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Elastostatic fields in an anisotropic substrate due to a buried quantum dot
E. Pana) and B. Yang
Structures Technology Inc., 543 Keisler Drive, Suite 204, Cary, North Carolina 27511

~Received 23 July 2001; accepted for publication 7 September 2001!

We present an efficient and accurate continuum-mechanics approach for the numerical prediction of
displacement, stress, strain, and strain energy density fields in an anisotropic substrate~modeled as
a half-space! due to a buried quantum dot~QD!. Our approach is based on Green’s function solution
in anisotropic and linearly elastic half-space combined with the Betti’s reciprocal theorem.
Numerical examples clearly show that the crystalline anisotropy of the III–V semiconductor group
has great influence on the elastic fields, as compared to the isotropic solution. In particular, it is
found that the hydrostatic strain and strain energy density on the surface of anisotropic half-space
made of different crystalline materials due to a cubic QD can be substantially different, and
therefore, the isotropy approximation neglecting their differences should not be used in general.
Furthermore, the hydrostatic strains on the surface of an anisotropic half-space due to a finite-size
~cubic! QD and an equal-intensity point QD at relatively large depth~about twice the side length of
the cubic QD! can still be quite different, in contrast to the corresponding isotropic result. These
observations indicate that in modeling and analyzing the mechanical and electronic behaviors of QD
semiconductor structures, the effect of crystalline anisotropy should be considered in general.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1415542#
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I. INTRODUCTION

Recent experimental studies on self-assembled quan
dot ~QD! semiconductor structures have shown that s
structures possess certain special electronic and optical
tures, rendering possible fascinating novel devices.1 To quan-
titatively explain and numerically model the QD structure
various numerical methods have been proposed, includ
the finite element method~FEM! and finite difference
method ~FDM!.2–4 However, the domain-based FEM an
FDM are computationally expensive, making them diffic
to perform parametric studies in order to understand
experimental phenomena or to reach an economic de
strategy.

In recent years, various analytical methods, in particu
those related to the Green’s function solutions have b
proposed and applied to the QD modeling.5,6 Because of
their robust features in terms of accuracy and efficien
these analytical methods, particularly the Green’s funct
method, have been found to be very useful in the studie
QD structures.5–10 For QDs in a three-dimensional~3D! iso-
tropic infinite space, Pearson and Faux10 derived an exact-
closed form solution for the QD-induced strain when t
QDs are in the form of a pyramid. When the infinite doma
is anisotropic, Andreevet al.9 and Faux and Pearson6 derived
the induced strain using, respectively, the Fourier transfo
method and series expansion method, with the latter be
advanced from previous solutions.11–14 As is well known,
however, a semiconductor structure is better modeled with
anisotropic half-space or an anisotropic multilayered mod
Unfortunately, the existence of a free surface combined w
material anisotropy substantially complicates the Gree
function problem, and thus the analytical Green’s funct

a!Electronic mail: ernian–pan@yahoo.com
6190021-8979/2001/90(12)/6190/7/$18.00
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solutions have been long restricted to the isotropic or tra
versely isotropic half space.15–19 Therefore to solve the re
lated problems only the computationally expensive meth
either the Fourier transform method or the doma
discretization method~FEM or FDM! was used. For ex-
ample, assuming a buried point misfit strain in an anisotro
half-space, Holyet al.20 using the Fourier transform metho
solved the strain energy density in various semiconduc
and found that the superlattice orientation and direction
closely correlated with the material anisotropy. On the ot
hand, assuming an isotropic half space and using the F
method, Romanovet al.19 studied the effect of the finite-siz
QD on the elastic field and observed that the geometr
shape and size of the QDs can have a great influence on
hydrostatic pressure and volumetric strain fields. We furt
mention that Grundmannet al.2 simulated numerically a py-
ramidal InAs/GaAs QD on a thin wetting layer using th
FDM method and found various interesting results related
the strain distribution, optical phonons, and electronic str
ture.

Very recently, the point-force Green’s functions in a ge
erally anisotropic elastic half-space were derived by Pan
Yuan21 based on the extended Stroh formalism, which is b
mathematically elegant and numerically powerful.22 The
Green’s functions are expressed as a sum of an infinite-s
Green’s function and a complementary part. While t
former can be evaluated in an explicit analytical form,23 the
latter is expressed in terms of a regular line integral o
@0,p# that resembles the Mindlin’s complementary solution15

The reduction of the integral dimension by one in t
complementary part significantly reduces the effort in co
puting the physical half-space Green’s functions.

