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Elastostatic fields in an anisotropic substrate due to a buried quantum dot
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We present an efficient and accurate continuum-mechanics approach for the numerical prediction of
displacement, stress, strain, and strain energy density fields in an anisotropic sybsickked as

a half-spackdue to a buried quantum d@®D). Our approach is based on Green'’s function solution

in anisotropic and linearly elastic half-space combined with the Betti’s reciprocal theorem.
Numerical examples clearly show that the crystalline anisotropy of the 111-V semiconductor group
has great influence on the elastic fields, as compared to the isotropic solution. In particular, it is
found that the hydrostatic strain and strain energy density on the surface of anisotropic half-space
made of different crystalline materials due to a cubic QD can be substantially different, and
therefore, the isotropy approximation neglecting their differences should not be used in general.
Furthermore, the hydrostatic strains on the surface of an anisotropic half-space due to a finite-size
(cubig QD and an equal-intensity point QD at relatively large defptiout twice the side length of

the cubic QD can still be quite different, in contrast to the corresponding isotropic result. These
observations indicate that in modeling and analyzing the mechanical and electronic behaviors of QD
semiconductor structures, the effect of crystalline anisotropy should be considered in general.
© 2001 American Institute of Physic§DOI: 10.1063/1.1415542

I. INTRODUCTION solutions have been long restricted to the isotropic or trans-
versely isotropic half space-!° Therefore to solve the re-
Recent experimental studies on self-assembled quantumated problems only the computationally expensive method,
dot (QD) semiconductor structures have shown that sucleither the Fourier transform method or the domain-
structures possess certain special electronic and optical fegiscretization methodFEM or FDM) was used. For ex-
tures, rendering possible fascinating novel devicksquan-  ample, assuming a buried point misfit strain in an anisotropic
titatively explain and numerically model the QD structures,half-space, Holyet al?° using the Fourier transform method
various numerical methods have been proposed, includingolved the strain energy density in various semiconductors
the finite element methodFEM) and finite difference and found that the superlattice orientation and direction are
method (FDM).>~* However, the domain-based FEM and closely correlated with the material anisotropy. On the other
FDM are computationally expensive, making them difficult hand, assuming an isotropic half space and using the FEM
to perform parametric studies in order to understand thenethod, Romanoet al® studied the effect of the finite-size
experimental phenomena or to reach an economic designD on the elastic field and observed that the geometrical
strategy. shape and size of the QDs can have a great influence on the
In recent years, various analytical methods, in particulahydrostatic pressure and volumetric strain fields. We further
those related to the Green’s function solutions have beemention that Grundmanet al? simulated numerically a py-
proposed and applied to the QD modelitfyBecause of ramidal InAs/GaAs QD on a thin wetting layer using the
their robust features in terms of accuracy and efficiencyrpm method and found various interesting results related to
these analytical methods, particularly the Green's functiorthe strain distribution, optical phonons, and electronic struc-
method, have been found to be very useful in the studies af;re.
QD structures™*° For QDs in a three-dimension¢D) iso- Very recently, the point-force Green’s functions in a gen-
tropic infinite space, Pearson and Fliderived an exact-  erally anisotropic elastic half-space were derived by Pan and
closed form solution for the QD-induced strain when theyyarf! based on the extended Stroh formalism, which is both
QDs are in the form of a pyramid. When the infinite domainmathematically elegant and numerically poweffulThe
is anisotropic, Andreeet al°® and Faux and Pearsbderived  Green's functions are expressed as a sum of an infinite-space
the induced strain using, respectively, the Fourier transforngsyeen’s function and a complementary part. While the
method and series expansion method, with the latter beingymer can be evaluated in an explicit analytical fdrhthe
advanced from previous solutiohs™* As is well known, |atter is expressed in terms of a regular line integral over
however, a semiconductor structure is better modeled with & 7] that resembles the Mindlin’s complementary solutidn.
anisotropic half-space or an anisotropic multilayered modelrhe  reduction of the integral dimension by one in the
Unfortunately, the existence of a free surface combined Witl?:omplementary part significantly reduces the effort in com-
material anisotropy substantially complicates the Gree”’%uting the physical half-space Green’s functions.
function problem, and thus the analytical Green’s function |, this article these recently derived 3D Green’s func-

tions in anisotropic half-spaces are applied to the study of the
dElectronic mail: ernianpan@yahoo.com elastostatic fields in an anisotropic half-space due to an em-
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bedded QD. Using the Betti’s reciprocal theorem, the QD-TABLE I. Elastic constants of some Ill-V semiconductors {1Pa).

