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Abstract

In this paper, the estimation of boundary conditions for rock mass models is addressed by means of Bayesian identification
procedures. Basic information can consist of stress, strain, or displacement measurements. Previous information is accounted for, so
that boundary conditions can be updated at the various stages of a project, as soon as new information becomes available. For

linearly elastic rock masses, the boundary conditions are computed in a one-step solution. For rock masses with non-linear
behavior, an iterative procedure must be followed. Potential advantages and shortcomings are also discussed, together with
comparisons with other methods available in the literature. The proposed procedure is applied to two(2)- and three-dimensional (3-

D) non-linear models of the Underground Research Laboratory (URL) of the Atomic Energy of Canada Limited (AECL), Canada.
The procedure displayed fast convergence despite the complex geometry of the site, and the high degree of non-linearity of the
models. The 3-D model was able to completely reproduce the complex measured stress pattern, and the 901 rotation of the principal

in situ stresses with depth. In order to reliably estimate the boundary conditions reproducing the current in situ state of stress,
response measurements of the rock mass to current disturbances are necessary as input data. r 2001 Elsevier Science Ltd. All rights
reserved.

1. Introduction

The US National Committee on Rock Mechanics
offered the following definition of Rock Mechanics [1]:
‘‘Rock Mechanics is the theoretical and applied science
of the mechanical behavior of rock and rock masses; it is
that branch of mechanics concerned with the response
of rock and rock masses to the force fields of their
physical environment’’.

Thus, any rock mechanics study starts with the
determination of the force fields in which the rock mass
under study is embedded. Body forces and boundary
conditions determine these force fields. The latter fields
may be very complex, due to local variations in rock
mass structure (petrography, discontinuities, heteroge-
neities, folds, faults, dikes, fabric, etc.), or to major
structural features, such as faults at the regional scale.

Faults may define stress domains at a large scale and
cause rotations of principal stress directions.

In the majority of the cases, the boundary conditions
are assumed (no lateral strain, uniform ‘‘far field’’ state
of stress etc.). At best, they are derived by averaging
the results of some (local) stress measurements over the
volume of rock of interest, which, in the case of civil and
mining projects, can be of the order of 103–109m3. In
fact, conventional stress measurement techniques (over-
coring, borehole slotting, etc.) aim to determine local
stress tensors, and involve only a few cubic meters of
rock; thus, due to the aforementioned local variations in
the force fields, this averaging exercise may be highly
misleading [2].

Hence, the central question is how to assign boundary
conditions to a (numerical) model of a rock mass, which,
in the following, will be called M; for brevity. M is the
tool that allows one to forecast the rock mass response
to any disturbance (e.g. excavation, slope, foundation
etc.), and it is assumed to represent the main mechan-
isms governing the rock mass behavior [3,4].

In this paper, it is proposed to adopt a Bayesian
approach in order to determine the boundary conditions
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for M: The rationale behind this choice is as follows: if
information exists on the rock mass response to
disturbances (e.g. measurements of strains, stresses,
displacements), then this information may be used to
identify the boundary conditions for M that allow the
response of M to best fit the observed data. In civil
engineering projects, actual observations are affected by
the following factors: uncertainty, the need for updating
information at different stages of a project (e.g.
feasibility, preliminary, final, or construction stages),
and the need for combining different sources of
information (e.g. geological description and field mea-
surements) as well as different types of information (e.g.
intuitive or subjective assumption and experimental
observations).

Within Probability Theory, the proper vehicle for this
combination is Bayes’ Theorem [5]. In this context,
the probability of an event Bj before new information
A becomes available is called ‘‘prior’’, or a priori,
probability, whereas the probability of Bj after new
information A becomes available is called ‘‘posterior’’,
or a posteriori, probability. In words, Bayes’ Theorem
states that [6]:
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Let P½:� denote the probability of an event, and P[B|A]
the conditional probability of B given that A has
occurred. In symbols, Bayes’ Theorem states that:

P½Bj jA� ¼
P½AjBj�P½Bj �Pn

k¼1 P½AjBk�P½Bk�
:

For example, Ref. [6] gives a review of Bayes’ Theorem
applications in engineering geology.

At the outset of the present paper, a procedure is
proposed for determining boundary conditions in
linearly elastic rock masses. Subsequently, the procedure
is extended to include the effect of material non-
linearities. Advantages and limitations of the procedures
proposed are discussed in detail. Comparisons are
presented with other methods available in the literature.

Subsequently, the procedure for boundary condition
estimation is applied to the site of the Underground
Research Laboratory (URL), Canada. This application
is deemed appropriate because of the wealth of available
stress measurements, and the presence of interesting
features such as different stress domains and reverse
faults. Both 2-D and 3-D non-linear models of the URL
site are considered, and the results contrasted.

In this paper, italic capital letters will be used for
random variables, and lower case letters for the values

they can assume. As detailed in the Appendix, the
symbol E½:� denotes the expected value of a quantity.

2. Remarks on some methods proposed in the literature

The importance of the concept of stress in the
following considerations calls for some clarifications.
Cornet [7] distinguishes between two stress concepts:

(a) Local stress tensor, defined at any point in a rock
mass by the components of the mean surface
traction supported by the smallest cube which
completely surrounds the Representative Elemen-
tary Volume (REV). A REV, if it exists, is defined
by the following properties: (1) In the REV a
continuous material equivalent to the real material
filling this volume is defined by its density and its
porosity. These quantities are continuous func-
tions. (2) The REV is small as compared to the
gradients of the various variables involved by the
mechanics of this equivalent continuum, so that
these variables may be assumed to be constant
within the REV. (3) There is no significant body
force nor any resultant moment acting on the REV,
so that the surface tractions acting on it can be used
to define the components of a symmetrical stress
tensor defined at the center of the REV. Condition
(3) imposes an upper limit to the REV size: for too
large a REV, body forces and resultant moment
cannot be neglected. Because of this condition, for
some rock masses a local stress tensor cannot be
defined. The mechanics of such formations cannot
be approached efficiently through continuum theo-
ry, and stress measurements should not be at-
tempted.

(b) Regional stress field, defined as the set of six
functions of the space coordinates describing the
variation of the local stress tensor over the domain
of interest.

Note that, throughout this paper, ‘‘stress’’ refers to
the local stress concept.

The ‘‘Integrated Stress Determination Approach’’,
ISDA, [8] relies on a non-linear, least-squares approach
[9] to determine the regional stress field based on local
stress measurements. However, strong assumptions are
involved in the ISDA, namely: (i) lateral (i.e. horizontal)
variations of stress can be neglected; (ii) the vertical
direction is a principal direction throughout the volume
of interest; (iii) the volume in which the regional
stress field is computed is small enough for neglecting
rotations of principal stress directions; (iv) the regional
stress field is assumed to be continuous up to the
ground surface. An advantage of the ISDA is that no
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assumption is necessary about the rock mass behavior
(e.g. linearly elastic, elasto-plastic, etc.).

The regional stress field determined by the ISDA can
be used as a boundary condition for M only when stress
boundary conditions are applicable, and the aforemen-
tioned assumptions (i) to (iv) hold for M: For example,
stress boundary conditions are not applicable when
discontinuities dissect the rock mass into kinematically
unconstrained blocks, and boundary conditions must
be applied to these blocks. To illustrate, consider the
schematic 2-D model M shown in Fig. 1, where sxxðzÞ is
determined by means of the ISDA. If the shear
resistance along joint AC is overcome, then slippage
occurs, block ABC accelerates and no static solution is
possible. Consequently, if M is to represent the current
situation of a portion of the Earth crust at rest, the stress
boundary condition shown in Fig. 1 is not applicable.

The in situ stress determination using the Under-
Excavation Technique (UET) developed by Wiles and
Kaiser [10,11] is halfway between local stress measure-
ments and the regional stress field concept. In this
method, the pre-existing in situ state of stress is
determined by means of an identification procedure.
The input data is the rock mass response to an
advancing excavation; thus the UET can involve several
hundred or more cubic meters of rock. In the
identification procedure, a far field state of stress is
determined that provides the ‘‘best fit’’ to the measured
displacement and strain changes occurring as an
excavation is extended. The analysis procedure is
conducted in two distinct phases:

(a) A Boundary Element program is used to determine
the functional relationship between the far field
state of stress and the local stress and displacement
changes at the measurement devices. The rock mass
is assumed to be homogeneous and linearly elastic.

(b) The far field stress is determined by minimizing
the sum of the squares of the differences between
predicted and measured strain/displacement
changes by means of the least squares method [12].

The UET actually determines the (stress) boundary
conditions for the following model: a linearly elastic,
homogeneous rock mass of infinite extent surrounding

the monitored excavation. Whenever the rock mass
model of interest, M; differs from the UET’s, the
boundary conditions for M are left unspecified.

The UET allows a fundamental aspect of the problem
in hand to be pinpointed, namely the dependence of the
boundary conditions on M: Consequently, it is neces-
sary to use M in any identification technique of the
boundary conditions. This concept is well known in
identification theory, and was clearly stated by Gioda
and Maier [13]: ‘‘in practical situations it is generally
more convenient to perform, for identification purposes,
particular applications of the general computer program
to be employed, anyway, for the subsequent analysis,
rather than to make recourse to an ad hoc formulation
of the model.’’

In the preceding, the word ‘‘identification’’ was used,
rather than ‘‘back analysis. ’’ In fact, following Sakurai
[14], and with reference to Fig. 2, the following three
different procedures can be distinguished:

(1) In a forward analysis, once a mechanical model is
assumed, and the values of the mechanical para-
meters are determined, then displacements, stresses
and strains can be calculated.

(2) In an identification procedure, displacements, stres-
ses and strains are measured, a mechanical model is
assumed, and then the values of the mechanical
parameters are calculated.

(3) In a back analysis, displacements, stresses and
strains are measured, and then the model as well
as the values of the mechanical parameters are
determined.

The identification of structure, mechanical para-
meters, or inclusions of a rock mass has received
much attention in the engineering literature (e.g. Refs.
[3,13,15,16]), and, obviously, in the geophysics literature
(e.g. Refs. [12,17,18]). As exemplified above, the
determination of the in situ state of stress has also been
attacked vigorously (see Ref. [2] for a complete
treatment). However, little attention has been paid to
the estimation of boundary conditions for (numerical)
models of rock masses at the engineering scale.

According to the classification presented in Fig. 2,
the Bayesian procedures presented in this paper are to
be considered as identification procedures.

