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Introduction and internal loads. The general solution in a homogeneous plate is
obtained in terms of a new and simple formalism that resembles

Because of their analytical nature, exa_ct solutions for simpl){ﬁe Stroh formalism([25-27). In order to treat a multilayered
supportedlayered plates_ under static I(_)adlngs are still of par_t|cu-p| te, the propagator matrix method is introduced with which the
lar values. These solutions can predict exactly the behaviors '

. ) : corresponding multilayered solution has an elegant and simple
elastic deformations and stresses near or across the |nterfac% ression. To the best of the author's knowledge, it is the first
material layers, and can thus be used to check the accuracyyfde that a piezoelectric and magnetostrictive multilayered plate

\('[T]')OU; num_en;:al _metlhmtj_s for mor_e: Corgp"%%t(g]d gpp]lcatlo%der simple supporting conditions is analytically studied. It is
- FOr anisotropic €lastic composites, rag » SMNVAS * 545 the first time that an internal loading case is investigated and

etal.[4], and Srinivas and Rafb] derived the classic solutions compared to the surface loading case. The present solutions in-

Yude all the previous solutions, such as the piezoelectric, piezo-

. ! - magnetic, purely elastic solutions, as special cases. Since the

corrles_poFdlnlg _multlflaylereq cas(;e, Noor and [Tur{eﬂw derived  hresent solutions are exact, they can serve as benchmarks to test

analytical ZO utllons or ar;nqate zlanlsc_)troplc p _atesr.] imul various thick plate theories and various numerical methods, such
Recent development of piezoelectric ceramics has stimulatgd e finite and boundary element methods, used for the modeling

considerable studies on the electric and mechanical behaviorsopfayered composite structures.

piezoelectric structures. Again, analytical solutions, even thoughag 4 numerical illustration, a piezoelectric and homogeneous
under certain assumptions, are still desirable. Extensions of ‘ﬂ’)‘l%te under surface and internal loads and a sandwich plate made
elasto_static_solutions_ for simply-support_ed plates to the corrg; piezoelectric BaTi@ and magnetostrictive Cog®, under a
sponding piezoelectric cases were carried out by Ray and Qpface mechanical load are analyzed. It is very interesting that
workers [9,10], Heyliger and co-worker$11,13, Bisegna and gyen for a relatively thin plate, responses from an internal load are
Maceri[13], and Lee and Jiandl4]. Very recently, Vel and Batra qite different to those from a surface load. For the sandwich plate
[15] presented an analytical solution for multilayered piezoelectrjgade of piezoelectric BaTiand magnetostrictive CoR®,, it is
plates in terms Qf the double Fourier series to handle more gengsgkerved that responses from different stacking sequences are
boundary conditions at the edges. o _completely different, especially for the electric and magnetic
More recent advances are the smart or intelligent materigj§antities. These new numerical results should be of special inter-

where piezoelectric and piezomagnetic materials are involvesk; 1o the design of magneto-electro-elastic composite laminates.
These materials have the ability of converting energy from one

form (among magnetic, electric, and mechanical eneydieshe
Other([16—lﬂ) FUrth.ermOre,. C_0mpOSI'[es made of plezoelectn@roblem Descrlptlon and Basic Equatlons
piezomagnetic materials exhibit magnetoelectric effect that is not ] . ) )
present in single-phase piezoelectric or piezomagnetic materia/d-€t US consider an anisotropic, magneto-electro-elastic, and
([19-21)). Although various inclusion-related problems in thesd-layered rectangular plate with horizontal dimensiepsandL
materials have been investigated in recent yeéf26—24), no and total thicknessl (in the vertical directiopwith its four sides
three-dimensional solution is available for the simply supportlfind simply supported. A Cartesian coordinate systeqy,¢)
plate made of piezoelectric/piezomagnetic materials. =(X1,X2,X3) is attached to the plate in such a way that its origin

In this paper, we derive the exact solutions for thredS at one of the four corners on the bottom surface and the plate is
dimensional, anisotropic  magneto-electro-elastic,  simpl{? the positivez region. Let layerj be bonded by the lower inter-
supported, and multilayered rectangular plates under both surf4@e€ zj and the upper interface;,; with thicknessh;=z;,

—z;. Itis obvious that, =0 andzy, ,=H. Material properties in
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([6]) introduced the propagator matrix meth@d]) to handle the
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For an anisotropic and linearly magneto-electro-elastic soliGGeneral Solutions
the coupled constitutive relation can be written(jgs])