In this article these recently derived 3D Green’s fun
tions in anisotropic half-spaces are applied to the study of
elastostatic fields in an anisotropic half-space due to an
0 © 2001 American Institute of Physics
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6191J. Appl. Phys., Vol. 90, No. 12, 15 December 2001 E. Pan and B. Yang
bedded QD. Using the Betti’s reciprocal theorem, the Q
induced elastic fields are expressed in terms of a simple
tegral over the surface of the QD with the point-for
Green’s functions as the kernels. Furthermore, if the QD
point source, then the QD-induced elastic fields can be a
lytically expressed by the point-force Green’s functions
the anisotropic half-space. These novel features make t
easy to perform accurate and efficient parametric studie
analyzing and designing the semiconductor structures.
merical examples are carried out for a buried cubic QD
anisotropic half-spaces made of the III–V semiconducto
and the following important features are observed:~1! Crys-
talline anisotropy of the III–V semiconductors~with degrees
of anisotropy varying from20.3 to 20.5! has a great influ-
ence on the QD-induced hydrostatic strain and strain ene
density. Since these quantities are directly related to the e
tronic properties of semiconductor QD structures, the eff
of anisotropy should be considered when analyzing and
signing these structures. In particular, the simplified isotro
structure should not be used if the structure shows clear
isotropy. ~2! In anisotropic semiconductors the effect of t
QD shape can still be significant even if the QD is buried
a relatively deep location. This is in contrast to the we
known observation on the corresponding isotropic half-sp
that when a 3D QD with a characteristic lengtha located at
the depth 2a or larger, the induced surface strain due to t
finite-size and an equal-intensity point QDs are then v
close to each other.19 Therefore one needs to be extra ca
tious when approximating a finite-size QD with an equ
intensity point QD.

II. Theory

The misfit-strain problem in an anisotropic and linea
elastic half-space can be described in terms of an integ
equation formulation with integral kernels being the poi
force Green’s functions in the same half-space. This inte
formulation is a consequence of the Betti’s reciprocal th
rem. Assume two states associated with the half space:
for the misfit-strain problem due to a misfit straine i j* in a
finite subdomainV of the half-spaceD, and another for the
Green’s solution due to a point force. Then the displacem
uk(y) due to the misfit straine i j* can be expressed by th
following integral equation as

uk~y!5E
]D

@ui
k~x;y!s i j ~x!nj~x!

2s i j
k ~x;y!nj~x!ui~x!#dS~x!

1E
D

ui
k~x;y!@2Ci jlme lm, j* ~x!#dV~x!, ~1!

where]D is the boundary ofD ~i.e., the surface of the half
space! andui

k(x;y) ands i j
k (x;y) are the Green’si th displace-

ment andi j th stress components atx due to a point force in
the kth direction applied aty. Recently, Pan and Yuan21 de-
rived the half-space Green’s functions for the traction-f
surface condition and Pan24 for the general surface condition
both using the extended Stroh formalism22 and the Mindlin’s
superposition method.15 These Green’s functions, along wit
Downloaded 30 Nov 2001 to 152.1.79.110. Redistribution subject to AI
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their derivatives with respect to the source coordinatey, are
summarized in the Appendix for the sake of convenient r
erence.

Since the misfit straine i j* is applied only in the finite
subdomainV of D and the surface of the half-space
traction-free, it is evident that the integration on the boun
ary ]D in Eq. ~1! is zero. Therefore Eq.~1! is reduced to16

uk~y!5E
D

ui
k~x;y!@2Ci jlmem* ~x! , j #dV~x!. ~2!

Shifting the differentiation in Eq.~2! by applying the
Gauss theorem we obtain

uk~y!5E
V

Ci jlmui ,xj

k ~x;y!e lm* ~x!dV~x!. ~3!

In Eq. ~3! the domain-integral has been reduced fromD to V
due to the fact that the misfit strain is nonzero inV only.
Furthermore, the domain-integral in Eq.~3! can be reduced
to the surface ofV if the misfit strain is uniform inV. That
is

uk~y!5Ci jlme lm* E
]V

ui
k~x;y!nj~x!dS~x!, ~4!

wherenj (x) are the outward normal components on the s
face ofV.

