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This paper considers Mindlin’s problem in an anisotropic and piezoelectric half-
space with general boundary conditions, including 16 di¬erent sets of surface con-
ditions. The Green’s function due to a point force or point electric charge within
the half-space, also called the generalized Mindlin problem, is solved. Based on the
extended Stroh formalism and two-dimensional Fourier transforms in combination
with Mindlin’s superposition method, the generalized Mindlin solution is expressed
as a sum of the generalized Kelvin solution and a complementary part. While the full-
space Green’s function is in an explicit form, the complementary part is expressed
in terms of a simple line integral over [0; º ]. Of the 16 di¬erent sets, detailed studies
are presented for the four common surface conditions, i.e. the traction-free insulat-
ing and conducting, and rigid insulating and conducting surface conditions. With the
exception of the solution to the traction-free insulating boundary condition, solutions
to the other sets of boundary conditions are new. Furthermore, the corresponding
two-dimensional solutions are also derived analytically for the 16 di¬erent sets of
boundary conditions for possibly the  rst time.

Numerical examples of the generalized Mindlin solution are carried out for two
typical piezoelectric materials, one being quartz and the other ceramic, with the four
common surface conditions. These numerical results illustrate clearly the signi cance
of di¬erent boundary conditions as well as the electromechanical coupling in the
Mindlin’s problem analysis.

Keywords: Mindlin’s problem; piezoelectric material; Green’s function;
Stroh formalism; general boundary condition; strained quantum devices

1. Introduction

Green’s functions (i.e. the fundamental solutions due to a concentrated source) are
of great importance in various engineering and physical  elds. In linear elasticity,
various two-dimensional (2D) and three-dimensional (3D) Green’s functions have
been derived so far (Bacon et al . 1978; Mura 1987; Ting 1996, 2000). While most 2D
elastic Green’s functions can be found in the book by Ting (1996), a brief review on
the 3D Green’s functions in an elastic full-space and bimaterials can be found in a
recent paper by the author (Pan 2002b), where the Green’s function in an anisotropic
elastic half-space with general boundary conditions was derived. Besides the purely
elastic Green’s functions, some fully coupled piezoelectric Green’s functions have also
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been derived and applied to the analysis of micromechanical devices and composite
structures (Suo et al . 1992; Dunn & Taya 1993; Ting 1996). More interestingly,
certain generalized Hertzian contact problems (Willis 1966) were also studied based
on the fully coupled piezoelectric Green’s functions (Fan et al . 1996; Chen 1999;
Chen et al . 1999).

In recent years, Green’s functions (3D Green’s functions in particular) and the
related analytical methods have been found to be particularly useful in the study
of the strained semiconductor quantum devices where the strain-induced quantum
dot growth in semiconductor nanostructures is crucial to the electronic performance
(see, for example, Andreev et al . 1999; Davies 1998; Davies & Larkin 1994; Faux &
Pearson 2000; Faux et al . 1996, 1997; Freund 2000; Freund & Gosling 1995; Gosling
& Willis 1995; Larkin et al . 1997; Holy et al . 1999; Park & Chuang 1998; Pearson &
Faux 2000). Even though certain analytical results obtained so far have shed some
light on explaining the orientation and ordering of the quantum dot growth (Holy et
al . 1999; Faux & Pearson 2000), almost all available models are based on either the
uncoupled purely elastic model or simpli ed semi-coupled models. The fully coupled
electromechanical problem has not been considered so far, with the exception of
the 2D deformation, where Ru (1999, 2000, 2001) solved Eshelby’s problem in a
piezoelectric in nite plane, a half-plane, and bimaterial planes with fully coupled
constitutive relation. Furthermore, Ru’s (2001) closed-form solution for the half-plane
case has clearly indicated the e¬ect of di¬erent piezoelectric boundary conditions on
the surface response of both mechanical and electric quantities. Therefore, under 3D
deformation, the fully coupled piezoelectric 3D Green’s functions, as embedded in
the Eshelby tensor (Eshelby 1957; Mura 1987), should be employed in the reliable
analysis of the strained quantum dot growth. In particular, the 3D Green’s functions
in a fully coupled piezoelectric half-space under various surface boundary conditions,
or the generalized Mindlin solutions, are of special values in the modelling of the
strain-induced quantum dot growth.