0= Cix ¥k~ exiBx— OwiHik

Di=ej vkt eiExt dicHy

up
Bi = dik vkt dikEx+ mikHx 1) U,
whereo;, D;, andB; are the stress, electric displacement, and u=| us

magnetic inductiorii.e., magnetic flux respectively;y;, E;, and
H; are the strain, electric field, and magnetic field, respectively; ¢
Cij, &ij, and u;; are the elastic, dielectric, and magnetic perme-

a, cospxsinqy
a, sinpxcosqy
as sinpxsinqy
a, sinpxsinqy

For a simply-supported and homogeneous plate, we seek the
solution of the extended displacement vector in the form of

(6)

™

(8)

9)

(10)

ability coefficients, respectivelyg;; , g;;, andd;; are the piezo- v s sinpxsingy
electric, piezomagnetic, and magnetoelectric coefficients, respec-
tively. It is obvious that various uncoupled cases can be reducgtiere
from Eq. (1) by setting the appropriate coefficients to zero.
For an orthotropic solid, with transverse isotropy being a
special case, the material constant matrices of @y.are ex- p=nw/Ly, qg=mar/L,
pressed by
- - andn andm are two positive integers.
Cu Cip Cy 0o 0 It is noted that solutiori6) represents only one of the terms in
Coy Cous 0 0 a double Fourier series expansion when solving a general bound-
ary value problem. Therefore, in general, summationsfandm
Css 0 0 over suitable ranges are implied whenever the sinusoidal term
[C]= c o ol appears.
44 Substitution of Eq(6) into the strain-displacement relati¢f)
Sym Css O and subsequently into the constitutive relatidh yields the ex-
tended traction vector
L Ces
[0 0 ey [0 0 Qg 013 b; cospxsinqy
0 0 exp 0 0 Qz 03 b, sinpx cosqy
0 O ez 0 0 dqs3 t=| o3| =e%4 bzsinpxsinqy
[e]=  lal= @ . :
0 ey O 0 g O D, b, sinpxsinqy
es 0 0 Ois O 0 Bj bs sinpxsinqy
L0 O ] | O 0 |
_ ~ _ Introducing two vectors
€11 0 O dll 0 0
[e]l=| O e O [d]=] 0 dp O], a=[a;,a,,33,84,85)", b=[by,b,,bs,b,,bs]"
O O €33 L O 0 d33_
we then find that the vectdr is related toa by
m1 O 0
[ul=] O p22 0| ®3) 1
0 0 s b:(—Rt+sT)a:—g(Q+sR)a

The extended straifusing tensor symbol for the elastic strain
vix)-displacement relation is

¥ij = 0.5(u; j+u; ;)

0
Ei=—¢i, Hi=—4, 4) o
whereu;, ¢, andy are the elastic displacement, electric potential,
and magnetic potential, respectively. R=| —pCss
The equations of equilibrium, including the balance of the body —peys
force and electric charge and current, can be written as
— P05
O'ij J + fi =0
D]yl - fe: O C55

wheref;, f,, andf,, are the body force, electric charge density,
and electric current density, respectively. The electric current den-
sity is also called magnetic charge density as compared to the
electric charge density.
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where the superscriptdenotes matrix transpose, and

0 PCi3 P€s PUa

0 aCy ges, POz
-qCsy O 0 0
—(q€u 0 0 0
— Q024 0 0 0

0 0 0 0
Cu O 0 0
Caz €33 Uss3

—e3z —ds

T M33

(11)
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—(C1p?*+Ceed®)  —pA(CiotCop) 0 0 0