induced elastic fields are expressed in terms of a simple in-

tegral over the surface of the QD with the point-force

Green's functions as the kernels. Furthermore, if the QD is a IGZAS 3-;;3 gf;‘ (?fg *8-2‘2‘

point source, then the QD—md_uced elastic f|e!ds can.be ana- gagb 0.68 0.40 0.43 038

lytically expressed by the point-force Green’s functions in | o 0.66 0.36 0.30 030

the anisotropic half-space. These novel features make them |sotropy 1.72 0.54 0.59 0.00

easy to perform accurate and efficient parametric studies in

analyzing and designing the semiconductor structures. Nu-

merical examples are carried out for a buried cubic QD in

anisotropic half-spaces made of the Ill-V semiconductorstheir derivatives with respect to the source coordinatare

and the following important features are observdd:Crys-  summarized in the Appendix for the sake of convenient ref-

talline anisotropy of the Ill-V semiconductofwith degrees erence.

of anisotropy varying from-0.3 to —0.5) has a great influ- Since the misfit straire}; is applied only in the finite

ence on the QD-induced hydrostatic strain and strain energyubdomain() of D and the surface of the half-space is

density. Since these quantities are directly related to the ele¢raction-free, it is evident that the integration on the bound-

tronic properties of semiconductor QD structures, the effecary 4D in Eq. (1) is zero. Therefore Eq1) is reduced t&f

of anisotropy should be considered when analyzing and de-

signing these structures. In particular, the simplified isotropic  y,(y)= J U:((XQY)[_ Cijim €m(X) j1dV(X). 2

structure should not be used if the structure shows clear an- )

isotropy. (2) In anisotropic semiconductors the effect of the Shifting the differentiation in Eq(2) by applying the

QD shape can still be significant even if the QD is buried atg,ss theorem we obtain

a relatively deep location. This is in contrast to the well-

known observation on the corresponding isotropic half-space _ K (yery) %

that when a 3D QD with a characteristic lengthocated at uk(y)—f CijmUi () €im(X)dV(X). @

B o o]t E0.2) h coman e as b e 10
due to the fact that the misfit strain is nonzero({inonly.

close to each othé?. Therefore one needs to be extra cau- o .
tious when approximating a finite-size QD with an equal_Furthermore, the domain-integral in E@) can be reduced
to the surface of) if the misfit strain is uniform inQ2. That

intensity point QD. i

C:11 C12 C22 Can

II. Theor
Y o _ . _ _ . Uk(y):Cinmfrmf uf(x;y)n;(x)dS(x), 4
The misfit-strain problem in an anisotropic and linearly a0

elastic half-space can be described in terms of an integra{,vherenj(x) are the outward normal components on the sur-
equation formulation with integral kernels being the point-face of ().
force Green'’s functions in the same half-space. This integral |n order to find the total strain field we take the deriva-

formulation is a consequence of the Betti's reciprocal theotives of Eq.(4) with respect to the observation pointi.e.,

rem. Assume two states associated with the half space: Onge source point for the point-force Green'’s functipmeghich
for the misfit-strain problem due to a misfit stradj in a yields

finite subdomain() of the half-spacé®, and another for the
Green'’s solution due to a point force. Then the displacement . — 1% f Co TUX. (x:
u(y) due to the misfit straire; can be expressed by the p(Y) = 2€im im{ Uiy, (:Y)

following integral equation as
I eI +ufy (%y)In;(x)dS(x). (5)

uk(y)= LD[UF(Xiy)Uij(X)nj(X) The corresponding stress field is thus obtained by

— o (xy)N; () u;(x)1dS(X)

+f UFOGY)L = Cijim €, 00 1dV(X), ()
D

wheredD is the boundary oD (i.e., the surface of the half-
spacg andu;(x;y) andof;(x;y) are the Green’ith displace-
ment and j th stress components atdue to a point force in
the kth direction applied ay. Recently, Pan and Yu&hde-
rived the half-space Green’s functions for the traction-free
surface condition and P&Hor the general surface condition, gy

both using the extended Stroh formalfrand the Mindlin's FIG. 1. A buried cubic QD of sizaxax a with its center at a depth df
superposition methotf. These Green’s functions, along with below the traction-free surface of a half-space.
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FIG. 2. () Variation of the normalized hydrostatic straé,/e* on the
surface of the half space at=(0,0,0) with the normalized QD deptira,
for isotropic and anisotropic crystalg) Variation of the normalized strain
energy density 0G;; €€ /(Coe*) on the surface of the half spacesat
=(0,0,0) with the normalized QD deptifa, for isotropic and anisotropic
crystals Co=10"Pa).