3. Estimation of boundary conditions for a linearly elastic

rock mass

3.1. Linear model

Consider a model M of a rock mass featuring
m boundary conditions Xi: Each boundary condition
Xi can be either a displacement or a stress component

Fig. 1. Schematic of a rock mass model M with applied stress

boundary conditions.
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applied to a portion of M: Let us assume that nXm
measurements Zi are available. To illustrate, let Zi be a
stress component measured at a point P; say sstðPÞ: Let
Wi be the stress component sstðPÞ calculated by means
of M when only gravity is acting, and all boundary
conditions are set equal to zero, i.e. Xi ¼ 0; i ¼ 1;y;m:
Let us define:

Yi ¼ Zi � Wi; ð1Þ

Y ¼ ðY1;y;YnÞ
T; ð2Þ

where a superscript ‘‘T’’ indicates a transpose vector.
If a unit boundary condition Xj is applied, all other

boundary conditions being equal to zero and gravity
being absent, a value of the stress component yj ¼
sst 	 ðPÞ can be calculated by means of model M; let

hij :¼ sst 	 ðPÞ: If the rock mass is linearly elastic (it can
be anisotropic and/or non-homogeneous) the super-
position principle for linear elasticity holds [19], and, in
general

yi ¼
Xm
j¼1

hijxj ð3Þ

or, in matrix form:

Y ¼ HX ; ð4Þ

where H is an n � m matrix, whose (i; j)th entry
is hij :

Because some errors exist both in the measurements
and in the model M; Eq. (4) must be modified as:

Y ¼ HX þ U; ð5Þ

Fig. 2. Comparison between the procedures of forward analysis, identification, and back analysis (modified after Ref. [14]).
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where U is an error vector of random variables. Vector
U represents all errors involved, and has zero mean,
covariance matrix V; and is uncorrelated with
X (see Eqs. (A.14a)–(A.14c)). It is also assumed that a
priori information on boundary conditions X is avail-
able, and that such information is condensed in the
mean matrix mX and covariance matrix VXX given by
Eqs. (A.11) and (A.12), respectively, i.e.

mX :¼ E X½ �

VXX :¼ E X � mX

� �
X � mX

� �Th i
:

Since Eq. (5) is identical to Eq. (A.13), the Gauss–
Markov theorem presented in the Appendix can be used
to estimate the boundary conditions, by combining
observational data and judgmental information, as is
apparent from Eqs. (A.19), (A.20) and (A.21). More
explicitly, according to the Gauss-Markov theorem, the
best estimate of the boundary conditions is:

#X ¼ mX þ AnðY � HmX Þ;

where

An ¼ VXXHTðHVXXHT þ VÞ�1:

The determination of matrix H is conceptually similar to
the first step in the UET procedure described in Section
2. However, here no restriction is made on the model M;
provided it is linearly elastic. The application of the
Gauss–Markov theorem is conceptually similar to the
second step in the UET procedure. However, in contrast
to a least-squares approach, the Bayesian approach
allows for the combination of different sources of
information, and for information updating as well.

The structure of matrix H sheds light on the nature of
the problem under consideration. The following cases
can occur:

(a) If the rank of matrix H is m; and n > m; then the
problem is overdetermined, i.e. there are more data
points than model parameters to be fitted. In
general, there exists no solution that satisfies all
simultaneous equations in Eq. (5), and an optim-
ality criterion must be introduced in order to
identify a solution. There will be as many solutions
as many optimality criteria. Here, the optimality
criterion is the minimization of Q in Eq. (A.16b).

(b) If the rank of matrix H is m; and n ¼ m; then the
problem is evendetermined, i.e. there are as many
data points as many model parameters to be fitted.
In this case, if the problem is deterministic, the
solution is simply obtained by inverting matrix H:

(c) If the rank of matrix H is less than m; then the
problem is underdetermined, i.e. there are less data
points than model parameters to be fitted. In
general, there exist infinite solutions that satisfy all
simultaneous equations in Eq. (5).

In practical applications, case (a) is to be preferred
because of measurement errors and model limitations.
In the following, the problem is assumed to be
overdetermined [12].

3.2. Numerical examples

In order to understand the meaning of the proposed
model, simple synthetic applications will be studied, in
which only two boundary conditions are involved.
Example 1 shows the effect of uncertainty affecting
measurements, Example 2 shows the effect of additional
measurements, Example 3 shows the effect of measure-
ment errors, and Example 4 shows an application to a
realistic topography.

3.2.1. Example 1
Consider a parallelepiped as in Fig. 3, in which

displacements along the x-axis are prevented for points
on face OCGH, displacements along the y-axis are
prevented for points on face DHGF, and displacements
along the z-axis are prevented for points on face OADH.
Two uniform boundary normal stresses are applied on
faces ABFD and OABC, and are denoted as X1 and X2;
respectively.

Let us suppose that only two stress measurements are
carried out at a point P: one to measure sxx and one to
measure syy: Moreover, let us suppose that the
real applied boundary stresses are equal to 1MPa.
Evidently, one will measure Z1 ¼ sxx ¼ 1MPa and
Z2 ¼ syy ¼ 1MPa at any point of the rock mass; the
computed stresses due to gravity are zero, i.e. W ¼
ð0; 0ÞT: From Eq. (1) one obtains:

Y ¼ Z � W ¼
1

1

 !
�

0

0

 !
¼

1

1

 !
MPa: ð6Þ

Matrix H reads:

H ¼
1 0

0 1

 !
: ð7Þ

Fig. 3. Portion of a rock mass with flat topography and applied

normal stresses on the boundary.
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It is assumed that the a priori information is
as follows: ‘‘the normal horizontal stresses are between
0.5 and 2MPa’’. Within Probability Theory and
according to the maximum entropy principle [20–22],
a uniform distribution between 0.5 and 2MPa
must be adopted. Therefore, the a priori distribution
functions are:

p0i ðxiÞ ¼
1

2� 0:5
¼

2

3
for 0:5pxip2MPa

0 Otherwise

8<
: : ð8Þ

Eqs. (A.11) and (A.12) yield:

mX ¼ E X½ � ¼
1:25

1:25

 !
: ð9Þ

VXX ¼ E½ðX � mX Þ ðX � mX Þ
T� ¼

0:185 0

0 0:185

 !
:

ð10Þ

As far as the error is concerned, all measurements are
assumed to be affected by the same dispersion and the
associated errors are assumed to be uncorrelated [15].
Thus:

V ¼ s2I; ð11Þ

where s2 is the variance of all measurements, and I is the
identity matrix. A coefficient of variation equal to 0.2 is
assumed, which yields s ¼ 0:2MPa. By applying the
Gauss–Markov theorem to these data, one obtains:

An ¼
0:5395 0

0 0:5395

 !
: ð12Þ

#X ¼ ð1:1151; 1:1151ÞT: ð13Þ

Fig. 4a shows the values of the estimators #X1 and #X2

versus the value of the standard deviation of the error s.
The two estimators always coincide and, when s ¼ 0 (no
uncertainty on the measurements), the estimators are
equal to those obtainable if the problem were determi-
nistic, and no a priori information were available, i.e.
from Eq. (A.13):

X ¼ YH�1 ¼
1

1

 !
: ð14Þ

3.2.2. Example 2
The same example as in Example 1 is considered.

In addition to the two stress measurements, a strain
measurement along the y-axis is also assumed to
be available. If the Young’s modulus is 10MPa,
matrix H is:

H ¼

1 0

0 1

0 0:1

0
B@

1
CA ð15Þ

and vector Y is:

Y ¼ Z � W ¼

1

1

0:1

0
B@

1
CA�

0

0

0

0
B@

1
CA ¼

1

1

0:1

0
B@

1
CAMPa: ð16Þ

The a priori information is the same as in Example 1. It
is still assumed that errors are uncorrelated, and that all
errors have the same coefficient of variation s:

V ¼

1 0 0

0 1 0

0 0 0:01

0
B@

1
CAs2: ð17Þ

Plotted in Fig. 4b are the values of the estimators #X1

and #X2 versus the value of the standard deviation of the
error s: Compared to Fig. 4a, the two estimators do not
coincide except for s ¼ 0: In the latter case, the
estimators are equal to the values in Eq. (14).
The structure of matrix H in Eq. (15) tells us that the
additional piece of information (i.e. the strain measure-
ment) is related only to X2: Thus, the estimated values

Fig. 4. Estimators for the boundary stresses (MPa) versus the value

of the standard deviation of the error, s (MPa). (a) Example 1;

(b) Example 2; (c) Example 3.
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for X1 are the same as those in Example 1 (see Fig. 4a).
On the contrary, the estimated values for X2 benefit by
the additional information because they are less sensitive
to the a priori information, even when large uncertainty
affects the updating information. This means that, the
more updating information is collected, the heavier its
weight will be on the estimation of the boundary
conditions.

3.2.3. Example 3
In this example, the effect of errors in the measured

values is investigated. It is assumed that, all the rest
being identical to Example 2, the measured stresses at P
are both equal to 0.6MPa (i.e. they are different from
the ‘‘true’’ value of 1MPa), while the measured strain is
correct and equal to 0.1. The results are portrayed in
Fig. 4c. By comparing Figs. 4c and 4b, it appears that
the values of the estimators are very much affected by
the wrong measurements. Since only one piece of
information is available on X1; its estimator is visibly
wrong for low values of s; i.e. when it is believed that the
measurement error is small. This effect is mitigated for
the estimator of X2 by the presence of another (exact)
measurement. When s ¼ 0, the estimator #X2 ¼ 0:8MPa
is the average between the estimators one would obtain
with the only stress measurement (i.e. #X2 ¼ 0:6MPa)
and the only strain measurement (i.e. #X2 ¼ 1MPa).
For large values of the error, the observations in
Example 2 apply, i.e. the presence of a second
measurement decreases the importance of the a priori
information.

3.2.4. Example 4
Consider the rock mass model of Fig. 5a. Compared

to the previous examples, the rock mass has an irregular
topography consisting of a series of ridges and valleys.
The displacements along the x-axis are prevented for
points on face OCGH, the displacements along the
y-axis are prevented for points on face DHGF (i.e.
planes OCGH and DHGF are vertical planes of
symmetry), and the displacements along the z-axis are
prevented for points on face OADH. Two uniform
boundary normal stresses are applied to faces ABFD
and OABC, and are denoted as X1 and X2; respectively.
The calculations described in this section were carried
out by means of the Finite Element program Strand7
[23]. The rock mass is assumed to be homogeneous,
isotropic and linearly elastic.