—(Cegp®+C20%) 0 0 0
Q= —(Cosp?+Cy0®)  —(esp?+€20%)  —(dysp®+ 0297 | . (12)
e1p’+ £, dy1p®+dp9°
©11P?+ po?
[
We mention that matriceQ andT are symmetric. slight change in the material constants would result in distinct
The in-plane stresses and electric and magnetic displacemeawntsts with negligible error[28]) so that the following simple
are obtained as solution structure can still be applied.
__— . . . - Therefore, let us assume that the first five eigenvalues have
o1 CiSInpxsinqy positive real partsif the root is purely imaginary, we then pick up
012 C, COSpXxcosqy the one with positive imaginary parand the remainder have op-
09 c3 sinpxcosqy posite signs to the first five. We distinguish the corresponding ten
D, | =eS3 ¢, cospxsingqy (13) eigenvectors by attaching a subscripatandb. Then the general
D, Cs SiINpX cosqy sczjlutionéor thfe extend((ajd Qis;zjlacement and traction vecuirthe
B, Cg cOSPXSingy z-dependent factorare derived as
B, c, sinpxcosqy ul (AL A . [K
S ' o IS Z>{ 1} (18)
where t] |B; B, Ks
~_ [-Cup -Cig Cis  eys QS | where
C1
cy Codd CooP 0 0 0 a, Ar1=[a1,8;,83,84,85], Ar=[25,87,85,89,810]
-C -C C
C3 12P 220 235 €355 Os2S as Bl:[blyb21b3lb41b5]' Bzz[b61b7|b8vb91b10]
Ca|=| €158 0 esPp  —epp —dyp || as .
c a (€%
5 0 €4S &40 —e0 —dxg 4
Ej 05 0 Q5P —dllp — P ag :diag:eslz,eszz,e'53zle'54zleSSZ,e’slz,e*SZZ’e*53Z,e’SAZ,e*552]
- 0 0048 o — ol — i and K, and K, are two 5<1 constant column matrices to be

(14) determined.

. Equation (18) is a general solution for a homogeneous,
Thgse extende@ s:tress@qs..(s) and (13)) should satisfy the magneto-electro-elastic, and simply-supported plate, and contains
equations of equilibriuntassuming zero body force and zero elec-

i d tic ch densitiswhich in t fth ¢ previous piezoelectric and purely elastic solutions as its special
fic and magnetic charge densiieanich in terms ot (n€ VECId,  50g, Clearly, in spite of the complicated nature of the problem,
yields the following eigenequation:

the general solution is remarkably simple. Furthermore, certain
[Q+s(R+R’)+s?T]a=0 (15) thin plate results can also be reduced from this solution by ex-
panding the exponential term in terms of a Taylor seffi28,30).
WhGFER' =—R. ] ) This is particularly easy since one needs only to replace the diag-
Itis noted that Eq(15), derived for a simply supported plate,onal exponential matrix with its Taylor series expansif13)).
resembles the Stroh formalis(i25,26]). However, their solution e mention that although other methods, such as the state space
structures are different because of the Sllght'y different features&ﬁproacf([l4])' may also be emp|oyed to derive a genera| solu-
the R matrix (in the Stroh formalismR’ =R"). It is known thatin tion for such a plate, more algebraic manipulations are needed.
the Stroh formalism, positive internal energy requirement guarapurthermore, reduction to the thin plate result is complicated if a
tees that the characteristic roots of K5 should be complex state space approach is followed.
numbers with nonvanishing imaginary parts; they cannot be realwith Eq. (18) being served as a general solution for a homoge-
([26]). In the present formalism, however, such a feature does ffous and magneto-electro-elastic plate, solutions for the corre-
exist. Instead, since a matrix and its transpose have the sagpending multilayered plate can be obtained using the continuity
determinant value, we conclude thatsiis an eigenvalue of Eq. conditions along the interface and the boundary conditions on the
(19), so is —s. Furthermore, ifsis a complex(or purely imagi- top and bottom surfaces of the plate. In doing so, a system of
nary) eigenvalue, then its complex conjugate is also an eigenvalligear equations for the unknowns can be formed and solved
since all the coefficient matrices in E@.5) are real. We name Eq. ([3,12]). However, for structures with relatively large numbers of
(15) as the pseudo-Stroh formalism because of its similarity to theyers(say, up to a hundred lay@rshe system of linear equations

Stroh formalism. _ then becomes very large, and the propagator matrix method de-
~ With aid of Eq.(10), Eq. (15) can now be recast into a X010  veloped exclusively for layered structures can be conveniently and
linear eigensystem efficiently applied(for a brief review, se¢31]). We discuss this
a a matter in the next section.
NpI=sp (16)
where ; ;
Propagator Matrix and Solution of Layered System
-1p7 -1
_ -TR T 17) Since the matriXN, defined in Eq(17), is not symmetric, the
| -Q+RT R’ —RT Y eigenvectors of Eq16) are actually the right ones. The left eigen-

