking sequences, relatively small differen
have been observed for the corresponding elastic displacem
and stresses for these two sandwich cases. For instance, Fi
shows the variation of the normal stressszz along the thickness
direction in the sandwich piezoelectric/piezomagnetic plates.
apparent that both stacking sequences produce nearly the
stress distribution, even though the elastic constants for the
materials are considerably different~Tables 1 and 2!. This is ob-
viously a coupling phenomenon and can only be explained
resorting to the coupled constitutive relation~1!. For the stress
field, it is seen from Eq.~1! that it consists of three parts: th
elastic constant and strain, the piezoelectric coefficient and e
tric field, and the piezomagnetic coefficient and magnetic fie
Even though the first part may produce quite different stresse
both sandwich plates, the effect of the second and third parts~i.e.,
the piezoelectric and piezomagnetic terms! is to wipe out, in the
present case, the difference of the stress field produced by the
part.

The model results may have potential applications in the fi
of smart/intelligent structures. For example, to design a sandw
plate made of the magnetostrictive CoFe2O4 and piezoelectric
BaTiO3 materials that requires a given stress level~or distribution!
within the plate under a normal surface loading on the top, the
order to produce a large horizontal electric displacement~Dx or
Dy! on both the top and bottom surfaces~Fig. 6!, the B/F/B stack-
ing sequence should be selected. On the other hand, if a l
horizontal magnetic induction~Bx or By! on both the top and
bottom surfaces~Fig. 8! is expected, then the F/B/F stacking s
quence is the choice.

Conclusions
In this paper, we have derived exact solutions for thr

dimensional, anisotropic magneto-electro-elastic, simp
supported, and multilayered rectangular plates under both su
and internal loads. We have developed a new and simple for
ism that resembles the Stroh formalism so that the homogen
solution can be obtained in a simple and elegant form. We h
also introduced the propagator matrix method in order to tr
efficiently and accurately the multilayered case. Our solutions
clude all the previous solutions, such as the piezoelectric, pie
magnetic, purely elastic solutions, as special cases, and can
vide benchmarks for various thick plate theories and numer
methods, such as the finite and boundary element methods.
Journal of Applied Mechanics
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Two typical numerical examples presented have also sho
some significant and interesting features. For instance, respo
to an internal load are quite different from those to a surface lo
even for a relatively thin plate. The solution to the internal lo
and its comparison to the corresponding surface loading solu
have never been reported in the literature. For sandwich pl
made of the piezoelectric BaTiO3 and magnetostrictive CoFe2O4,
we have observed that the stacking sequences~B/F/B and F/B/F!
have a clear influence on most physical quantities, in particular
the electric and magnetic quantities. These features should b
special interest to the design of magneto-electro-elastic compo
laminates.
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