FIG. 3. (a) Comparison of the variation of the normalized hydrostatic strain
e/ € on the surface of the half-spaceat (0,0,0) with the normalized
QD depthh/a due to a cubic QD and a point QD, for both isotropic and
anisotropic crystalstb) Same as (@) but for the zoom-in result.

induced displacement and strain fields by the point misfit

— . _ *
7ij(¥) = Cijipl €p(¥) ~ X €kpl, ©®) strain are analytically found to be, respectively,

where y equals 1 if the observation pointis within the

_ Kk .
misfit-strain domair(2, and 0 otherwise. U(Y) = aim(X0:Y) € 8
With the strain and stress fields being given by E&s. and
and(6), respectively, the corresponding strain energy density
w at the pointy can be evaluated using the following expres- e, (y)= ek ok, y (Xo:y)+of, y (X0:¥)]. 9
. Yp :
sion
It is observed from Eq(8) that the displacement field in
w(y)= oy () ey ). ™ % P

the kth direction aty due to a point misfit strain with com-
Finally, for a point misfit strain applied at poirg, i.e.,  ponents(Im) at x, is equivalent to the stress field with com-

€ 0(X—Xo), the induced displacement and strain fields carponents(Im) atx, due to a point force in thith direction at

be expressed directly by the point-force Green’s functiong. We remark that while a similar observation can be made

with neither volumetric nor surface integration. That is, thefor Eq. (9), this equivalence, between a point force and a
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FIG. 4. (8 Contours of the normalized hydrostatic
strain €,/ €* on the surface of the isotropic half-space
0.54 L due to a cubic QD applied at normalized dejbtra
=1 (xandy are normalized by the cubic side length
(b) Contours of the normalized hydrostatic strain
s e/ €* on the surface of the anisotropic crystal GaAs
S, 0.04 3 (001) due to a cubic QD applied at normalized depth
> h/a=1 (x andy are normalized by the cubic side length
a). (c) Contours of the normalized hydrostatic strain
e/ €* on the surface of the anisotropic crystal GaAs
0.57 r (111 due to a cubic QD applied at normalized depth
h/a=1 (x and y are normalized by the cubic side
lengtha).
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point misfit strain, resembles the more general equivalencare those of GaAs, but,; is obtained using the isotropic
between a point force and a point dislocation solufion. relation. The paramete€,,=C;;—C1,—2C,, is used to
We further point out that the simple and analytical solu-characterize the degree of anisotropy of the crystalline mate-
tions developed in this section are based on the assumptiafals. We remark that, in the following calculation, the elastic
that the elastic constants of the QD and matrix are the sameonstants are all normalized b9,=10""Pa. Let us now
Otherwise(i.e., for the case where the elastic constants of thgssume that a cubic QD with a side lengtlis located at a
QD and matrix are differeit one may need to use other gepthh below the traction-free surfad€ig. 1), and that the
advanced methods, such as the equivalent inclusion methqfisfit strain due to the mismatch lattice constants of the ma-
gxplalned In Qetall In the27text of Mutd or the boundary trix (half-space and the QD is hydrostatic within the QD
integral equation method: material, i.e.,€] = €* &; . With the exception of the GaAs,
all other crystals have their crystallographic axes along the
Ill. RESULTS half-space coordinatex{,X,,X3)=(X,Y,2). In other words,
Listed in Table | are the elastic constants for some lll-Vthex, y, andz axes are, respectively, along tf00], [010],
semiconductors used in this study for the substraténd[001] directions. For the GaAs, another crystal orienta-
(half-space®?® The last row in Table | is for an isotropic tion with (111) being the surface of the half-space, denoted
material reduced from GaAs by assuming that andC,, as GaAs(11]) to distinguish GaAg001) when (00]) is the
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surface of the half-space, is also studied. The other two axe '3 ' ' '
in the GaAs(11]) crystal are such that theandy axes are
along the[11-2] and[—110] directions, respectively.