. . . ) vectors are found by solving the following eigenvalue system:
Depending upon the given material property, the ten eigenval-

ues of Eq(16) may not be distinct. Should repeated roots occur, a N'mp=\7. (29)
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It is a matter of simple fact that & and[a,b]' are the eigenvalue where the four ‘submatrice€; are the multiplications of the
and eigenvector of Eq16), then\ = —s and »=[ —b,a]' are the Propagator matrices in E¢28), andt(H) is the given boundary
corresponding solutions of E€L9). Since the left and right eigen- condition on the top surface, i.e.,

vectors are orthogonal to each other, we then come to the follow- t(H)=[0,0, sinpxsingy,0,0]". 31)

ing important relation:
h ) Solving the unknown extended displacements on both surfaces of
-B, A; the layered plate, we find

Bl —A u(0)=C;3 *(H)
u(H)=C,C5't(H). (32)

I 0
0 1

A A,
B, By

wherel is a 5X5 unit matrix, and the eigenvectors have been

normalized according to
CBAL4 AR = 1) In order to obtain the extend_ed displacement and traction vectors
21t 2R at any depth, sag,<z=<z., in layerk, we propagate the solu-
Equation (20) resembles the orthogonal relation in the Strokion from the bottom of the surface to tldevel ([31]), i.e.,
formalism ([26]) and provides us with a simple way of inverting

(20)

he o B hich | o i formine th u
Eotrarzra]gtfir)l(vector matrix, which is required in forming the propaga- | | =Py(z—z,_ )P 1(hea) .- . - .. Pa(h)Py(hy)] | -
) z 0
Let us assume that EGL8) is a general solution in the homo- (33)

geneous layey, with the top and bottom boundaries locallytat \wjth the extended displacement and traction vectors at a given

and 0, respectively. Lez=0 in Eq. (18) and solve for the un- gepth being solved, the corresponding in-plane quantities can be
known constant column matrix, we find that evaluated using Eq$13) and (14).

K A, AL —Bt A Similar solutions can also be obtained for the first-type bound-
1}: 1 2 ul _ 2 2 ||u (22) ary value problenti.e., for given extended displacement vectors
K> B; B t 0 B‘l fAtl t o on both surfacesand for the third-type, i.e., the mixed boundary

value problem as well. Therefore, for an anisotropic, magneto-
electro-elastic, and simply-supported multilayered rectangular
plate, we have derived the exact solution based on the pseudo-
Stroh formalism and the propagator matrix method.

The present methodology can also be equally and easily ex-
(23)  tended to the corresponding internal loading case, which is of

significance to the Green’s function study. We now seek such a

where solution.

i t If there is an internal sourcéorce, charge, dislocation, eXc.
—B, Az located atz=d, level within layerj(z. ,,), we artificially di-
B! -—A! vide this layer into two sublayergl(dg,z;) (with hj;=dy—2)

_ ) _ and j2(zj44,do) (with hj,=2;,,—do), and define the disconti-
is called the propagator matri7,31]). Listed below are three pities across the source level as

important features of the propagator matrix, which can be proved

The second equation follows from EO0). Therefore, the solu-
tion in the homogeneous laypat any levelz can be expressed by
that atz=0 as

u
t

u
t)~ P(2)

A Az

es*z
B, Bz< )

P(z)= (24)

easily. Au|_(u(do+0)| fu(do—0) 34
| At]=| t(do+0) | 7| t(dg—0) " (34)
P(0)= [ 0 J (25) Again, propagating the propagator matrices from the bottom to the
top of the surfaces and making use of the discontinuity relation
P(z3—21) = P(23— 2,)P(2,— 7;) (26) (34 ([31,32)), we arrive at the following important equation:
o y—p-l5 _ u
P(z3=21) =P (2125 (@7 —Pn(hy)PyoaChy-a) oo Pa(h2)Pi(hy)]
The propagating relatiof23) can be used repeatedly so that H
one can propagate the physical quantities from the bottom surface Au
z=0 to the top surface=H of the layered plate. Consequently, =Pn(hy)Pyoa(hy-g) e e Pj+1(hj+1)Pj2(hj2){ At}'
we have
(35)
ltJ =Py(hy)Pnoa(hyog) e on Pz(hz)Pl(hl)[Ltj (28) Clearly, this equation is more general and includes (26) as a
H 0 special caséwhen there is no discontinuitySimilar to the sur-

whereh; =z, ,—z; is the thickness of layer and P; the propa- face loading case, this equation can be solved for the unknown
gator matrix of the same layer. quantities involved([31]). . .