The ‘‘real’’ applied boundary stresses are x1 ¼
1:5MPa and x2 ¼ 5:2MPa.

It is assumed that the a priori information is the same
as in Examples 1–3, i.e. ‘‘the horizontal stress is between
1 and 2MPa. ’’ As a consequence, the mean and the
covariance matrix are given by Eqs. (9) and (10),
respectively. It is to be noted that the actual value of
the first boundary condition (x1 ¼ 1:5MPa) is consis-

tent with the a priori information, whereas the actual
value of the second boundary condition (x2 ¼ 5:2MPa)
is well outside the a priori information range.

As for in situ measurements, five measurements
for sxx and syy are carried out in two valleys at
points 1 to 5, as shown in Fig. 5b. The values given in
Table 1 have been obtained by subtracting the gravity
effect from the actual measured values, according to
Eq. (1).

Fig. 5. (a) FEM model for Example 4, 20-node brick elements were

used; (b) section of model for Example 4 showing the points at which

the stress measurements are taken. Dimensions in meters.
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All measurements are given the same coefficient of
variation COV=0.2, and their errors are assumed to be
uncorrelated. The non-zero elements of the diagonal
covariance matrix V of the error are as follows (in
MPa2):

Vð1; 1Þ ¼ 0:0844 Vð2; 2Þ ¼ 0:9499

Vð3; 3Þ ¼ 0:0765 Vð4; 4Þ ¼ 1:0309

Vð5; 5Þ ¼ 0:0659 Vð6; 6Þ ¼ 0:9558

Vð7; 7Þ ¼ 0:0481 Vð8; 8Þ ¼ 0:8711

Vð9; 9Þ ¼ 0:1227 Vð10; 10Þ ¼ 0:9736;

where, in general:

Vði; iÞ ¼ ðyi COVÞ2

yi=observed stress (see Table 1).
As for matrix H; a unit pressure is first applied to

face ABFD, and face OABC is left stress-free (see
Fig. 5a): the entry hð2i�1Þ;1 is the calculated stress sxx

at point i; the entry hð2iÞ;1 is the calculated stress syy

at point i: Then, a unit pressure is applied to face
OABC, and face ABFD is left stress-free (see Fig. 5a):
the entry hð2i�1Þ;2 is the calculated stress sxx at point i;
the entry hð2iÞ;2 is the calculated stress syy at point i:
Matrix H is:

Application of the Gauss–Markov theorem yields:

#X ¼ ð1:467; 3:067ÞT:

The in situ measurements almost confirmed the a priori
value of X1 because the a posteriori estimate is 17%
higher than the a priori mean for X1: However, the in
situ measurements made the a posteriori estimate for X2

increase dramatically by 145%.

4. Estimation of boundary conditions for a non-linear

model

4.1. Augmented secant procedure

Consider the case in which, due to material non-
linearities of model M; the kth measured quantity
(stress, strain, or displacement) is a non-linear function,
zk; of the boundary conditions:

zk ¼ zkðx1;x2;y; xmÞ: ð18Þ

Because of material non-linearities, the model response
is path-dependent. For example, different results
are obtained if the boundary conditions are applied
simultaneously, or at different stages following a
specific order. In this paper, it is assumed that all
boundary conditions are applied simultaneously to the
model.

Obtaining a closed-form expression for the derivatives
of zk is generally not possible, because the model in hand
is a numerical model. Finite differences or perturbation
theory could be used, but the authors have found that a
secant approach is more robust and allows the computer
runs of model M to be minimized. It is believed that
minimizing computer runs is the crucial point when the
rock mass model M is complex. An iterative scheme is
thus proposed, in which at every step a linear estimation
problem is solved. The Gauss–Markov theorem men-
tioned in the Appendix is used to solve the linearized
problem.

To illustrate, let us consider the case of two boundary
conditions, the extension to more than two variables
being straightforward. If there is no interaction between
x1 and x2; and zk is zero for ðx1;x2Þ ¼ ð0; 0Þ; one can

write:

zk ¼ hk1ðx1Þx1 þ hk2ðx2Þx2: ð19Þ

In an iterative setting, let ðx j�1
1 ; x j�1

2 Þ be the value
of X available at the jth iteration. If there is inter-
action between x1 and x2; and/or zk is not equal to
zero for ðx1;x2Þ ¼ ð0; 0Þ; one can force the linear
approximation h j

k1x1 þ h j
k2x2 to pass through the point

Table 1

Observed vector Y ¼ ðy1;y; y10Þ
T for Example 4

Point sxx (MPa) syy (MPa)

1 y1 ¼ 1:45313 y2 ¼ 4:87308
2 y3 ¼ 1:38263 y4 ¼ 5:07660
3 y5 ¼ 1:28404 y6 ¼ 4:88838
4 y7 ¼ 1:09634 y8 ¼ 4:66655
5 y9 ¼ 1:75178 y10 ¼ 4:93349

H ¼
0:9578 0:0024 0:9180 0:0029 0:8622 0:0006 0:7752 0:0010 1:2822 0:1476

0:0031 0:9364 0:0010 0:9754 0:0018 0:9402 0:0128 0:8971 0:0329 0:9062

 !T

:

An ¼
0:1761 0:0006 0:1864 0:0006 0:2030 0:0006 0:2502 0:0006 0:1620 0:0029

0:0105 0:0997 0:0086 0:0957 0:0051 0:0995 �0:0172 0:1042 �0:0290 0:0943

 !
:
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x j
k :¼ zkðx

j�1
1 ;x j�1

2 Þ: Let:

z j
k :¼ h j

k1x
j�1
1 þ h j

k2x
j�1
2 : ð20Þ

From the identity:

x j
k � ðx j

k � z j
kÞ ¼ h j

k1x
j�1
1 þ h j

k2x
j�1
2 ;

valid for a generic point ðx1; x2Þ; the following approx-
imation holds:

zk � ðx j
k � z j

kÞEh j
k1x1 þ h j

k2x2: ð21Þ

Introducing the observed value yk, it follows that:

yk � ðx j
k � z j

kÞEh j
k1x1 þ h j

k2x2: ð22Þ

The left-hand side of Eq. (22), y j
k ¼ yk � ðx j

k � z j
kÞ;

becomes a new observable random variable, similar
to yk in the linear model described above in Section 3.1.

Thus, the iterative procedure can be outlined as
follows (if j ¼ 1; the a priori mean value may be used,
i.e. ðx0

1;x
0
2Þ ¼ mX ) [24–26]:

(i) By calculating zkðx
j�1
1 ; 0Þ; the secant value:

h j
k1 ¼ zkðx

j�1
1 ; 0Þ=x j�1

1 ð23Þ

is obtained. Similarly, by calculating zkð0;x
j�1
2 Þ; the

secant value h j
k2 ¼ zkð0;x

j�1
2 Þ=x j�1

2 is obtained.
(ii) Calculate

x j
k ¼ zkðx

j�1
1 ;x j�1

2 Þ; ð24aÞ

z j
k ¼ h j

k1x
j�1
1 þ h j

k2x
j�1
2 ; ð24bÞ

y j
k ¼ yk � ðx j

k � z j
kÞ: ð24cÞ

(iii) The Gauss–Markov theorem described in the
Appendix with the new augmented observables y j

k and
matrix components h j

ki can be used to calculate a new
estimate of the boundary conditions #X

j
¼ ðx j

1; x
j
2Þ by

means of Eqs. (A.19) and (A.21).
(iv) Go to point (i) unless the relative error:

Rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k
x jþ1

k � yk

� �2
=
Xn

k
ykð Þ2

r
ð25Þ

is less than a specified value or a maximum number of
iterations has been achieved.

The a priori information embodied in mX and VXX

must not be changed during the iterative process
because the iterative process is only aimed at finding
the correct linearization of the problem and does not
add any new piece of information.

The proposed procedure can be interpreted geome-
trically as follows. In the (x1; x2; yk) space, at the jth
step, the surface yk ¼ zkðx1;x2Þ is approximated by a
plane a passing through point, Pj

k ¼ ð0; 0; x j
k � z j

kÞ; and
orthogonal to vector u ¼ ðh j

k1; h
j
k2;�1Þ: In fact, for any

point P ¼ ðx1; x2; ykÞ belonging to a; vector PPj
k must

satisfy the following scalar equation:

Pj
kP � u ¼ 0

i.e.:

h j
k1x1 þ h j

k2x2 � ðyk � ðx j
k � z j

kÞÞ ¼ 0

and:

yk � ðx j
k � z j

kÞ ¼ h j
k1x1 þ h j

k2x2:

The latter equation is equal to Eq. (22).
A graphical interpretation in shown in Fig. 6,

for the case of one boundary condition only
(m ¼ 1). In this later case, x j

k (defined in Eq. (24a))
coincides with z j

k (defined in Eq. (24b)), and Eq. (24c)
becomes:

y j
k ¼ yk � ðx j

k � z j
kÞ ¼ yk ¼ const: ð26Þ

Thus, when m ¼ 1; the procedure resembles a classical
secant method. However, as can be seen in Fig. 6, in
general, h j

kx
jayk whenever the problem is overdeter-

mined. This is because in an overdetermined problem
(loosely speaking ‘‘more data points than model
parameters to be fitted’’), it is not possible to find a
solution that satisfies exactly all data points.

4.2. General procedure

An extensive numerical investigation carried out
by means of elasto-plastic models (either perfectly
plastic or softening) has revealed the following
fact [24]. When both of the following two conditions
occur:

(a) The boundary conditions #X
j�1

¼ ðx j�1
1 ; x j�1

2 Þ are
such that the relative error Rj�1 in Eq. (25) is
greater than 100%.

Fig. 6. Successive iterations for the non-linear procedure with one

boundary condition (m ¼ 1).
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(b) The measured stresses, displacements or strains are
smaller than the calculated ones, i.e.

x j
k � yk > 0; k ¼ 1;y; n: ð27Þ

Then x j
kbz j

k; and y j
k in Eq. (24c) becomes meaning-

less. As a result, the iterative procedure may not
converge. In this case, a simple secant approach proved
to be the most effective procedure. Then, Eq. (24c) is
replaced by:

y j
k ¼ yk: ð24cnÞ

In the following, this procedure will be referred to as
the ‘‘simple secant method’’, whereas the procedure
presented in Section 4.1 will be referred to as the
‘‘augmented secant method’’.