Due to the complicated electromechanical coupling, however, only a few types of
Green’s functions have been developed so far for the fully coupled piezoelectric case
under 3D deformation. For the case of transversely isotropic piezoelectric materi-
als, the Green’s functions in an in nite space, a half-space, and bimaterials were
obtained by Dunn & Wienecke (1996, 1999) and Ding et al . (1997, 1999). For a
general anisotropic piezoelectric in nite space, while Akamatsu & Tanuma (1997)
derived the Green’s elastic displacement and electric potential, Pan & Tonon (2000)
proposed a method for the calculation of the complete Green’s function components.
Based on the generalized Stroh formulism (Ting 1996) and Mindlin’s superposition
method (Mindlin 1936), Pan & Yuan (2000) recently derived the 3D Green’s func-
tions in a general anisotropic piezoelectric half-space and bimaterials. However, with
the exception of the traction-free insulating surface where the generalized Mindlin
solutions for the transversely isotropic (Dunn & Wienecke 1996, 1999; Ding et al .
1997, 1999) and general anisotropic (Pan & Yuan 2000) half-spaces are available, no
other generalized Mindlin solutions exist in the literature for a general anisotropic
piezoelectric half-space with other surface conditions.

This paper solves the Mindlin’s problem in an anisotropic and piezoelectric half-
space, or the generalized Mindlin function with general boundary conditions on the
surface of the half-space. In total, 16 di¬erent sets of boundary conditions are solved,
including the four common boundary conditions, namely, traction-free insulating
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and conducting, and rigid insulating and conducting conditions (Ru 2001). The gen-
eralized Mindlin solution is derived based on the extended Stroh formalism and
2D Fourier transforms in combination with Mindlin’s superposition method, and is
expressed as a sum of the generalized Kelvin solution and a complementary part.
While the former is in an explicit form, as previously derived by Pan & Tonon
(2000), the complementary part is expressed in terms of a simple line integral over
[0; º ]. Of the 16 di¬erent sets, only the solution to the traction-free insulating surface
was solved before (Pan & Yuan 2000); solutions to the other 15 sets of boundary
conditions are presented in this paper for possibly the  rst time. Furthermore, under
the assumption of 2D deformation, solutions to the 16 di¬erent sets of boundary
conditions are also derived analytically (without any line integral).

Based on the generalized Mindlin solution, the e¬ect of di¬erent surface condi-
tions on the elastic and electric quantities is then studied and discussed for the four
common surface conditions. To illustrate the signi cance of di¬erent boundary con-
ditions as well as the electromechanical coupling in piezoelectric problem analysis,
numerical examples are carried out for two typical piezoelectric materials, namely,
the quartz with weak coupling and ceramic with strong coupling. It is found that,
if the point source is mechanical (electric), then the corresponding mechanical (elec-
tric) response on the surface of the half-space is nearly independent of the electric
(mechanical) boundary conditions for the quartz. In other words, for these cases, the
corresponding uncoupled purely elastic (electric) model could be employed to avoid
the complexity due to the coupling. However, owing to its high degree of electrome-
chanical coupling for the ceramic, the uncoupled purely elastic (electric) model is
only applicable for certain quantities in the vicinity of the surface point above the
source and therefore should be adopted with extreme caution. On the other hand,
if one is also interested in the mechanical (electric) response on the surface of the
half-space due to an electric (mechanical) point source, then the four di¬erent sets
of boundary conditions can all signi cantly a¬ect the surface response and the cou-
pled (preferably the fully coupled) piezoelectric model needs to be used, even if the
electromechanical coupling is weak.

It is believed that the generalized Mindlin solution should be useful for the study of
various modern devices, in particular of the strained semiconductor quantum devices.
This solution is also of interest in the corresponding 3D Eshelby problem in composite
materials and in various integral equation approaches based on the Green’s function
method.

This paper is organized as follows. In x 2, the generalized Mindlin problem is de ned
along with the mathematical equations. In x 3, the Stroh formalism and the general
solution in the Fourier-transformed domain are given. While in x 4 the generalized
Mindlin solution is derived, the e¬ect of di¬erent surface boundary conditions on
the elastic and electric  elds is studied in x 5. Numerical examples are presented in
x 6, and certain conclusions are drawn in x 7. Throughout this paper, by general-
ized Mindlin solutions, or Green’s functions, we mean the elastic displacements and
electric potential, elastic stresses and electric displacements, and derivatives of them
with respect to the source coordinates.