Equation(28) is a surprisingly simple relation and, for given Before carrying out numerical studies using the present formu-
boundary conditions, can be solved for the unknowns involvel@tion, we remark that the present solution is valid for any integers
As an example, we assume that, on the top surfaceH) the N and m as defined by Eq(7). In other words, the solution we

zdirection traction component is applied, i.e., have derived can be regarded as for one of the terms in a Fourier
) ) series expansion. Because of the linearity, the solution corre-
0z7= 0o SINPXSINQy (29)  sponding to a general loadirigniform or point loading can be

ained by expanding the loading as a finite double Fourier series

hich may represent one of the terms in the double Fourier ser .
wh! yrep ! " un 3,33) and adding the responses together term by term.

solution for a general loading cagéeniform or point loading, and
all other traction components on both surfaces are fzezq the
second-type boundary value problerkquation(28) is then re- ]
duced to Numerical Examples

c. C Having derived the exact and simple solutions, we now present
uH)| &1 2({u(0) . . ; .

= (30) some numerical results. Before using our formalism, we first
t(H) Cy C4l O checked our solutions with some previously published results for
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Table 1 Material coefficients of the piezoelectric BaTiO

107°C%(Nm?), and u;; in 10 "®Ns%C?)

3 (C’I in 109 N/mz, e,'j in C/mz, Eij in

C11=C, Ci, C13=Cys Cas C4s=Css Cee=0.5(C11— Cy)
166 77 78 162 43 44.5
€31=€3 €33 €4=€5
—4.4 18.6 11.6
f117 €22 €33 M11= M2 33
11.2 12.6 5 10
0.2 T T T T T T T L"ﬂ‘
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5 -4 -3 -2 -1 0 1 2 3 4
X-Displacement (m) 12

Fig. 1 Variation of the elastic displacement uy(=u,) along the thickness di-
rection in a homogeneous and piezoelectric plate caused by an internal load on
the middle plane and a surface load on the top surface
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Fig. 2 Variation of the electric displacement D,(=D,) along the thickness di-
rection in a homogeneous and piezoelectric plate caused by an internal load on
the middle plane and a surface load on the top surface
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Fig. 3 \Variation of the stress component o ,, along the thickness direction in a
homogeneous and piezoelectric plate caused by an internal load on the middle
plane and a surface load on the top surface

Table 2 Material coefficients of the magnetostrictive CoFe 204 (Cjj in 10°N/m?2, qjj in N/(Am), g
in 107°C%(Nm?, and u;; in 107®Ns%C?)

Cy=Cyp Cy C13=Cys Cas C44=Css Ce6=0.5(C3—C1d)
286 173 170.5 269.5 45.3 56.5
031~ 032 Q33 024= 015
580.3 699.7 550
€117 €22 €33 M11= M22 M33
0.08 0.093 -590 157
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Fig. 4 Variation of the electric potential ¢ along the thickness direction in the
sandwich piezoelectric /piezomagnetic plate caused by a surface load on the
top surface
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Fig. 5 Variation of the magnetic potential ~ « along the thickness direction in the
sandwich piezoelectric /piezomagnetic plate caused by a surface load on the top
surface

both purely elastic and piezoelectric plat§8,12,14,34), and amplitude oy=1 N/m?. The bottom surface is assumed to be

found that the present formulation agrees with these solutions.traction-free(2) An internal load is applied on the middle plane of
The first example is for a homogeneous and transversely isottae plate ¢=0.1 m). The extended traction discontinuity has a

pic piezoelectric plate. The symmetry axis of the material is alongmilar expression as Eq31) with amplitudeAo,, equal to 1

the zdirection with material properties being listed in Table IN/m? Both the top and bottom surfaces are assumed to be

([14])). The dimension of the plate is,XL,XH=1X1X0.2m. traction-free. For both cases, responses are calculated for fixed

Two cases are studiedt) A z-direction surface load is applied onhorizontal coordinatesx(y) =(0.79.,,0.29.,).