To summarize, the iterative procedure is as follows:

(i) By calculating zkðx
j�1
1 ; 0Þ; the secant value:

h j
k1 ¼ zkðx

j�1
1 ; 0Þ=x j�1

1 ð28Þ

is obtained. Similarly, by calculating zkð0;x
j�1
2 Þ; the

secant value h j
k2 ¼ zkð0;x

j�1
2 Þ=x j�1

2 is obtained.
(ii) Calculate:

z j
k ¼ h j

k1x
j�1
1 þ h j

k2x
j�1
2 : ð29Þ

If j ¼ 1; Calculate:

x1k ¼ zkðx0
1;x

0
2Þ

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k
ðx1k � ykÞ

2=
Xn

k
ðykÞ

2
q

:

(iii) If both conditions (a) and (b) above occur, then use
the simple secant method:

y j
k ¼ yk ð30aÞ

else, use the augmented secant method:

y j
k ¼ yk � x j

k � z j
k

� �
: ð30bÞ

(iv) The Gauss–Markov theorem, mentioned in the
Appendix, with the observables y j

k and matrix
components h j

ki can be used to calculate a new
estimate of the boundary conditions #X

j
¼ ðx j

1;x
j
2Þ

by means of Eqs. (A.19) and (A.21).
(v) Calculate:

x jþ1
k ¼ zkðx

j
1; x

j
2Þ: ð31Þ

(vi) Go to point (i) unless the relative error:

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k
ðx jþ1

k � ykÞ
2=
Xn

k
ðykÞ

2
q

ð32Þ

is less than a specified value or a maximum number
of iterations has been achieved.

4.3. Comparison with the identification procedure
proposed by Cividini et al. (1983)

The Gauss–Markov theorem was also used by
Cividini et al. [15]. They consider a linearly elastic rock
mass with Young’s modulus E1; and a lens of different
material (inclusion) with Young’s modulus E2: Known
loads are applied to the rock mass surface, and the
induced surface displacements are measured. The
objective is to estimate the elastic moduli E1 and E2;
and the parameters governing the geometry of the
inclusion. Because the measured displacements depend
on the model parameters in a non-linear fashion, an
iterative procedure is proposed, which is similar to
the procedures put forward by other scholars (e.g.
Refs. [27–30]).

According to these procedures, at the jth step, matrix
H j is treated as a sensitivity matrix, and is calculated by
means of finite difference approximations as follows:

h j
k1 ¼ zkðx

j�1
1 þ dx1;x

j�1
2 Þ � zkðx

j�1
1 ;x j�1

2 Þ;

h j
k2 ¼ zkðx

j�1
1 ; x j�1

2 þ dx2Þ � zkðx
j�1
1 ;x j�1

2 Þ:

However, the following problems arise when these
procedures are applied to the estimation of the
boundary conditions:

(a) Increment dxi must depend on the curvature of the
curve ðxi; zkðxiÞÞ: Thus, an adaptive algorithm must
be introduced, whose robustness cannot be guaran-
teed for general applications.

(b) If the first derivative dzk=dxi is zero in a neighbor-
hood of x j

i ; then h j
ki ¼ 0 (see Fig. 7a), and the ith

boundary condition has no effect on the kth
measurement. Consequently, the redundancy of
the measurements is reduced. As a limiting case,
the problem may become underdetermined, and
thus the iterative procedure may fail. This happens,
for example, if h j

ki ¼ 0; k ¼ 1;y; n; because in this
case the rank of matrix H j becomes equal to m � 1:

On the contrary, the iterative scheme proposed in
Section 4.2 does not suffer from these problems, as
sketched in Fig. 7b for the case of one boundary
condition only.

4.4. Limitations of the proposed iterative procedure

The iterative procedure proposed in Section 4.2
presents the following limitations:

(a) The procedure fails when xi�1
j ¼ 0 because, in this

case, the ratio in Eq. (28) is meaningless. However,
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in practice, this limitation can be overcome by using
a small value for x j�1

i in Eq. (28).
(b) The procedure fails at step (i) in Section 4.2, if

no solution exists for the boundary conditions
y ¼ ð0;y;x j�1

i ;y; 0Þ; i.e. if the function

zkð0;y;x j�1
i ;y; 0Þ is undefined. Consider, for

example, a triaxial test, in which the unknown
boundary conditions are the confining (cell) pres-
sure, X1; and the deviator stress, X2: If the soil is
cohesionless, the specimen fails under the boundary
conditions x1 ¼ 0; x2 > 0:

(c) Because of the non-linearity of the problem, multi-
ple solutions may exist. This is typical of ill-posed
identification problems. In these cases, the proce-
dure proposed may show no convergence, but a
rather oscillating behavior. This topic was dealt

with by the authors in Ref. [31], and illustrated by
means of examples of ill-posed problems in tunnel
monitoring.

5. Application to the Underground Research Laboratory

The Canadian nuclear waste disposal concept con-
siders the plutonic rock of the Canadian Shield as a
potential host medium for a disposal vault located
between 500 and 1000m depth. As part of the
assessment of this concept, Atomic Energy of Canada
Limited (AECL) has constructed an Underground
Research Laboratory (URL) approximately 120 km
northeast of Winnipeg, Manitoba, in the Lac du Bonnet
granite batholith (Fig. 8).

Fig. 7. Comparison between: (a) the iterative scheme proposed by Cividini et al. [15], and (b) the iterative scheme proposed in Section 4.2. For

simplicity, the case of one boundary condition only is portrayed. In Fig. 7b, because zkðx j�1Þ ¼ zkðxjÞ; and x j�1ox j ; from Eq. (28) it turns out that:

h jþ1
k ¼ zkðx jÞ=x joh j

k ¼ zkðx j�1Þ=x j�1:
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The application to the URL site of the iterative
procedure for boundary condition estimation considers
as a priori information the stress data relative to the
Canadian Shield gathered by Herget [35]. The updating
information consists of the stress measurements con-
ducted in over 15 years along and in the vicinity of the
URL shaft [36].

5.1. Geologic setting

5.1.1. Regional setting
The URL is located within the Lac du Bonnet granite

batholith (LDBB), which is considered to be represen-
tative of many granitic intrusions of the Precambrian
Canadian Shield [37,38]. The batholith trends East–
Northeast and its elongated body is about 75 by 25 km
in surface area (Fig. 9), and extends to a depth of about
10 km. Dated as Late Kenoran age (2680781Ma), the
batholith lies in the Winnipeg River plutonic complex of
the English River gneiss belt of the western Superior
Province. The batholith is a relatively undifferentiated
pink and grey massive porphyritic granite-granodiorite.
The massive, medium-to-coarse-grained porphyritic
granite is relatively uniform in texture and composition
over the batholith, although locally it displays subhor-
izontal gneissic banding. Low-dipping thrust faults and
associated systems of predominantly north-northeast
striking subvertical joints occur throughout the LDBB.

The style of fracturing within the central portion of
the LDBB near the URL is dominated by large, low-
dipping thrust faults and splays. The blocks between the
thrust faults are crosscut by one or more sets of
subvertical joints, the pattern and frequency of which

vary from one block (fracture domain) to the next.
The factors influencing the pattern of intrablock joint-
ing include the overall distance from the surface,
the proximity to the bounding faults, and the local
rock type. The subvertical joints become less frequent,
less continuous and simpler in pattern with increasing
depth.

5.1.2. Local setting
The local geologic setting was first determined by site

investigations carried out from the surface. The location
of the URL shaft was selected to provide a range of
lithological and structural domains. Excavation of the
URL shaft intersected two major thrust faults that dip
about 25–301 southeast. These faults are referred to as
Fracture Zone 3 and Fracture Zone 2, and the splays as
Fracture Zones 2.5 and 1.9 (Fig. 10a). The fracture
zones are composed of chloritic slip surfaces, which
grade into cataclastic zones where displacements in
the order of meters to tens of meters have occurred.
The cataclastic zones range in thickness from 20mm to
1m and contain breccia and clay gouge. Where the
URL shaft intersects Fracture Zone 2 there is 7.3m of
reverse displacement on Fracture Zone 2 [39].
These fracture zones are considered to be the main
pathways for groundwater flow in the Lac du Bonnet
batholith [40].

Between the surface and Fracture Zone 2.5, the
rock is pink granite and contains a prominent sub-
vertical joint set striking about 0201 near the surface, to
0401 at the 240 Level. A less prominent subvertical
joint set strikes between 1501 and 1801. The pink
color is due to alteration by moving groundwater.

Fig. 8. Location and arrangement of AECL’s Underground Research Laboratory showing the main working levels (after Ref. [62]).
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The general rock type below Fracture Zone 2.5 is
a massive unjointed grey granite. Detailed geological
mapping, however, has identified the following major
rock types: xenolithic granite, leucocratic granite,
fine-grained grey granite, and subvertical grano-
diorite and pegmatite dykes. In the immediate area of
Fracture Zones 2 and 1.9 the grey granite shows pink
alteration.

5.2. Rock mechanics properties

5.2.1. Laboratory characterization of intact rock
The mean and standard deviation of the uniaxial

mechanical properties versus depth are summarized in
Fig. 11 [41]. Within the upper 200m (pink granite),
the properties are relatively consistent with depth,
but from 200 to 1000m (grey granite) trends of de-
creasing compressive strength, longitudinal wave velo-
city and tangent modulus of elasticity with depth
are evident.

This surprising trend can be explained if stress relief
microcracking caused by the sampling process is
considered [42]. Within the pink granite, the percentage
of microcracks is about 16% of that found in the grey
granite, and there is no significant increase in the
percentage of microcrack porosity in the pink granite
with depth. In the grey granite, however, the percentage
of microcrack porosity increases with depth to about
20% of the total porosity (0.5%) of the grey granite
samples at depths of about 400m [43].

Geotechnical properties of rock samples measured at
low confining stress are significantly affected by the
volume of microcracks in the sample. This phenomenon
is illustrated in Table 2 and Fig. 12a, showing the
tangent Young’s modulus of the pink and grey granite

as a function of confining stress [43], and in Fig. 12b,
showing the volumetric strain of the pink and grey
granite as a function of axial stress. The behavior of the
grey granite samples suggests that these samples
experienced significant stress relaxation after drilling,
resulting in higher crack porosity and, consequently,
lower strength and higher deformability.

5.2.2. Joints and faults
Two groups of joint samples were tested in the

laboratory [44]: samples of joints belonging to Fracture
Zone 2 (Group 1) and the extensional set formed during
the intrablock fracturing (Group 2). The samples were
obtained from NQ (approximately 61mm) cores. The
results are given in Fig. 13. Joint Compressive Strength
(JCS) and Joint Roughness Coefficient (JRC) values of
Group 2 are higher and less dispersed than the
corresponding values of Group 1.