2. Description of the generalized Mindlin problem

Similar to the classical Mindlin problem (Mindlin 1936), we consider in this paper
the static deformation of a linearly anisotropic piezoelectric half-space occupying the
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domain x3 > 0 bounded by the ®at surface plane x3 = 0. While the surface is under
general boundary conditions (to be de ned later), a concentrated force or electric
charge is applied at a point source within the half-space. The governing equations
consist of the following (see, for example, Tiersten 1969; Barnett & Lothe 1975; Pan
1999).

Equilibrium equations

¼ ji;j + fi = 0; Di;i q = 0; (2.1)

where ¼ ij and Di are the stress and electric displacement, respectively; fi and q
are the body force and electric charge density, which will be replaced later by a
concentrated force and electric charge. In this paper, lowercase (uppercase) subscripts
always range from 1 to 3 (1 to 4) and summation over repeated lowercase (uppercase)
subscripts is implied. A subscript comma denotes the partial di¬erentiation with
respect to the coordinates (i.e. x1, x2, x3 or x, y, z).

Constitutive relations

¼ ij = Cijlm ® lm ekjiEk ; Di = eijk ® jk + "ijEj ; (2.2)

where ® ij is the strain and Ei is the electric  eld; Cijlm, eijk and "ij are the elastic
moduli, the piezoelectric coē cients, and the dielectric constants, respectively. It
is required that these coē cients satisfy the well-known symmetry conditions (Pan
1999). The decoupled state (purely elastic and purely electric deformations) can be
obtained by simply setting eijk = 0, one of the procedures adopted in almost all
previous studies in strained quantum devices. Another procedure is to use the semi-
coupled model where the  rst constitutive relation of (2.2) is used to solve the purely
elastic  eld by dropping the second term on the right-hand side (i.e. eijk = 0), and
the second relation of (2.2) is then used to estimate the electric  eld induced by the
purely elastic  eld (i.e. elastic strain with eijk 6= 0). One should be very cautious
when using these decoupled or semi-coupled models, since substantial errors may be
introduced, as will be illustrated numerically later.

Elastic strain-displacement and electric ¯eld-potential relations

® ij = 1
2
(ui;j + uj;i); Ei = ¿ ;i; (2.3)

where ui and ¿ are the elastic displacement and electric potential, respectively.
The notation introduced by Barnett & Lothe (1975) has been shown to be very

convenient for the analysis of piezoelectric problems. With this notation, the elastic
displacement and electric potential, the elastic strain and electric  eld, the stress
and electric displacement, and the elastic and electric moduli (or coē cients) can be
grouped together as (Barnett & Lothe 1975; Dunn & Taya 1993; Pan 1999):

uI =

(
ui; I = 1; 2; 3;

¿ ; I = 4;
(2.4)

® Ij =

(
® ij; I = 1; 2; 3;

Ej ; I = 4;
(2.5)
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¼ iJ =

(
¼ ij; J = 1; 2; 3;

Di; J = 4;
(2.6)

CiJKl =

8
>>><

>>>:

Cijkl; J; K = 1; 2; 3;

elij; J = 1; 2; 3; K = 4;

eikl; J = 4; K = 1; 2; 3;

"il; J = K = 4:

(2.7)

In terms of this shorthand notation, the constitutive relations (2.2) can be uni ed
into the single equation:

¼ iJ = CiJKl ® Kl: (2.8)

Similarly, the equilibrium equations (2.1) in terms of the extended stresses can be
recast into

¼ iJ;i + fJ = 0 (2.9)

with fJ being de ned as

fJ =

(
fj ; J = 1; 2; 3;

q; J = 4:
(2.10)

For ease of reference, we will occasionally, in the following sections, use the extended
displacement for the elastic displacement and electric potential as de ned by (2.4),
and the extended stress for the stress and electric displacement as de ned by (2.6).