In order to find the total strain field we take the deriv
tives of Eq.~4! with respect to the observation pointy ~i.e.,
the source point for the point-force Green’s functions!, which
yields

ekp~y!5 1
2e lm* E

]V
Ci jlm@ui ,yp

k ~x;y!

1ui ,yk

p ~x;y!#nj~x!dS~x!. ~5!

The corresponding stress field is thus obtained by

FIG. 1. A buried cubic QD of sizea3a3a with its center at a depth ofh
below the traction-free surface of a half-space.

TABLE I. Elastic constants of some III–V semiconductors (1011 Pa).

C11 C12 C22 Can

GaAs 1.18 0.54 0.59 20.54
InAs 0.83 0.45 0.40 20.42
GaSb 0.88 0.40 0.43 20.38
InSb 0.66 0.36 0.30 20.30
Isotropy 1.72 0.54 0.59 0.00
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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s i j ~y!5Ci jkp@ekp~y!2xekp* #, ~6!

where x equals 1 if the observation pointy is within the
misfit-strain domainV, and 0 otherwise.

With the strain and stress fields being given by Eqs.~5!
and~6!, respectively, the corresponding strain energy den
w at the pointy can be evaluated using the following expre
sion

w~y!5 1
2s i j ~y!e i j ~y!. ~7!

Finally, for a point misfit strain applied at pointx0 , i.e.,
e lm* d(x2x0), the induced displacement and strain fields c
be expressed directly by the point-force Green’s functio
with neither volumetric nor surface integration. That is, t

FIG. 2. ~a! Variation of the normalized hydrostatic strainekk /e* on the
surface of the half space atx5(0,0,0) with the normalized QD depthh/a,
for isotropic and anisotropic crystals.~b! Variation of the normalized strain
energy density 0.5Ci jkl e i j ekl /(C0e* ) on the surface of the half space atx
5(0,0,0) with the normalized QD depthh/a, for isotropic and anisotropic
crystals (C051011 Pa).
Downloaded 30 Nov 2001 to 152.1.79.110. Redistribution subject to AI
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induced displacement and strain fields by the point mi
strain are analytically found to be, respectively,

uk~y!5s lm
k ~x0 ;y!e lm* ~8!

and

ekp~y!5 1
2e lm* @s lm,yp

k ~x0 ;y!1s lm,yk

p ~x0 ;y!#. ~9!

It is observed from Eq.~8! that the displacement field in
the kth direction aty due to a point misfit strain with com
ponents~lm! at x0 is equivalent to the stress field with com
ponents~lm! at x0 due to a point force in thekth direction at
y. We remark that while a similar observation can be ma
for Eq. ~9!, this equivalence, between a point force and

FIG. 3. ~a! Comparison of the variation of the normalized hydrostatic str
ekk /e* on the surface of the half-space atx5(0,0,0) with the normalized
QD depthh/a due to a cubic QD and a point QD, for both isotropic an
anisotropic crystals.~b! Same as in~a! but for the zoom-in result.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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FIG. 4. ~a! Contours of the normalized hydrostati
strainekk /e* on the surface of the isotropic half-spac
due to a cubic QD applied at normalized depthh/a
51 ~x andy are normalized by the cubic side lengtha!.
~b! Contours of the normalized hydrostatic stra
ekk /e* on the surface of the anisotropic crystal GaA
~001! due to a cubic QD applied at normalized dep
h/a51 ~x andy are normalized by the cubic side lengt
a!. ~c! Contours of the normalized hydrostatic stra
ekk /e* on the surface of the anisotropic crystal GaA
~111! due to a cubic QD applied at normalized dep
h/a51 ~x and y are normalized by the cubic side
lengtha!.
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point misfit strain, resembles the more general equivale
between a point force and a point dislocation solution.25

We further point out that the simple and analytical so
tions developed in this section are based on the assump
that the elastic constants of the QD and matrix are the sa
Otherwise~i.e., for the case where the elastic constants of
QD and matrix are different!, one may need to use othe
advanced methods, such as the equivalent inclusion me
explained in detail in the text of Mura16 or the boundary
integral equation method.26,27