By using the mean values for Group 1 (JCS=70MPa
and JRC=5), and assuming a residual friction angle, jr;
equal to 301, the tangent friction angle and apparent
cohesion can be calculated following the procedure
described by Mammino and Tonon [45]. A normal stress
sn	 ¼ 0:027� 250 ¼ 6:75MPa is assumed as represen-
tative of the vertical stress at a depth of 250m, where
Fracture Zone 2 intersects the URL shaft.

qt
qsn

����
sn¼sn *¼6:75

¼ tan JRCn log10
JCSn

sn

 !
þ jr

 !

�
p JRCn

180 ln10

(
tan JRCn log10
�# JCSn

sn

 !

þ jr

�$2þ1

)
¼ 0:557: ð33Þ

Fig. 9. Generalized geology of the Lac du Bonnet batholith (after Ref. [44]).
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ji ¼ arctan
qt
qsn

 !����
sn¼sn *

¼ 301: ð34Þ

tn ¼ sn
n tan JRC log10

JCS

sn
n

 !
þ jr

 !
¼ 4:74MPa: ð35Þ

ci ¼ t* � sn tan ji ¼ 0:843MPa: ð36Þ

However, three major problems arise in extrapolating
these values to Fracture Zone 2:

(1) Because laboratory values are used, no allowance is
made for scale effects in JRC and JCS [46].

(2) A representative value for the characteristic length
of the discontinuity is difficult to identify in the
thrust faults. This characteristic length is necessary
in order to quantify scale effects.

(3) Fracture Zone 2 is composed of several joints
(from which the laboratory specimens were taken),

contains breccia and clay gouge, and underwent
significant shear displacement (over 7m in corre-
spondence of the URL shaft).

For filled and sheared faults, a Coulomb failure
criterion is generally preferred, with a typical friction
angle of 201, and zero cohesion [47].

In the present model, a constant shear stiffness
ks ¼ 30MPa/m and a constant normal stiffness
kn ¼ 1000MPa/m were assumed, based on published
data [48–51] and numerical studies aimed to simulate the
measured stress pattern.

5.2.3. Rock mass
The pink granite was thrust over the grey granite

and along the weaker xenolithic layers followed by
Fracture Zone 2. Because of the varying thickness of
Fracture Zone 2, extension joints developed above

3——————————————————————————————————————————————————
Fig. 10. (a) Geological setting of the Underground Research Laboratory showing the major fracture zones and stress domains (modified after Ref.

[62]); (b) azimuth of maximum horizontal stress versus depth (the principal stress rotation below Fracture Zone 2 is evident), (after Ref. [36]); (c)

maximum horizontal stress versus depth and results of UDEC distinct element models, (after Ref. [36]); (d) ratio of maximum over intermediate

stress (both turn out to be horizontal) versus depth, (after Ref. [44]); (e) ratio of minor principal stress (vertical) to the calculated lithostatic stress,

(after Ref. [44]); (f) ratio of maximum over minimum principal stress, the trend line is from Herget’s database for the Canadian Shield (after

Ref. [44]).

Fig. 11. (a–d) Unconfined mechanical properties versus depth of Lac du Bonnet granite laboratory samples (after Ref. [44]).
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Fracture Zone 2, parallel to the strike of Fracture Zone
2. Consequently, an induced transverse isotropy has
been created, whose vertical plane of symmetry is
parallel to the strike of Fracture Zone 2. The rock mass
Young’s modulus parallel to the plane of transverse
isotropy is assumed to be equal to the intact rock value
determined in the laboratory, i.e. E1 ¼ 60GPa. The
Young’s modulus in direction orthogonal to the plane of

transverse isotropy is assumed to be E2 ¼ 30GPa [44];
this value is also equal to the Young’s modulus in
direction orthogonal the stress-relief induced micro-
cracks measured in the laboratory (page 934 in Ref.
[44]). A Young’s modulus E2 ¼ 30GPa corresponds to a
Geological Strength Index (GSI) equal to [52]:

GSI ¼ 40 log10E1 þ 10 ¼ 70: ð37Þ

The Poisson’s ratios are assumed to be equal to 0.3.
The shear modulus in planes orthogonal to the plane of
transverse isotropy is calculated according to De Saint
Venant formula [53]:

G2 ¼
E2

1þ 2n2 þ E2=E1
¼ 14 GPa: ð38Þ

The absence of fractures in the grey granite leads us to
assume an isotropic behavior for the grey granite, with
Young’s modulus E ¼ 60GPa, and Poisson’s ratio n ¼
0:3: In fact, although cored samples clearly display
anisotropy, there is no evidence suggesting that aniso-
tropy is significant in situ (page 929 in Ref. [44]). Also, in
situ geophysical seismic surveys at the 240 Level in the
grey granite indicate that shear wave velocities vary in
different directions only by 5% (page 929 in Ref. [44]).

5.3. Measured in situ stresses

An extensive program of stress measurements has
been implemented at the URL, and is summarized by
Martino et al. [36]. The horizontal stresses can be
grouped into three distinct stress domains, see
Figs. 10a–f [54]. Horizontal stresses above Fracture
Zone 2.5 are similar to the average stresses measured
elsewhere in the Canadian Shield at similar depths
[55]. Below Fracture Zone 2, the horizontal stresses
measured at the URL are anomalously high compared
to the average Canadian Shield stress, while the stresses

Table 2

Summary of laboratory geotechnical properties of Lac du Bonnet

granite at the URL. (After ref. [44])

Pink granite Grey granite

Porosity (%)

Range 0.16–0.28 0.32–0.67

Mean 0.24 0.50

Density (kg/m3)

Mean 2640 2630

Uniaxial compressive strength (MPa)

Range 134–248 147–198

Mean 200 167

Brazilian tensile strength (MPa)

Range 6.17–12.07 6.22–11.52

Mean 9.32 8.72

Tangent modulus (Gpa)

Range 53–86 46–64

Mean 69 55

Poisson’s ratio

Range 0.18–0.44 0.13–0.43

Mean 0.26 0.3

Hoek and Brown failure parameters

m 31.17 30.54

s 1 1

Fig. 12. (a) Tangent Young’s modulus at 50% peak strength measured in triaxial compression tests on 45mm diameter samples of Lac du Bonnet

granite; (b) volumetric strains for the pink and grey granite under uniaxial loading (the non-linear response of the grey granite is evident) (after

Ref. [44]).
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in the domain between Fracture Zone 2.5 and 2 are
intermediate in magnitude. Also, as can be seen in
Figs. 10a–f, the direction of the maximum horizontal
stress rotates by 901, from the fault strike (Domains I
and II) to the fault dip direction below Fracture Zone 2.

Overcoring and hydraulic fracturing measurements
were successfully used to measure stresses above
Fracture Zone 2, even if due consideration had to be
given to the stress-relief induced anisotropy in inter-
preting the results at the 240 Level [54,56].

Below Fracture Zone 2, the high horizontal stresses
induced subhorizontal fractures during hydraulic frac-
turing tests, that required particular inversion techni-
ques in order to determine the stress tensor [57].
Incipient discing prevented the use of techniques that
require a long intact core length to obtain a valid
measurement (e.g. borehole-deformation gauges, CSIR
and CSIRO gauges). A modified doorstopper technique

was used [58]. Convergence measurements helped
identify horizontal stress components only [59].

An under-excavation study using CSIRO HI cells
around the bored vent raise from the 420 to the 240
Level [60, 61] provided an estimate of the complete
tensor, but the results were affected by uncertainty in the
CSIRO HI cell locations and orientations, small induced
strains in the axial direction, and non-linear behavior
around the boreholes when the advancing face was
within 1 diameter of the instrument [62]. In the latter
study, the estimates of both the magnitude and
orientation of the maximum and intermediate stresses
were well constrained, but those for the minimum
principal stress (which is vertical) were not.

Results from an acoustic emission/microseismic (AE/
MS) array installed in four inclined boreholes around
the URL shaft [63] provided estimates for the maximum
and minimum horizontal stress directions, which were

Fig. 13. Summary of JCS and JRC statistical data for Fracture Zone 2 shear joints (Group I) and Room 209 extensional joints (Group II) (after

Ref. [44]).
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supported by observations of breakouts in the shaft, but
provided no estimates for the stress magnitudes.

5.4. Two-dimensional model

A 2-D plane-strain model of the URL site is shown in
Fig. 14. The plane in Fig. 14 is parallel to the dip
direction of Fracture Zone 2, i.e. plane ABCD in
Fig. 10a. The non-linear Finite Element program Phase2
[64] was used to carry out the following calculations.

Fracture Zones 2, 2.5 and 3 (see Fig. 10a) are modeled
by means of non-linear joint elements: local joint
slippage can occur if the shear stress on a joint element
exceeds the shear strength as defined by the Coulomb
parameters specified in Section 5.2.2. Normal and shear
stiffness are constant, as described in Section 5.2.2.

The pink and grey granite rock masses are assumed to
be linearly elastic (no yielding is allowed), with proper-
ties as specified in Section 5.2.3.

Gravity force is active, and a unit weight of
0.027MN/m3 is assumed for the rock mass.

As shown in Fig. 14, zero horizontal displacements
are prescribed at the left-hand side boundary of the
model. Vertical displacements are prescribed to be zero
at the bottom of the model. A constant horizontal
displacement, X ; must be defined at the right-hand
boundary of the model. This is the boundary condition
to be estimated, based on measured horizontal stresses
parallel to the dip direction of Fracture Zone 2, and
given in Table 3.

Fig. 15a shows the pattern of horizontal stresses in the
dip direction, saa; along the URL shaft for different

values of the boundary displacement x: The lack of non-
linearity is particularly evident at shallow depth, where
the effect of slippage along the faults is more sensible.
Fig. 15b confirms this conclusion: function zkðxÞ is
plotted here for three depths, each representative of a
stress domain defined in Fig. 10a.

The data gathered by Herget [35] on the Canadian
Shield will be used as a priori information. From
Fig. 16, an average major principal stress of 20MPa is
obtained for the depth range applicable at the URL site.
This is equivalent to a strain (assuming a Young’s
modulus of 60GPa):

e1 ¼ 20=60�10�3 ¼ 0:333�10�3: ð39Þ

Fig. 14. Two-dimensional plane strain FEM model of the URL site; the vertical plane is parallel to the dip direction of Fracture Zone 2. Dimensions

are in meters. Three-node triangular elements were used.