Following Pan (2002b), we write the general boundary condition on the surface
of the half-space by a simple vector equation that is similar to the purely elastic
counterpart,

Iuu + Itt = 0; (2.11)

where Iu and It are 4 4 diagonal matrices whose four diagonal elements are either
one or zero, and satisfy conditions

Iu + It = I; IuIt = 0 (2.12)

with I being the unit matrix, and

t = (¼ 31; ¼ 32; ¼ 33; D3) (2.13)

is the extended traction on the z = const. plane.
Equation (2.11) includes a total of 16 di¬erent boundary condition sets, of which

the following six sets are particularly interesting:

t1 = 0; t2 = 0; t3 = 0; t4 = 0;

t1 = 0; t2 = 0; t3 = 0; u4 = 0;

u1 = 0; u2 = 0; u3 = 0; t4 = 0;

u1 = 0; u2 = 0; u3 = 0; u4 = 0;

t1 = 0; t2 = 0; u3 = 0; t4 = 0;

t1 = 0; t2 = 0; u3 = 0; u4 = 0:

9
>>>>>>>>=

>>>>>>>>;

(2.14)
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Table 1. The six sets of piezoelectric boundary conditions (BCs)

name of the BC mechanical BC electric BC

traction-free insulating ¼ 31 = ¼ 32 = ¼ 3 3 = 0 D3 = 0

traction-free conducting ¼ 31 = ¼ 32 = ¼ 3 3 = 0 ¿ = 0

rigid insulating u1 = u2 = u3 = 0 D3 = 0

rigid conducting u1 = u2 = u3 = 0 ¿ = 0

slippery insulating ¼ 31 = ¼ 32 = 0; u3 = 0 D3 = 0

slippery conducting ¼ 31 = ¼ 32 = 0; u3 = 0 ¿ = 0

For these boundary conditions, the diagonal matrices Iu and It take the following
diagonal elements:

Iu = diag[0; 0; 0; 0]; It = diag[1; 1; 1; 1];

Iu = diag[0; 0; 0; 1]; It = diag[1; 1; 1; 0];

Iu = diag[1; 1; 1; 0]; It = diag[0; 0; 0; 1];

Iu = diag[1; 1; 1; 1]; It = diag[0; 0; 0; 0];

Iu = diag[0; 0; 1; 0]; It = diag[1; 1; 0; 1];

Iu = diag[0; 0; 1; 1]; It = diag[1; 1; 0; 0]:

9
>>>>>>>>=

>>>>>>>>;

(2.15)

It is apparent that the  rst and second sets of (2.14) correspond to the traction-
free insulating and traction-free conducting conditions, respectively; the third and
fourth sets to the rigid insulating and rigid conducting conditions, respectively; and
the  fth and sixth sets to the slippery insulating and slippery conducting conditions,
respectively. To show a clear connection between the name of the boundary condition
and the physical quantities involved, these six sets of boundary conditions are further
listed in table 1.

We now let an extended point force f = (f1; f2; f3; f4) be applied in the half-space
at the source point d (d1; d2; d3 d) with d3 > 0 and the  eld point be denoted by
x (x1; x2; x3 z).y To solve the homogeneous counterpart of (2.9), we arti cially
divide the problem domain into two regions: z > d and 0 6 z < d. While these two
regions are free of body force and electric charge, at their arti cial interface z = d,
where the extended point source is applied, the extended displacement and traction
vectors are required to satisfy the following conditions

ujz = d ¡ = ujz = d+ ;

tjz = d ¡ tjz = d+ = ¯ (x1 d1) ¯ (x2 d2)f :

¾
(2.16)

Therefore, in summary, the generalized Mindlin’s problem is to  nd the elastic and
electric  elds that satisfy (2.9) with f = 0 for the two regions z > d and 0 6 z < d,
the general boundary condition (2.11), the conditions (2.16) at the source level, along
with the condition that the solution in the half-space is bounded as jxj approaches
in nity.

y Thereafter, the scalar variables z and d will be used exclusively for the third  eld coordinate x3

and the third source coordinate d3 , respectively.
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3. Stroh formalism and solution in the transformed domain

Similar to the corresponding purely elastic counterpart, we will  rst apply the two-
dimensional Fourier transforms to the problem equations and then express the Fou-
rier transformed solutions in terms of the extended Stroh formalism (Ting 1996; Pan
& Yuan 2000). The procedure is brie®y described below.