III. RESULTS

Listed in Table I are the elastic constants for some III–
semiconductors used in this study for the substr
~half-space!.9,28 The last row in Table I is for an isotropi
material reduced from GaAs by assuming thatC12 and C44
Downloaded 30 Nov 2001 to 152.1.79.110. Redistribution subject to AI
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are those of GaAs, butC11 is obtained using the isotropi
relation. The parameterCan5C112C1222C44 is used to
characterize the degree of anisotropy of the crystalline m
rials. We remark that, in the following calculation, the elas
constants are all normalized byC051011Pa. Let us now
assume that a cubic QD with a side lengtha is located at a
depthh below the traction-free surface~Fig. 1!, and that the
misfit strain due to the mismatch lattice constants of the m
trix ~half-space! and the QD is hydrostatic within the QD
material, i.e.,e i j* 5e* d i j . With the exception of the GaAs
all other crystals have their crystallographic axes along
half-space coordinates (x1 ,x2 ,x3)[(x,y,z). In other words,
the x, y, andz axes are, respectively, along the@100#, @010#,
and @001# directions. For the GaAs, another crystal orien
tion with ~111! being the surface of the half-space, denot
as GaAs~111! to distinguish GaAs~001! when ~001! is the
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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surface of the half-space, is also studied. The other two a
in the GaAs~111! crystal are such that thex andy axes are
along the@11-2# and @2110# directions, respectively.

Shown in Figs. 2~a! and 2~b! are the variations of the
normalized hydrostatic strainekk /e* and the normalized
strain energy density 0.5Ci jkl e i j ekl /(C0e* ) on the surface
versus the normalized depthh/a, due to a cubic QD of size
a3a3a. We remark that whenh/a50.5, the top surface o
the cubic QD is then coincident with the surface of the ha
space. It is observed clearly that crystal anisotropy ha
great influence on both the hydrostatic strain and the st
energy density. For example, the largest and smallest~nor-
malized! strain energy densities atx5(0,0,0), reached, re
spectively, in the isotropic material and InSb, are different
as large as three times in their magnitudes@Fig. 2~b!#. As for
the hydrostatic strain, its largest and smallest values ax
5(0,0,0) at any given depth are reached by GaAs~111! and
InSb ~InAs!, respectively, with the isotropic material an
GaSb@GaAs ~001!# taking values between them@Fig. 2~a!#.
While it is interesting that GaSb and GaAs~001!, and InSb
and InAs predict, respectively, nearly the same hydrost
strain, the relative difference of the largest value by Ga
~111! and the smallest value by InSb, reached on the sur
(h/a50.5), is about 40%. We further emphasize that
effect of crystalline anisotropy does not vanish when
depthh increases. Actually, ath/a52.0, we found that the
difference of the largest and smallest hydrostatic strain
still as large as four times@Fig. 2~a!#. These great difference
in the hydrostatic strain due to crystalline anisotropy w
greatly influence the electronic energy gap between the
lence and conduction bands since the latter is directly p
portional to the former.29,30

Figure 3~a! shows the comparison of the variation of th
normalized hydrostatic strainekk /e* on the surface versu
normalized depthh/a, due to a cubic QD of sizea3a3a
with misfit straine* d i j , and a point QD of equal intensit
a3e* d i j d(x2x0), whered(x2x0) is the Dirac delta function
and x0 is the center of the cubic QD. The correspondi
zoom-in result is plotted in Fig. 3~b!. By selecting the three
materials @the isotropic material, GaAs~001!, and GaAs
~111!#, the purpose of these two figures is to show that wh
replacing a finite-size QD with an equal-intensity point Q
special care must be taken when the material is anisotro
First, as we have observed before, the magnitudes of
hydrostatic strain induced by a QD in an isotropic and
anisotropic substrate can be greatly different. This feat
can be clearly seen again from Figs. 3~a! and 3~b!, where, for
both cubic and point QD cases, the largest, intermediate,
smallest values are reached, respectively, in the GaAs~111!,
isotropic, and GaAs~001! half-spaces. Second, it is observ
that with increasing depthh/a, the difference of the hydro
static strains due to the cubic QD and point QD in the i
tropic half-space becomes smaller and nearly vanishes w
h/a52.0, a result consistent with the observation made
Romanoveet al.19 However, when the half-space material
anisotropic, a point QD solution fails to approximate t
finite-size QD solution at the same depth. For example, F
3~b! shows that if the half-space is made of GaAs~111!,
then, whenh/a52.0, the difference of the hydrostatic strai
Downloaded 30 Nov 2001 to 152.1.79.110. Redistribution subject to AI
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due to the cubic and point QDs can still be as large as 2
large enough to affect the electronic band energies.