Shown in Figs. 2a) and Zb) are the variations of the 10
normalized hydrostatic straim,/e* and the normalized
strain energy density 0%, €;j €, /(Coe*) on the surface
versus the normalized depkita, due to a cubic QD of size 0.5-
aXaxa. We remark that wheh/a=0.5, the top surface of
the cubic QD is then coincident with the surface of the half- _
space. It is observed clearly that crystal anisotropy has & o9
great influence on both the hydrostatic strain and the strair
energy density. For example, the largest and smaltest
malized strain energy densities at=(0,0,0), reached, re- 0.5
spectively, in the isotropic material and InSb, are different by
as large as three times in their magnitufieig. 2(b)]. As for
the hydrostatic strain, its largest and smallest valuex at  -19
=(0,0,0) at any given depth are reached by G&Kd) and
InSb (InAs), respectively, with the isotropic material and
GaSb[GaAs (001)] taking values between theffig. 2@)]. 185 o o5 53 05 0 T5
While it is interesting that GaSb and Ga#301), and InSb  (a) x[100]
and InAs predict, respectively, nearly the same hydrostatic 1. . . . .
strain, the relative difference of the largest value by GaAs
(112) and the smallest value by InSb, reached on the surface
(h/a=0.5), is about 40%. We further emphasize that the 14
effect of crystalline anisotropy does not vanish when the
depthh increases. Actually, adt/a=2.0, we found that the
difference of the largest and smallest hydrostatic strains is o4
still as large as four timgd-ig. 2(a)]. These great differences
in the hydrostatic strain due to crystalline anisotropy will _
greatly influence the electronic energy gap between the vag 0.9
lence and conduction bands since the latter is directly pro->
portional to the forme?>*°

Figure 3a) shows the comparison of the variation of the o4
normalized hydrostatic straie,/e* on the surface versus
normalized deptth/a, due to a cubic QD of sizaXaXxa
with misfit straine* §;;, and a point QD of equal intensity .4
ade* 6ij 0(X—Xp), wheres(x—Xo) is the Dirac delta function
and Xq is the center of the cubic QD. The corresponding
zoom-in result is plotted in Fig.(B). By selecting the three g ; )
materials [the isotropic material, GaA$001), and GaAs () ' ' x(112]
(111)], the purpose of these two figures is to show that when
replacing a finite-size QD with an equal-intensity point QD, FIG. 5. (a) Contours _of the _normalized vertical displacemqgt(ae*) on

. L . . the surface of the anisotropic crystal Ga®@91) due to a cubic QD applied
S'_Oec'a| care must be taken when the material I§ anlsotroplgt normalized depth/a=1 (x andy are normalized by the cubic side length
First, as we have observed before, the magnitudes of thg. () contours of the normalized vertical displacement(ae*) on the
hydrostatic strain induced by a QD in an isotropic and arsurface of the anisotropic crystal GaA&ll) due to a cubic QD applied
anisotropic substrate can be greatly different. This featur@t normalized deptth/a=1 (x andy are normalized by the cubic side
can be clearly seen again from Figéa@and 3b), where, for  '€M9tha:
both cubic and point QD cases, the largest, intermediate, and
smallest values are reached, respectively, in the GaAs,
isotropic, and GaA$001) half-spaces. Second, it is observed due to the cubic and point QDs can still be as large as 20%,
that with increasing depth/a, the difference of the hydro- large enough to affect the electronic band energies.
static strains due to the cubic QD and point QD in the iso-  Shown in Figs. ), 4(b), and 4c) are, respectively, the
tropic half-space becomes smaller and nearly vanishes whesurface contours of the hydrostatic strain in the isotropic,
h/a=2.0, a result consistent with the observation made byGaAs(001), and GaAg111) half-spaces due to the cubic QD
Romanoveet al'® However, when the half-space material is of sizeax ax a centered at the deptiva=1.0. Besides the
anisotropic, a point QD solution fails to approximate thedifference of their magnitudes, as we have observed before,
finite-size QD solution at the same depth. For example, Figtheir contour shapes are also different for different crystals.
3(b) shows that if the half-space is made of Gal41),  While the contour shapes in the isotropic crystal are nearly
then, wherh/a=2.0, the difference of the hydrostatic strains perfect circles, those in the anisotropic crystal are not, in

0.08
I
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et al?° numerically predicted similar contour shapes for the
strain energy density distributions, and correlated these corPPENDIX
tour shapes to the growth direction and orientation of the In this Appendix we briefly review the Green’s functions

superlattice. in an anisotropic and linearly elastic half-space under a
traction-free surface condition, with a detailed derivation in
IV. CONCLUSIONS Pan and Yuaft and Parf* The half-space Green’s function is

: . . , .. expressed as a sum of the full-space Green'’s function and a

In this article a recently derived 3D Green’s function in . T .

an anisotropic half-space is applied to the study of elasti complementary part, which resemble the Mindlin’s solution
Sor the corresponding isotropic half-spaGehile the full-

fields due to a QD embedded in a substrate. Using the Betti’s . ) - . -
. . e Space Green’s function has been derived in an explicit ana-
reciprocal theorem, the QD-induced elastic fields are ex;

pressed in terms of a simple integral over the surface of thgltical form,” Fhe _complementary partis egpressed in terms
QD with the point-force Green’s functions as the kernels.Of a regular line integral that can be easily evaluated by a

Furthermore, if the QD is a point source, then the QD_standard quadrature scheme.