First, the 2D Fourier transforms (i.e. for the two-point extended displacement)

~uK(y1; y2; z; d) =

ZZ
uK(x1; x2; z; d)eiy ¬ x¬ dx1dx2 (3.1)

are applied to (2.8) and (2.9). In (3.1), ¬ takes the summation from 1 to 2.
A general solution to the Fourier transformed equations of (2.8) and (2.9) in terms

of the extended displacement can be derived as (Pan & Yuan 2000)

~u(y1; y2; z; d) = ae¡ ip² z (3.2)

with p and a satisfying the following eigenrelation:

[Q + p(R + RT) + p2T ]a = 0; (3.3)

where the superscript `T’ denotes matrix transpose, and

QIK = CjIKsnjns; RIK = CjIKsnjms; TIK = CjIKsmjms (3.4)

with
(n1; n2; n3) (cos ³ ; sin ³ ; 0);

(m1; m2; m3) (0; 0; 1):

¾
(3.5)

Note that a polar coordinate transform, de ned below, has been used:

y1 = ² cos ³ ; y2 = ² sin ³ : (3.6)

Equation (3.3) is the Stroh eigenrelation for the oblique plane spanned by n and
m de ned by (3.5). By the positive requirement on the strain energy density, it can
be shown (see, for example, Ting 1996) that its eigenvalues are either complex or
purely imaginary.

Second, using the Stroh eigenvalues and eigenvectors, the extended traction vector
t on the z = const: plane, and the in-plane stress vector s, de ned as

s = ( ¼ 11; ¼ 12; ¼ 22; D1; D2) (3.7)

can be derived in the Fourier-transformed domain as (Pan & Yuan 2000)

~t = i ² be¡ip² z ; (3.8)

~s = i ² ce¡ip² z ; (3.9)

with

b = (RT + pT )a =
1

p
(Q + pR)a;

c = Ha;

9
=

; (3.10)
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where the matrix H is de ned by
2

66664

C111¬ n ¬ + pC1113 C112 ¬ n ¬ + pC1123 C113¬ n ¬ + pC1133 C114¬ n ¬ + pC1143

C121¬ n ¬ + pC1213 C122 ¬ n ¬ + pC1223 C123¬ n ¬ + pC1233 C124¬ n ¬ + pC1243

C221¬ n ¬ + pC2213 C222 ¬ n ¬ + pC2223 C223¬ n ¬ + pC2233 C224¬ n ¬ + pC2243

C141¬ n ¬ + pC1413 C142 ¬ n ¬ + pC1423 C143¬ n ¬ + pC1433 C144¬ n ¬ + pC1443

C241¬ n ¬ + pC2413 C242 ¬ n ¬ + pC2423 C243¬ n ¬ + pC2433 C244¬ n ¬ + pC2443

3

77775

(3.11)
again with ¬ taking the summation from 1 to 2.

Denoting by pm, am and bm (m = 1; 2; : : : ; 8) the eigenvalues and the associated
eigenvectors of (3.3), we then order them in such a way so that

Im pJ > 0; pJ + 4 = ·pJ ; aJ + 4 = ·aJ ; bJ + 4 = ·bJ (J = 1; 2; 3; 4);

A = [a1; a2; a3; a4]; B = [b1; b2; b3; b4 ]; C = [c1; c2; c3; c4; c5];

¾
(3.12)

where Im stands for the imaginary part and overbar for the complex conjugate. In
the analysis followed, we assume that pJ are distinct and the eigenvectors aJ and
bJ satisfy the normalization relation (Barnett & Lothe 1975; Ting 1996)

bT
I aJ + aT

I bJ = ¯ IJ (3.13)

with ¯ IJ being the 4 4 Kronecker delta, i.e. the 4 4 identity matrix. We also remark
that repeated eigenvalues pJ can be avoided by using slightly perturbed material
coe¯ cients with negligible errors (Pan 1997). In doing so, the simple structure of the
solution presented below can always be used.

Finally, the general solutions in the Fourier transformed domain, which satisfy
condition (2.16) at the source level and the condition at in nity, can be derived as
(Pan & Yuan 2000)

For 0 6 z < d:

~u(y1; y2; z; d) = i ² ¡1Ahe¡ ip¤ ² (z¡d)iq 1 i ² ¡1 ·Ahe¡i·p¤ ² ziq;

~t(y1; y2; z; d) = Bhe¡ ip¤ ² (z¡d)iq 1 ·Bhe¡i·p¤ ² ziq;

~s(y1; y2; z; d) = Che¡ip¤ ² (z¡d)iq 1 ·Che¡ i·p¤ ² ziq:

9
>=

>;
(3.14)

For z > d:

~u(y1; y2; z; d) = i ² ¡1 ·Ahe¡ i·p¤ ² (z¡d)i·q 1 i ² ¡1 ·Ahe¡i·p¤ ² ziq;