the top surface of the plaie=H. That is, the extended traction is Figures 1, 2, and 3 show the variations of the elastic displace-

given by Eq.(31) with m=n=1 (i.e.,, p=n/Ly, q=n/Ly) and mentu,, electric displacemerd,, and normal stress,, along
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Fig. 6 Variation of the electric displacement D,(=D,) along the thickness di-
rection in the sandwich piezoelectric  /piezomagnetic plate caused by a surface
load on the top surface
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Fig. 7 Variation of the electric displacement D, along the thickness direction in

the sandwich piezoelectric /piezomagnetic plate caused by a surface load on the
top surface

the thickness direction of the plate. It is clear that these two loa@¢hile the normal stress,, due to the surface load is continuous
ing cases produce quite different responses in the plate, evamd increases monotonically from zero on the bottom surface to
though the plate is relative thifwith a ratio of thickness to hori- the applied value on the top surface, that due to the internal load
zontal dimension equal to Q.2For instance, while the internal is discontinuous across the loading pla#e0.1 m and it has op-
loading solution is strictly symmetric or antisymmetric with re{posite sign on both sides of the middle plane. The internal loading

spect to the middle plané.e., the loading plane the surface case has never been studied and compared to the surface loading
loading solution does not possess such features. The (fitehe

case in the literature.
elastic displacement, and electric displacemei,) is only ap-

The second example is for sandwich plates made of piezoelec-
proximately symmetric or antisymmetric about the middle planéric BaTiO; and magnetostrictive Coi®,. The three layers have
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Fig. 8 Variation of the magnetic induction B,(=B,) along the thickness direc-
tion in the sandwich piezoelectric /piezomagnetic plate caused by a surface
load on the top surface

Journal of Applied Mechanics

JULY 2001, Vol. 68 / 615



0.3 T T T T
O
0.
e
"o
0251 +—+  B/F/B b 1
om0 F/B/F 3
s
.
e
0.2 Z
€
2
2015} 4
3
S
0.1
e
g
/'O.‘
005 ¢ J
o.
"o
S
g
0 1 1 H 1
-3 2 -1 1 2
2Z-Magretic induction (Wb/m*m) -10

x10

Fig. 9 Variation of the magnetic induction B, along the thickness direction in
the sandwich piezoelectric /piezomagnetic plate caused by a surface load on
the top surface

equal thickness of 0.1 rtwith a total thicknes$1=0.3 m). While example is assumed hetthat is, az-direction traction with am-
t_he m_aterlal properties for .the piezoelectric Ba;_n@_re those plitude oo=1 N/n?? is applied on the top surface=0.3 m while
listed in Table 1, the properties for the magnetostrictive GOke || other components on both surfaces are zekgain, responses
are given in Table 2[35]). Similar to the piezoelectric BaTi) 4re  calculated for fixed horizontal coordinatesx, y()
the magnetostrictive Cog®, is also a transversely isotropic solid:(o 748.,,0.24.,)

.79.,,0.29.).

Wlt-PWI(t.)s ss)gmmrjnvslté% a)SIIthlsongviE[EEZ);géking sequences BaTiO Figures 4 and 5 show, respectively, the variations of the electric

CoFe0,/BaTiO; (called B/F/B and CoFeO, /BaTiO;/CoFe0O, and magnetic potentials along the thickness direction in the sand-
(called F/B/F are investigated. The surface loading as for the firg¢ich plate. It is obvious that the potential variations for the B/F/B
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Fig. 10 Variation of the normal stress o, along the thickness direction in the

sandwich piezoelectric /piezomagnetic plate caused by a surface load on the top
surface.
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and F/B/F cases are completely different, demonstrating clearlyTwo typical numerical examples presented have also shown
the role played by the material stacking sequences. Furthermaeme significant and interesting features. For instance, responses
the slopes of these quantities can be discontinuous across theténan internal load are quite different from those to a surface load,
terface, even though the potentials themselves are continuouseven for a relatively thin plate. The solution to the internal load
While Figs. 6 and 7 show the electric displacemeits and its comparison to the corresponding surface loading solution
(=Dy) andD,, the magnetic displacementsiagnetic induction have never been reported in the literature. For sandwich plates
B.(=B,) and B, are plotted in Figs. 8 and 9. The followingmade of the piezoelectric BaTi@nd magnetostrictive Cok@,,
general features are observed from these figures: we have observed that the stacking sequeB4s/B and F/B/F
have a clear influence on most physical quantities, in particular, on
the electric and magnetic quantities. These features should be of
special interest to the design of magneto-electro-elastic composite
laminates.

1 The horizontal electric and magnetic displacements are d
continuous across the interfacgdgs. 6 and 8
2 The magnitude of horizontal electricnagneti¢ displace-
ment is very small in magnetostrictive CoBa (piezoelectric
BaTiO;) layer (Figs. 6 and & This is due to the fact that for the
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