Shown in Figs. 4~a!, 4~b!, and 4~c! are, respectively, the
surface contours of the hydrostatic strain in the isotrop
GaAs~001!, and GaAs~111! half-spaces due to the cubic Q
of sizea3a3a centered at the depthh/a51.0. Besides the
difference of their magnitudes, as we have observed bef
their contour shapes are also different for different crysta
While the contour shapes in the isotropic crystal are nea
perfect circles, those in the anisotropic crystal are not,

FIG. 5. ~a! Contours of the normalized vertical displacementuz /(ae* ) on
the surface of the anisotropic crystal GaAs~001! due to a cubic QD applied
at normalized depthh/a51 ~x andy are normalized by the cubic side lengt
a!. ~b! Contours of the normalized vertical displacementuz /(ae* ) on the
surface of the anisotropic crystal GaAs~111! due to a cubic QD applied
at normalized depthh/a51 ~x and y are normalized by the cubic side
lengtha!.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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6195J. Appl. Phys., Vol. 90, No. 12, 15 December 2001 E. Pan and B. Yang
particular, in the GaAs~111! @Fig. 4~c!#. These differences
can be observed more clearly by looking at the dimensi
less vertical profilesuz /(e* a) on the surface, as shown i
Figs. 5~a! and 5~b! for GaAs ~001! and GaAs~111!, respec-
tively. It is obvious that while the profile on the surface
GaAs~001! is a square-based pyramid, that on the surface
GaAs~111! is a triangle-based pyramid. We remark that Ho
et al.20 numerically predicted similar contour shapes for t
strain energy density distributions, and correlated these c
tour shapes to the growth direction and orientation of
superlattice.

IV. CONCLUSIONS

In this article a recently derived 3D Green’s function
an anisotropic half-space is applied to the study of ela
fields due to a QD embedded in a substrate. Using the Be
reciprocal theorem, the QD-induced elastic fields are
pressed in terms of a simple integral over the surface of
QD with the point-force Green’s functions as the kerne
Furthermore, if the QD is a point source, then the Q
induced elastic field can be analytically expressed by
point-force Green’s functions in the anisotropic half spa
These features make the present continuum-mechanics
proach easy to perform accurate and efficient parame
studies in analyzing and designing the semiconductor st
tures. Numerical examples are carried out for a buried cu
QD in an anisotropic half space made of the III–V semico
ductors with the following important features being o
served:~1! Crystal anisotropy has a great influence on
QD-induced hydrostatic strain and strain energy dens
Since both the strain components and strain energy den
are directly related to the electronic properties of the se
conductor QD structures, our studies have thus demonstr
that for a reliable numerical analysis on the semiconduc
device, the simplified isotropic structure should not be u
if the material clearly exhibits anisotropy.~2! Even if the
buried QD is located at a relatively deep location, the eff
of the QD shape may still be significant. This is in contras
the well-known observation for the corresponding isotro
half-space that when a 3D QD with a characteristic lengta
is located at a depthh52a or larger, the induced surfac
strain due to a finite size and an equal-intensity point QD
very close to each other. Therefore, in the anisotropic st
ture, extra caution should be taken when approximatin
finite size QD by an equal-intensity point QD.
Downloaded 30 Nov 2001 to 152.1.79.110. Redistribution subject to AI
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APPENDIX

In this Appendix we briefly review the Green’s function
in an anisotropic and linearly elastic half-space unde
traction-free surface condition, with a detailed derivation
Pan and Yuan21 and Pan.24 The half-space Green’s function i
expressed as a sum of the full-space Green’s function a
complementary part, which resemble the Mindlin’s soluti
for the corresponding isotropic half-space.15 While the full-
space Green’s function has been derived in an explicit a
lytical form,23 the complementary part is expressed in ter
of a regular line integral that can be easily evaluated b
standard quadrature scheme.