~t(y1; y2; z; d) = ·Bhe¡ i·p¤ ² (z¡d)i·q 1 ·Bhe¡i·p¤ ² ziq;

~s(y1; y2; z; d) = ·Che¡i·p¤ ² (z¡d)i·q 1 ·Che¡i·p¤ ² ziq;

9
>=

>;
(3.15)

where

q 1 = ATfeiy ¬ d ¬ ; ·q 1 = ·ATfeiy ¬ d ¬ (3.16)

and

he¡ip¤ ² zi = diag e¡ ip1 ² z e¡ ip2 ² z e¡ip3 ² z e¡ip4 ² z : (3.17)

The complex vector q in (3.14) and (3.15) is to be determined.
The challenge now is to determine q for the given general boundary conditions

(2.11). Fortunately, a procedure similar to the corresponding purely elastic half-space
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problem (Pan 2002b) can be followed. This is achieved by de ning a new complex
matrix K of 4 4 as

K = IuA + ItB (3.18)

a suitable combination of the Stroh eigenmatrices A and B that are properly coupled
with the boundary conditions. It is seen that the matrix K , like the eigenvalues pJ

and the eigenmatrices A and B, is independent of the radial variable ² (but is a
function of ³ !), an important feature to be used later. For the six sets of boundary
conditions (2.14), the matrix K has the following expressions:

K =

2

664

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

3

775 ; Kfc =

2

664

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

A41 A42 A43 A44

3

775 ; (3.19)

Kri =

2

664

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

B41 B42 B43 B44

3

775 ; Krc =

2

664

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

3

775 ; (3.20)

K s i =

2

664

B11 B12 B13 B14

B21 B22 B23 B24

A31 A32 A33 A34

B41 B42 B43 B44

3

775 ; K s c =

2

664

B11 B12 B13 B14

B21 B22 B23 B24

A31 A32 A33 A34

A41 A42 A43 A44

3

775 ; (3.21)

where two subscripts are introduced to indicate the corresponding boundary condi-
tions with the  rst one for mechanical and the second for electric conditions. There-
fore, the  rst and second expressions of (3.19) are for the traction-free insulating
(` ’) and traction-free conducting (`fc’) surfaces, the  rst and second expressions of
(3.20) are for the rigid insulating (`ri’) and rigid conducting (`rc’) surfaces, and the
 rst and second expressions of (3.21) are for the slippery insulating (`si’) and slippery
conducting (`sc’) surfaces.

With the new matrix K , the complex vector q for all the 16 di¬erent sets of
boundary conditions (2.11) can therefore be expressed in a simple vector equation
as

q = ·K¡1Kheip¤ ² diATfeiy ¬ d ¬ : (3.22)

Equation (3.22) is a very surprising result and it will be the key when deriving the
physical-domain Green’s functions, i.e. the generalized Mindlin solutions.

Before carrying out the inverse transform, we mention several important features
associated with the Fourier transformed-domain solutions (3.14) and (3.15).

1. The  rst terms in (3.14) and (3.15) are the Fourier transformed Green’s func-
tion for an anisotropic and piezoelectric full-space. Inverse of this Green’s func-
tion, i.e. the physical-domain solution or the generalized Kelvin solution, has
been derived recently by Akamatsu & Tanuma (1997) and Pan & Tonon (2000)
in an explicit form. Therefore, the inverse of the Fourier transform needs to be
carried out only for the second terms of the solution. This procedure resembles
the Mindlin solution method (Mindlin 1936).

2. The uni ed Fourier transformed solution includes all the 16 di¬erent sets of
boundary conditions (2.11). Thus, to solve the anisotropic and piezoelectric
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half-space problem with di¬erent boundary conditions, one only needs to assign
the matrix K de ned by (3.18) to the corresponding boundary condition, a
remarkable concise result.

3. In deriving the Fourier transformed solution, the matrix K has been assumed
to be non-singular. This can be proved following a procedure similar to Ting
(1996).