Table 3

Measured horizontal in situ stresses parallel to the dip direction of

Fracture Zone 2 (a-axis in Fig. 14) for the 2-D model. (After ref. [54])

k Depth (m) Stress (MPa): Variance (MPa2)

yk Vk

1 15.6 4.28 7.14

2 62.5 4.28 4.28

3 89.8 10.71 10.00

4 179.7 12.85 4.28

5 187.5 20.00 17.14

6 250.0 27.14 24.28

7 273.4 37.14 8.57

8 289.0 48.57 10.00

9 335.9 41.42 8.28

10 367.2 57.14 11.42

11 390.6 54.28 10.85

12 414.1 52.85 10.57

13 468.7 52.85 10.57
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The displacement necessary to yield this strain in a
uniform strip of length L ¼ 3000m is:

mX ¼ ðe1�LÞ ¼ ð1Þm: ð40Þ

This is the a priori value of the boundary condition. A
coefficient of variation of 45% is typical in stress
measurements (see also Fig. 16), thus the covariance
matrix is:

VXX ¼ ð0:2Þm2: ð41Þ

The a priori value of the displacement is also used as a
starting point for the iterative procedure, i.e. x0 ¼ mx ¼
1 m: The coefficients h j

k ¼ zkðx j�1Þ=x j�1 are given in

Table 4. The results of the iterative procedure are given
in Table 5, and portrayed in Figs. 17a–b. The procedure
converges rapidly, and only 3 iterations are necessary to
reach a relative error of 3.3%. Thus the FE model had
to be run 3 times to reach a relative error of 3.3%. From
a practical point of view, this error is more than
satisfactory, especially when one considers the high
degree of uncertainty involved in the stress measure-
ments. The variance of the estimated boundary condi-
tion is 0.197, which is very close to the a priori value of
0.20. This is due to the large uncertainty associated with
the updating stress measurements.

Fig. 18a presents the stress profiles in the dip-
direction calculated at each iteration, together with the
measured stresses. The match is satisfactory, and only in
the depth range 100–200m is the calculated horizontal
stress slightly overestimated. The fast convergence rate
of the iterative procedure is self-evident. Also, Figs. 17b
and 18a show that iterations 4 and 5 do not improve on
the match between measured and calculated stresses.
This means that the limits of the FE model in
representing the real rock mass behavior have been
reached.

Plotted in Fig. 18b is the horizontal stress parallel to
the fault strike. Because a 2-D plane-strain model was
used, it is impossible to control the out-of-plane stresses,
which turn out to be very different from the measured
ones. This inconsistency motivated the preparation of
the 3-D model described in Section 5.5.

The calculated horizontal stresses in the dip direction
are plotted in Fig. 19. The lower stiffness of the pink
granite induces lower stresses in the upper 200m, even
where faults are not present. The disturbance caused by
the faults is well evident. However, the stress along
the boundaries appears to be evenly distributed and
fairly unaffected by this disturbance, i.e. there is no
boundary effect on the calculated stresses along the
URL shaft.

The yielded joint elements are represented in red color
in Fig. 19. Fracture Zones 2 and 3 are completely
yielded except in the very proximity of the tip, where
stress concentrations develop. Fracture Zone 2.5 is in
the elastic range. Figs. 20a–c show the shear displace-
ments along Fracture Zone 2, the normal stresses across
Fracture Zone 2, and the shear stresses on Fracture
Zone 2, respectively. The same quantities are plotted in
Figs. 21a–c for Fracture Zone 2.5, and in Figs. 22a–c for
Fracture Zone 3.

The maximum calculated shear displacement occurs
along Fracture Zone 2, and is less than 1m. This figure
is much less than the value observed in situ (>7m) and
highlights the difficulty in determining boundary condi-
tions and the current in situ state of stress based on joint
or fault displacements and geometry alone. Such
methods were advocated, for example, by Angelier and
co-workers [65,66].

Fig. 15. (a) Stress profiles along the URL shaft due to four different

boundary conditions; (b) Normalized stress saaðxÞ=saaðx ¼ 2mÞ at

three different depths; axis a is horizontal and parallel to the dip

direction, as defined in Fig. 14.
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5.5. Three-dimensional model

5.5.1. Model preparation
AECL conducted an extensive survey aimed at

determining the geometry of the faults and splays at

the URL site [67]. The results are plotted in Figs. 23a–c.
The structural discontinuities appear to be bowl-shaped
and, except for a portion of Fracture Zone 3 (see
Fig. 23a), they cannot be treated as planar features. Also
indicated in Fig. 23c are the limits of the 3-D Finite
Element model of the site, and the position of the URL
shaft.

Figs. 23a–c were obtained by interpolating the spatial
coordinates of the discontinuities; to this end, a Kriging
technique was used within the program Surfer, Version
6.4 [68]. Because the fault depth data were not taken at a
regular horizontal grid, the later program was also used
to obtain the depth of Fracture Zones 2 and 3 at a
regular horizontal grid (49� 51m spacing along x1 and
x2; respectively). Then, these spatial coordinates were
imported into the Finite Element program Strand7,
Version 1.03 [23], and the mesh was prepared. The splay
Fracture Zone 2.5 was not modeled because few data
were available on its geometry (see Fig. 23c). Also, the
2-D analysis (Section 5.4) showed that Fracture Zone
2.5 did not yield, and, consequently, its importance
was deemed secondary in a first assessment of the
problem in hand.

Fig. 16. Maximum principal stress with depth in the Canadian Shield. Numbers indicate the quantity of stress measurements that gave the same

stress value (after Ref. [35]).

Table 4

Coefficients h j
k ¼ zkðx j�1Þ=x j�1 (MPa/m) used in the five iterations for

the two-dimensional model of the URL site

k j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4 j ¼ 5

1 4.58 2.645 2.46 2.43838 2.44161

2 4.8 2.935 2.75 2.74482 2.74846

3 4.89 3.09 2.92 2.91118 2.91065

4 10.55 7.6 7.27 7.26262 7.25908

5 10.59 7.65 7.32 7.30202 7.3073

6 19 13.25 12.64 12.6078 12.6157

7 22.46 19.9 19.49 19.5071 19.5154

8 22.54 20.15 19.78 19.8091 19.7915

9 22.94 21 20.62 20.6628 20.6726

10 22.27 21.5 21.2 21.2188 21.2162

11 23.47 21.85 21.47 21.4945 21.5011

12 23.68 22.05 21.73 21.7835 21.786

13 24.15 22.64 22.33 22.3876 22.3909
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Three blocks were modeled (see Fig. 24): Block 1
extends between the surface and Fracture Zone 3, Block
2 between Fracture Zone 3 and Fracture Zone 2, and
Block 3 between Fracture Zone 2 and the bottom of the
model at a depth of 1500m.

Zero gap, point contact beam elements were used at
the fault interfaces in order to connect nodes on both
sides of the 0.01m-high gap between the blocks. This
type of element provides stiffness only in compression,
and only when the distance between the nodes to which
it is connected becomes zero. Friction coefficients are
assigned in the principal axis directions of the beam;
they control the amount of lateral force that can be
transferred. In each direction, the lateral force cannot
exceed the axial force times the respective coefficient.
Because an isotropic friction angle of 201 was assumed
for the faults (see Section 5.2.2), the friction coefficients
are equal in the principal axis directions of the beam,
and take on the value tan(201)=0.364. The axial
stiffness of the beam was set equal to 108MN/m. The
following options were set:

(a) Dynamic stiffness: if set, this option allows the
solver to increase and/or decrease the stiffness

dynamically, to better enforce the contact condi-
tions. In subsequent iterations, the solver adjusts the
stiffness to a more suitable value, depending on
the state of the gap. If the stiffness is too small, there
will be some penetration of material. In this case,
the solver increases the stiffness to better enforce
the contact requirement.

(b) Use in first iteration: this is used as an aid to the
solver. If it is known that initially the elements are in
contact, by setting this option the solver assembles
the elements in the first iteration.

(c) Update direction: this is only relevant to geometric
nonlinear analysis. If this option is set, the position
and hence direction of the contact element is
updated as the structure deforms.

Eight-node brick elements (Brick8) were initially used
for the three blocks. However, condensation failure
occurred due to excessive distortion of some elements.
The Brick8 element in Strand7 includes additional
internal ‘‘bubble’’ functions to enhance its behavior
and alleviate so-called ‘‘locking’’ problems, i.e. to make
the element more flexible. The condensation procedure
involves the inversion of a sub-matrix. If the sub-matrix
cannot be inverted, the condensation fails. The problem
was solved by transforming the Brick8 elements into
4-node tetrahedral elements, which did not collapse for
excessive distortion.

The 3-D model features 28,734 tetrahedral elements,
1,962 point contact beams, 8,124 nodes, and 22,949
degrees of freedom.

The three blocks are assumed to be linearly
elastic. Blocks 1 and 2, which model the pink granite,
are transversely isotropic with the elastic properties
as given in Section 5.2.3. The plane of transverse
isotropy is vertical, and, as indicated in Fig. 23c,
its dip direction is equal to 1251. Block 3 is assumed
to be isotropic with the properties of the grey granite
as given in Section 5.2.3. The gravity force is active,
and a unit weight of 0.027MN/m3 is assumed for
the rock mass.

The analysis is non-linear because the element
geometry and the contact element status are updated
at each iteration. The non-linear static solver performs
the following steps:

(1) Initializes the nodal displacement vector u:
(2) Sets the current load increment.

Table 5

Results of the iterative procedure for the 2-D model of the URL site

j ¼ 0 j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4 j ¼ 5

x j (m) 1 1.99 2.2548 2.2843 2.2813 2.2810

Relative error Rj (%) 54.3 14.7 4.7 3.2 3.3 3.3

Fig. 17. (a) Computed boundary stresses at each iteration (itera-

tion=0 refers to the starting state of stress); (b) square mean root of

the difference calculated-measured displacements at each iteration.
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(3) Calculates and assembles the element stiffness
matrices using the current geometry, equivalent
element force vectors, and external nodal force
vectors. Constraints are also assembled in this
process, and the constant terms in the enforced
displacements are combined and applied. At the end

of this assembly procedure, the following linear
equation system of equilibrium is formed:

KðuÞDu ¼ R; ð42Þ

where KðuÞ is the current global stiffness matrix,
Du is the displacement increment vector, and R is

Fig. 18. Computed (continuous lines) and measured (dots) horizontal stresses along the URL shaft. (a) Stresses parallel to the dip direction of the

faults at the URL shaft (j ¼ 0 refers to the a priori information); (b) Stresses parallel to the strike direction of the faults at the URL shaft (only the

final computed stresses are shown).