: o . We first define the so-called extended Stroh eigenvalues
induced elastic field can be analytically expressed by the ) . .

: , R ) : and eigenmatrice¥. The extended Stroh eigenvalpe and
point-force Green’s functions in the anisotropic half space

These features make the present continuum-mechanics a}@-e eigenmatricé\=[a, ,3,,as] are the solutions of the fol-

: ; ;21,22
proach easy to perform accurate and efficient parametric wing eigenrelatioft
studies in analyzing and designing the semiconductor struc- [Q+p;(R+ RT)+ p2T]aj=0, (A1)
tures. Numerical examples are carried out for a buried cubic
QD in an anisotropic half space made of the I1lI-V semicon-where the superscript denotes matrix transpose, and
ductors with the following important features being ob-
served:(1) Crystal anisotropy has a great influence on the
QD-induced hydrostatic strain and strain energy density.
Since both the strain components and strain energy densityith
are directly related to the electronic properties of the semi-
conductor QD structures, our studies have thus demonstrated (N1,Nz)=(cosé,siné) (A3)

that for a reliable numerical analysis on the semiconductog,q and g taking the values of 1 and 2. We remark that
device, the simplified isotropic structure should not be useq e to the positive requirement on the strain energy density,

if the material clearly exhibits anisotropy2) Even if the e eigenvalues of EqAL) are either complex or purely
buried QD is located at a relatively deep location, the eﬁecfmaginary?z

of the QD shape may still be significant. This is in contrastto  \we then define the other two matric@s=[b; b, bs]

the well-known observation for the corresponding isotropicg,q C=[c,,c,,c5] related to the Stroh eigenmatrix as
half-space that when a 3D QD with a characteristic lerggth

is located at a depth=2a or larger, the induced surface

strain due to a finite size and an equal-intensity point QD are
very close to each other. Therefore, in the anisotropic struc-
ture, extra caution should be taken when approximating a
finite size QD by an equal-intensity point QD. where the matribD; is defined by

Qik=CiakgNaNg, Rk=CimaNa, Tik=Cizs (A2)

1
bj=(R"+p;T)a;=— E(Q+ PiR)ay,
j

¢=Djg, (A

C111Ne T PjC1113  C112:NaTPjC1r123  Cr1aNatPjCaiss
D;=| C12:aNatPjC1213  C122:NatPjC1223 Cr23:Nat PjCr233]. (A5)
C21Na T PjCo213 CoomaNat PjCo23 C223,NatPjCoo3

Assume thap;, &, andb; (j=1,2,...,6) are the eigenvalues and the associated eigenvectors, we then can order them as
Imp;>0, Pj+3=P;, &+3=8, bj.3=bj.ci3=¢, (j=1,23), (AB)

A=[a1,8,8], B=[by,b,,b3], C=[c;,c;,C5],
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where Im stands for the imaginary part and the overbar de- (gz)=diad p;, P2, Psl-
notes the complex conjugate. It is further assumed phas
distinct and the eigenvectoes andb; satisfy the following
normalization relation

Similarly, the derivatives of the Green’s stress tensors
with respect to the source poing4(,y»,y3) are

aT(xy) aT (xy) 1 (7 T
ay; oy _ﬁfo BGs(g))A do,

with &;; being the Kronecker delta.
Let us now denote by”(x;y) the full-space Green’s a(xyy) 9S*(xyy) 1 [e— T

function tensd?® with its row and column indices corre- ay,; - ay,; 22 ), CGs(g;)A'd9,

sponding to the displacement components and point-force

directions, respectively, the half-space Green’s displacementhere

tensor, with its components bearing the same physical mean-

ing as the full-space one, can then be written in a concisec.;,a)ij

form agl?*

(A15)

(B™!B);;

B {—PiXa+p;ys—[(X1—Y1)COSO+ (X~ y,)sin 6]}%
(Al6)

U(x;y)=U"(xy) + LZJWKGlATde, (A8) Equations(A8), (A1l), (A13), and (Al15) are the com-
27 Jo plete Green’s functions including displacement, stress, and

where (thereafter, the indices and j take the range from their derivatives with respect to the source coordinates in a
1t093 traction-free anisotropic and linearly elastic half-space,

_ namely, the generalized Mindlin solution in an anisotropic
(B™'B)j; and elastic half-space.

—PiXzt Pjys—[(X1—Yy1)cosO+ (X,—Yy,)sinb] "

A9)

Similarly, let T*(x;y) andS*(x;y) be the full-space Green’s 1p, Bimberg, M. Grundmann, and N. N. Ledents@uantum Dot Hetero-
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