We first define the so-called extended Stroh eigenval
and eigenmatrices.22 The extended Stroh eigenvaluepj and
the eigenmatriceA5@a1 ,a2 ,a3# are the solutions of the fol-
lowing eigenrelation21,22

@Q1pj~R1RT!1p2T#aj50, ~A1!

where the superscriptT denotes matrix transpose, and

Qik5Ciakbnanb , Rik5Ciak3na , Tik5Ci3k3 ~A2!

with

~n1 ,n2![~cosu,sinu! ~A3!

and a and b taking the values of 1 and 2. We remark tha
due to the positive requirement on the strain energy den
the eigenvalues of Eq.~A1! are either complex or purely
imaginary.22

We then define the other two matricesB5@b1 ,b2 ,b3#
andC5@c1 ,c2 ,c3# related to the Stroh eigenmatrixA as

bj5~RT1pjT!aj52
1

pj
~Q1pjR!aj ,

~A4!cj5Djaj ,

where the matrixDj is defined by
them as
Dj5FC111ana1pjC1113 C112ana1pjC1123 C113ana1pjC1133

C121ana1pjC1213 C122ana1pjC1223 C123ana1pjC1233

C221ana1pjC2213 C222gana1pjC2223 C223ana1pjC2233

G . ~A5!

Assume thatpj , aj , andbj ( j 51,2,...,6) are the eigenvalues and the associated eigenvectors, we then can order

Im pj.0, pj 135 p̄ j , aj 135āj , bj 135b̄j ,cj 135 c̄j , ~ j 51,2,3!, ~A6!

A5@a1 ,a2 ,a3#, B5@b1 ,b2 ,b3#, C5@c1 ,c2 ,c3#,
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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6196 J. Appl. Phys., Vol. 90, No. 12, 15 December 2001 E. Pan and B. Yang
where Im stands for the imaginary part and the overbar
notes the complex conjugate. It is further assumed thatpj is
distinct and the eigenvectorsaj andbj satisfy the following
normalization relation

bi
Taj1ai

Tbj5d i j , ~A7!

with d i j being the Kronecker delta.
Let us now denote byU`(x;y) the full-space Green’s

function tensor23 with its row and column indices corre
sponding to the displacement components and point-fo
directions, respectively, the half-space Green’s displacem
tensor, with its components bearing the same physical m
ing as the full-space one, can then be written in a conc
form as21,24

U~x;y!5U`~x;y!1
1

2p2 E
0

p

ĀG1ATdu, ~A8!

where ~thereafter, the indicesi and j take the range from
1 to 3!

~G1! i j 5
~B̄21B! i j

2 p̄ix31pjy32@~x12y1!cosu1~x22y2!sinu#
.

~A9!

Similarly, let T`(x;y) andS`(x;y) be the full-space Green’
stress tensor,23 with their components~or the row indices!
being defined as

~T`!urow5~s31,s32,s33!
T,

~A10!
~S`!urow5~s11,s12,s22!

T,

and their column indices for the point-force directions. Th
the full-space and half space Green’s stress tenors ca
derived as21,24

T~x;y!5T`~x;y!1
1

2p2 E
0

p

B̄G2ATdu,

~A11!

S~x;y!5S`~x;y!1
1

2p2 E
0

p

C̄G2ATdu.

In Eq. ~A11!,

~G2! i j 5
~B̄21B! i j

$2 p̄ix31pjy32@~x12y1!cosu1~x22y2!sinu#%2 .

~A12!

Derivatives of the Green’s displacement tensor with
spect to the source point (y1 ,y2 ,y3) can be easily carried ou
and the results are

]U~x;y!

]yj
5

]U`~x;y!

]yj
2

1

2p2 E
0

p

ĀG2^gj&A
Tdu, ~A13!

where

^g1&5diag@cosu,cosu,cosu#,

^g2&5diag@sinu,sinu,sinu#, ~A14!
Downloaded 30 Nov 2001 to 152.1.79.110. Redistribution subject to AI
e-

e
nt
n-
e

,
be

-

^g3&5diag@p1 , p2 , p3#.

Similarly, the derivatives of the Green’s stress tens
with respect to the source point (y1 ,y2 ,y3) are

]T~x;y!

]yj
5

]T`~x;y!

]yj
2

1

2p2 E
0

p

B̄G3^gj&A
Tdu,

~A15!
]S~x;y!

]yj
5

]S`~x;y!

]yj
2

1

2p2 E
0

`

C̄G3^gj&A
Tdu,

where

~G3! i j 5
~B̄21B! i j

$2 p̄ix31pjy32@~x12y1!cosu1~x22y2!sinu#%3 .

~A16!

Equations~A8!, ~A11!, ~A13!, and ~A15! are the com-
plete Green’s functions including displacement, stress,
their derivatives with respect to the source coordinates i
traction-free anisotropic and linearly elastic half-spa
namely, the generalized Mindlin solution in an anisotrop
and elastic half-space.
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