Fig. 19. Contours of calculated horizontal stresses in the dip direction for the estimated boundary condition.
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the global residual force vector or unbalanced force
vector with:

R ¼ P � FðuÞ; ð43Þ

in which P and FðuÞ are the current external force
and element nodal force vectors, respectively.

(4) Solves Eq. (42) for Du:
(5) Updates the total nodal displacement vector u:
(6) Checks convergence. If the convergence criteria are

satisfied, go back to Step 2 to start the next load step
or stop at the last load step. Otherwise, continue the
iteration and go back to step 3.

In each of the following analyses, two load increments
were applied:

(a) Only the gravity force acts on the model, and all
boundary conditions are set to zero (consolidation
phase).

(b) The boundary conditions are applied.

The computational time taken for each analysis was
about 10 h on a PC Pentium II 266 Mhz with 128 MB
RAM.

Fig. 20. Calculated quantities along Fracture Zone 2 for the estimated

boundary condition (the location of the number on the graph

corresponds to the location of the same number in Fig. 19, i.e. the

fault tip). (a) Shear displacements; (b) normal stress across the fault;

(c) shear stress.

Fig. 21. Calculated quantities along Fracture Zone 2.5 for the

estimated boundary condition (the location of the number on the

graph corresponds to the location of the same number in Fig. 19).

(a) Shear displacements; (b) normal stress across the fault; (c) shear

stress.
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5.5.2. Boundary condition estimation
With reference to Fig. 24, only Block 3 is subject to

constraints acting during both load increments a and b
described in Section 5.5.1. More specifically, points on
face ADGH of Block 3 are constrained against
displacements along the x1-axis, points on face EFGH
of Block 3 are constrained against displacements along
the x2-axis, and points on face ABEH of Block 3 are
constrained against displacements along the x3-axis. The
boundary conditions to be estimated are the uniform
horizontal displacements applied to faces ABCD (X1)

and BEFC (X2) of Blocks 1, 2, and 3. When non-zero
boundary conditions X1 and X2 are applied, the
constraints applied to Block 3 allow Blocks 1 and 2 to
slide past each other, and to Block 2 to slide past
Block 3.

The input (observable) data are the horizontal stresses
along the URL shaft. It is to be noted that the vertical
faces of the model (see Figs. 23c and 24) are not parallel
to the principal stress directions determined in situ. In
fact, the later are parallel and orthogonal to the plane of
transversely isotropy of the pink granite, which strikes
N351 E (see Fig. 23c), whereas the vertical faces of the
FE model strike North–South or East–West.

As in the 2-D model, Herget’s data [35] on the stress
state in the Canadian Shield were used here as a priori
information (see Fig. 16). The length of the FE model in
the x1-direction is 1275m, and the length in the x2-
direction is 1690m. In order to estimate the a priori
boundary conditions, it is assumed that the model has
no joints and is isotropic and homogeneous, with a
Young’s modulus equal to 60GPa. If the Poisson’s effect
is disregarded, the displacement necessary to produce a
horizontal stress s11 equal to 20MPa is:

d1 ¼
20

60000
1275 ¼ 0:425 m:

Similarly, the displacement necessary to induce a
horizontal stress s22 equal to 20MPa is:

d2 ¼
20

60000
1690 ¼ 0:563 m:

Thus, the a priori mean is mX ¼ ð0:425; 0:563ÞT m. A
coefficient of variation of 45% is assumed (see also
Fig. 16), and the covariance matrix is:

VXX ¼
0:085 0

0 0:1126

 !
m2:

The observed horizontal stresses in the x1 and x2

directions are given in Tables 6a and 6b, together with
the observed uncertainty. The observed quantities are
supposed to be independent, thus only the non-zero
diagonal entries of matrix V are given in Table 6.

The a priori mean boundary displacements are also
used as a starting point in the iterative estimation
procedure.

The estimated boundary conditions and the relative
error at each iteration are given in Table 7, and are
plotted in Figs. 25a–b, respectively. These figures show
that the a priori information is a good starting point
because the final estimated boundary conditions for X1

and X2 are 67% and 20% larger than the a priori mean
values, respectively. The relative error eventually stabi-
lizes at 24.4%, which is a much higher value than that
obtained in the 2-D model (3%). This result is due to
the complex 3-D geometry of the faults. Also, in the
2-D model, no attempt was made to reproduce the

Fig. 22. Calculated quantities along Fracture Zone 3 for the estimated

boundary condition (the location of the number on the graph

corresponds to the location of the same number in Fig. 19, i.e. the

fault tip). (a) Shear displacements; (b) normal stress across the fault;

(c) shear stress.
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out-of-plane measured stresses, and so less data points
were considered. Because the relative error Rj is always
less than 100% (see Table 7), the ‘‘augmented secant
method’’ (Section 4.2) was used throughout. The
iterative procedure proposed shows fast convergence in
spite of the complexity of the problem in hand.
Only three iterations (i.e. 9 model runs for a total of
about 90 h of computational time) were necessary to

arrive at a satisfactory estimate of the boundary
conditions.

This good agreement is confirmed by Figs. 26a–b,
which show the calculated and the measured horizontal
stresses along the URL shaft. For j ¼ 3; the calculated
stresses reproduce reasonably well the measured values,
which appear to be very scattered, especially in the strike
direction.

Fig. 23. Fault geometry at the URL site. (a) Axonometric view of Fracture Zone 3; (b) axonometric view of Fracture Zone 2; (c) contour lines

(interval=20m) of Fracture Zone 3 (blue), Fracture Zone 2.5 (black), Fracture Zone 2 (red): a dot marks the position of the URL shaft. In Fig. 23c,

the strike of the plane of transverse isotropy for the pink granite is also indicated. Axis x1 and x2 are horizontal, and positive toward the East and the

North, respectively; x3 is vertical and positive upwards. Lengths are in meters. The vertical coordinates have been translated so that the zero reading

is at the URL shaft collar (289.9m a.s.l.). Thus, the coordinates of the URL shaft collar are (784.959, 475.031, 0).
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It is interesting to compare Figs. 26a–b, relative to the
3-D model, with Figs. 18a–b, relative to the 2-D model.
The calculated horizontal stresses parallel to the fault
dip (Figs. 18a and 26a) are very similar, except for
the absence of the stress discontinuity across Fracture
Zone 2.5, which was not considered in the 3-D model.
The computed stresses parallel to the fault strike are
instead completely different (compare Figs. 18b and
26b). Specifically, the 3-D model was able to reproduce
the measured pattern very well, with a slight over-
estimation between 100 and 250m depth, whereas
the 2-D model completely failed to give a reasonable
picture of the out-of-plane stress.

Consider two 101-aperture cones having the dip and
the strike direction of the faults as their respective axes.
In the 3-D FE model, for j ¼ 3; the major and
intermediate principal stresses are found to be always
within these two cones. As a consequence, the horizontal

Fig. 24. (a,b) Three-dimensional views of the Finite Element model of

the URL site.

Table 6

K Depth (m) yk (MPa) Vðk; kÞ (MPa2)

(a) Measured horizontal in situ stresses parallel to the x1-direction for

the 3-D model of the URL site

1 15.6 4.28 7.14

2 62.5 4.28 4.28

3 89.8 10.71 10.00

4 179.7 12.86 4.28

5 187.5 20.00 17.14

6 250.0 27.14 24.28

7 273.4 37.14 8.57

8 289.1 48.57 10.00

9 335.9 41.43 8.28

10 367.2 57.14 11.43

11 390.6 54.28 10.86

12 414.1 52.86 10.57

13 468.7 52.86 10.57

(b) Measured horizontal in situ stresses parallel to the x2-direction for

the 3-D model of the URL site

14 15.6 7.14 5.71

15 62.5 6.43 4.28

16 89.8 10.71 10.00

17 179.7 10.71 11.43

18 187.5 18.57 10.00

19 250.0 22.86 22.86

20 273.4 31.43 20.00

21 289.1 48.57 5.71

22 335.9 31.43 6.28

23 367.2 47.14 9.43

24 390.6 42.86 10.00

25 414.1 45.71 10.00

26 468.7 38.57 7.71

Table 7

Estimated boundary conditions and relative error for the 3-D model of

the URL site

Iteration ðx j
1; x

j
2Þ Rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2b
k ðx jþ1

k � ykÞ
2=
P2b

k ðykÞ
2

q
ð jÞ (m) (%)

0 (0.425, 0.563) 30.0

1 (0.672, 0.534) 21.4

2 (0.618, 0.670) 24.5

3 (0.710, 0.670) 24.4

Fig. 25. (a) Computed boundary displacements at each iteration

(iteration=0 refers to the starting state of stress); (b) square mean

root of the difference calculated-measured displacements at each

iteration.
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stresses plotted in Figs. 26a–b are a very good approx-
imation to the major and intermediate principal stresses.
These horizontal stresses, for j ¼ 3; display the 901
rotation across Fracture Zone 2 (depth 250m) that was
observed in situ (see Figs. 10a–f).

Contours of the horizontal stresses parallel to the dip
and the strike direction of the faults are plotted in
Figs. 27a–b, respectively. They show the presence of

stress discontinuities across the faults and the compara-
tively low stress acting in Blocks 1 and 2 (the shear
resistance along the faults is overcome throughout, i.e.
the discontinuities are completely yielded). This phe-
nomenon is due to slippage along the faults, which is
confirmed in Figs. 28a–b. These later figures portray
the displacement components parallel to the dip and to
the strike directions of the faults, respectively. The
relative shear displacement across the faults is never
greater than 1m, whereas the displacement measured in
situ at the URL shaft intersection is greater than 7m.
This result confirms the difficulty in using measured
fault displacements to estimate the current state of stress
or boundary conditions for a rock mass model, as
already observed in the 2-D model.

This is because fault relative displacements have been
accumulating over the geologic history of the rock mass,
since the fault formation. In addition, such displace-
ments are the results of the Earth crust evolution, which
is impossible to track, let alone finding an appropriate
constitutive model for the intact rock, discontinuities
and rock mass over geologic eras, and determining
initial and boundary conditions with the precision and
resolution needed for engineering projects. This conclu-
sion is in keeping with Cornet’s [69] about in situ
stresses: ‘‘Because the exact geological history of rock
masses will never be known precisely, because the
constitutive equations describing the mechanical beha-
vior of rocks remain fairly approximate, and because the
detailed structure of a rock mass cannot be determined
exactly, it is impossible to evaluate the natural stress
field by straight computation’’.

From an engineering point of view, it seems more
reasonable and meaningful to look at the current state
of affairs, by measuring the current rock mass response
to disturbances, and to estimate the boundary condi-
tions that allow the rock mass model M to reproduce
those disturbances at best. Such model M with the
estimated boundary conditions can then be used to ‘‘go
forward’’ and predict the response of the rock mass
under study to future engineered disturbance (tunnels,
caverns, excavations, dams, etc.).

6. Conclusions

Bayesian procedures have been proposed to determine
the boundary conditions for a rock mass model. These
procedures make it possible to incorporate a priori
information and to update the boundary conditions as
soon as new information becomes available. Simple
synthetic examples have shown the relative importance
of a priori and updating information.

The procedures proposed in this paper are quite
general because mixed basic data (displacement compo-
nents, stresses, and strains) and mixed boundary

Fig. 26. Computed and measured horizontal stresses along the URL

shaft. (a) Stresses parallel to the dip direction of the faults at the URL

shaft ( j ¼ 0 refers to the a priori information); (b) Stresses parallel to

the strike direction of the faults at the URL shaft, see Fig. 23c ( j ¼ 0

refers to the a priori information).
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conditions (stresses, displacement components) may be
used without difficulty. Also, any rock mass model can
be used, thus engineers can continue utilizing their own
software used for analyzing the rock mass.

When the rock mass can be modeled as linearly
elastic, the boundary conditions are computed in a one-
step solution. When the rock mass has a non-linear
behavior, an iterative procedure must be followed.

The 2-D and 3-D applications to the URL site have
shown the fast convergence rate of the iterative
procedure, despite the high degree of non-linearity
involved in the models, and the complex geology of
the site.

The 2-D model of the URL was able to reproduce the
observed stress pattern in the dip direction of the faults,
but not the stress pattern in the strike direction of the
faults.

The 3-D model of the URL was able to reproduce the
observed stress pattern both in the dip and in the strike
direction of the faults.

Discontinuity geometry and slickenside direction and
magnitude alone are not always sufficient in order to
infer the present in situ state of stress in a rock mass and
the correct boundary conditions for the model under
consideration. Measurements of the current response of
the rock mass (in terms of displacement components,

Fig. 27. Contours of horizontal stresses: (a) parallel to the dip direction of the faults; (b) parallel to the strike direction of the faults. The spatial

attitude of the faults is determined at the intersection with the URL shaft, see Fig. 23c. Compressive stresses are negative.
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stresses, strains) to disturbances (e.g. excavation) must
be conducted in order to pin down the current boundary
conditions of a rock mass model.

Instrumental to a good fit between measured and
computed values is a thorough understanding of the site
geology. In particular, the faults’ geometry and struc-
tural origin played a decisive role in building the model.
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Appendix A

The classical statistical approach to assessing dis-
tribution parameters assumes that the parameters are
constant (but unknown), and random sample statistics
are used as estimators (i.e. as approximations to
these parameters). This approach entails point estimates

Fig. 28. Contours of horizontal displacement components: (a) parallel to the dip direction of the faults; (b) parallel to the strike direction of the

faults. The spatial attitude of the faults is determined at the intersection with the URL shaft, see Fig. 23c.
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and confidence intervals [32], and its major disadvantage
is that it provides no way for combining different
sources of information, for example judgmental and
observational.

In contrast, the Bayesian approach assumes that
the distribution parameters are random variables with
known probability distributions. Uncertainty associated
with the estimation of the parameters can be formally
combined (through Bayes’ theorem) with the inherent
variability of the basic random variable. Using
this approach, subjective judgments based on intuition,
experience or indirect information are incorpora-
ted systematically with observed data to obtain a
balanced estimation. The requirement that one
must model the population of each parameter by
defining the form of its density function with known
moments is the major disadvantage of this technique
[33]. This requirement makes Bayesian methods
parametric in nature.

The definitions given in this appendix are taken from
Lewis and Odell [33].

Definition 1. Let the domain of a real function g be an n-
dimensional space of real numbers. The expected value
of g as a function of the random variables X1,y,Xn is
defined as:

mG ¼E½gðX1;y; XnÞ� :¼
Z

x1

y

Z
xn

gðx1;y; xnÞ

fX1;y; Xn
ðx1;y; xnÞ dx1ydxn; ðA:1Þ

where fX1;y; Xn
ðx1;y;xnÞ is the joint probability density

function of the random variables X1;y;Xn:

Definition 2. The expected value (or mean vector) of an
n � 1 random vector X ¼ ðX1;y;XnÞ

T is:

E½X � :¼ ðE½X1�;y;E½Xn�Þ
T: ðA:2Þ

Definition 3. The covariance matrix of a random vector
X ¼ ðX1;y;XnÞ

T; whenever it exists, is the symmetric
positive definite matrix:

E½ðX � E½X �Þ ðX � E½X �ÞT�: ðA:3Þ

The ith diagonal element in Eq. (A.3) is the variance
of Xi; and the (i; j)th entry is the covariance of Xi and Xj :

Following Lewis and Odell [33], let y be a parameter
(a state vector unknown to the observer) that one wishes
to estimate using observations and data usually dis-
torted by random error e, sometimes called noise. To
illustrate, let Y be a random variable such that
Y ¼ yþ e, where y is an unknown parameter, and e is
a random variable with zero mean and known variance.
Suppose that a random sample y1;y; yn of size n is
going to be observed (i.e. in this experiment the

successive samples are independent and the underlying
population (or the distribution of Y) remains the same
from one sample value to another). Each sample value
can be thought of as being a random variable Yi; and
thus the sample mean is now a random variable itself
and is written as:

%Y :¼
1

n

Xn

i¼1

Yi: ðA:4Þ

The sample mean %Y is called an estimator of the
parameter y:

Definition 4. An estimator #Y; sometimes called a
statistic, is a function of the observation vector Y ¼
ðY1;y;YnÞ

T; which does not depend on the parameter
y; and estimates y:

Definition 5. An estimator #Y; is said to be unbiased if
and only if:

E½ #Y� ¼ y: ðA:5Þ

Let the probability density function of the observations
Y ¼ ðY1;y;YnÞ

T and of the parameter Y be:

f ðy; yÞ ¼ hY jYðyjyÞgYðyÞ ¼ hYjY ðyjyÞgY ðyÞ; ðA:6Þ

where hY jY and hYjY denote the conditional density
function of Y given Y; and Y given Y ; respectively,
while gY and gY are the marginal density functions of Y
and Y ; respectively.

Definition 6. A loss function l ð #Y; yÞ is a nonnegative
function such that:

(1) l ð #Y; yÞX0 for all admissible values of Y and #Y:
(2) For each admissible value of Y there is at least one

#Y such that l ð #Y; yÞ ¼ 0:

Definition 7. Let Y be distributed according to gYðyÞ;
and Y according to hY jYðyjyÞ; then the Bayes estimator
for Y; say #Y; is the statistic #Y ¼ #YðY1;y; YnÞ such that
the expected value of the loss function is minimized; that
is, minimize:

E½lð #Y; yÞ� ¼
Z
y

Z
y1

y

Z
yn

lð #Y; yÞhY jYðyjyÞ dy1ydyn

 !
� gYðyÞ dy: ðA:7Þ

From Eq. (A.6), one obtains Bayes theorem by isolating
hY jY:

hY jYðyjyÞ ¼
hYjY ðyjyÞgY ðyÞ

gYðyÞ
ðA:8Þ

Upon substitution of Eq. (A.8) into Eq (A.7),
the expected value of the loss function takes on
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the expression:

E½lð #Y; yÞ� ¼
Z

y1

y

Z
yn

Z
y

l ð #Y; yÞ hYjY ðyjyÞ dy
 !

� gY ðyÞ dy1ydyn: ðA:9Þ

Now, the problem of minimizing E ½lð #Y; yÞ� when Y ¼
y ¼ ðy1;y; ynÞ is equivalent to minimizing the following
quantity:

Kð #Y; yÞ :¼
Z
y

lð #Y; yÞhYjY ðyjyÞ dy: ðA:10Þ

The function Kð #Y; yÞ is sometimes called the a posteriori
risk for estimating Y:

Let X be a m � 1 random vector of parameters to be
estimated. It is assumed that some a priori information
on X be available, in the form of its mean and
covariance matrix:

mX :¼ E½X �: ðA:11Þ

VXX :¼ E½ðX � mX Þ ðX � mX Þ
T�: ðA:12Þ

This information on X must be updated by means of
some observations on an n � 1 random vector Y ; which
is linearly related to X as follows:

Y ¼ HX þ U; ðA:13Þ

where:

* H is an n � m known mapping matrix of rank mpn;
whose components are hki:

* U is a 1� 1 random vector, called noise or error, due
to imperfection of the observations such that:

E½U� ¼ 0; ðA:14aÞ

E½UUT� ¼ V; ðA:14bÞ

E½UXT� ¼ 0: ðA:14cÞ

Let us consider the class of linear estimators defined
by the formula:

#X ¼ a þ AY ; ðA:15Þ

where a is a vector of real numbers, and A is a real
matrix, selected so that:

E½ #X � X � ¼ 0 ðA:16aÞ

and

Q ¼ E½ð #X � XÞ ð #X � XÞT� ðA:16bÞ

is minimized.
Condition (A.16a) requires that the estimator is

unbiased (see Definition 5). The minimization of Q in
Eq. (A.16b) corresponds to the minimization of the
matrix-valued loss function:

Lð #X;XÞ ¼ E½ð #X � XÞ ð #X � XÞT� ðA:17Þ

according to Definitions 6 and 7, where minimization is
in the sense specified by Dwyer and Macphail [34].

Gauss–Markov Theorem . Let a þ AY be an estimator of
X in the linear model (A.13). Then the optimum values of
a and A for which Q in Eq. (A.16b) is minimum are:

a ¼ mX � AnHmX : ðA:18Þ

An ¼ VXXHTðHVXXHT þ VÞ�1: ðA:19Þ

The covariance matrix of the estimator is:

V #X ¼ AnHVXX : ðA:20Þ

Upon substitution of Eq. (A.19) into Eq. (A.18), the
estimator may be written as:

#X ¼ mX þ AnðY � HmX Þ: ðA:21Þ
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