4. Generalized Mindlin solution

Having obtained the Fourier transformed-domain solution, we now apply the inverse
Fourier transform to (3.14) and (3.15). To handle the double in nite integrals, the
polar coordinate transform (3.6) is introduced so that the in nite integral with
respect to the radial variable ² can be carried out exactly. Thus, the  nal half-space
Green’s function in the physical domain, or the generalized Mindlin solution, can be
expressed as a sum of an explicit Kelvin solution and a complementary part in terms
of a line integral over [0; 2 º ]. Furthermore, the latter can be reduced to an integral
over [0; º ] (Pan 2002a; b). After some tedious but straightforward manipulations, the
generalized Mindlin solution can be expressed in a compact form. For the half-space
displacement tensor (4 4), with its row and column indices being the component
of the  eld quantity and the direction of the point source, respectively, we found

U (x; d) = U 1 (x; d) +
1

2 º 2

Z º

0

·AG1AT d ³ ; (4.1)

wherey

(G1)IJ =
( ·K¡1K)IJ

·pIz + pJd [(x1 d1) cos ³ + (x2 d2) sin ³ ]
: (4.2)

The  rst term in (4.1) corresponds to the Green’s displacement tensor, or the gener-
alized Kelvin tensor, in an anisotropic and piezoelectric full-space, which is already
available in an explicit form (Akamatsu & Tanuma 1997; Pan & Tonon 2000). Conse-
quently, the half-space displacement tensor can be expressed as a sum of an explicit
Kelvin tensor and a complementary part in terms of a line integral over [0; º ]. It is
emphasized that in (4.1) and (4.2), the eigenvalues pJ , the eigenmatrix A, and the
matrix K are functions of ³ , with pJ (J = 1; 2; 3; 4) and A = [a1; a2; a3; a4 ] being the
eigensolutions of (3.3) for a given ³ . We further remark that under the assumption of
2D deformation, the corresponding displacement tensor can be derived analytically
(without any line integral), as given in Appendix A.

Similarly, the half-space traction and in-plane stress tensors can be obtained as

T (x; d) = T 1 (x; d) +
1

2º 2

Z º

0

·BG2AT d ³ ;

S(x; d) = S 1 (x; d) +
1

2 º 2

Z º

0

·CG2AT d ³ :

9
>>=

>>;
(4.3)

Again, in (4.3), T 1 (x; d) and S 1 (x; d) denote the Green’s traction and in-plane
stress tensors in an anisotropic and piezoelectric full-space (Pan & Tonon 2000), and

(G2)IJ =
( ·K¡1K)IJ

f ·pIz + pJ d [(x1 d1) cos ³ + (x2 d2) sin ³ ]g2
: (4.4)

y Thereafter, the indices I and J take the range from 1 to 4.
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In analysis of certain problems based upon the integral equation method, the
derivatives of the Green’s displacements and stresses with respect to the source point
(d1; d2; d3) are also required (Pan 1999). They are found to be (for j = 1; 2; 3)

@U (x; d)

@dj
=

@U 1 (x; d)

@dj

1

2 º 2

Z º

0

·AG2hgjiAT d ³ ; (4.5)

hg1i = diag[cos ³ ; cos ³ ; cos ³ ; cos ³ ];

hg2i = diag[sin ³ ; sin ³ ; sin ³ ; sin ³ ];

hg3i = diag[p1; p2; p3; p4 ];

9
>=

>;
(4.6)

@T (x; d)

@dj

=
@T 1 (x; d)

@dj

1

2 º 2

Z º

0

·BG3hgjiAT d ³ ;

@S(x; d)

@dj
=

@S 1 (x; d)

@dj

1

2 º 2

Z º

0

·CG3hgjiAT d ³ ;

9
>>>=

>>>;
(4.7)

(G3)IJ =
( ·K¡1K)IJ

f ·pIz + pJd [(x1 d1) cos ³ + (x2 d2) sin ³ ]g3
: (4.8)

Equations (4.1), (4.3), (4.5) and (4.7) are the generalized Mindlin solutions, or the
complete Green’s functions under general boundary conditions in an anisotropic and
piezoelectric half-space. It is emphasized that these generalized Mindlin solutions
are presented in a uni ed form so that the 16 di¬erent sets of boundary conditions
(2.11) are all included. To  nd the Mindlin solution for a given set of boundary
conditions, one only needs to assign the corresponding K matrix. With the exception
of the solution to the traction-free insulating boundary condition (Pan & Yuan 2000),
solutions to all other boundary conditions are presented for the  rst time in this
paper. Since the solutions include all the 16 di¬erent sets of boundary conditions, it
is particularly convenient in investigating the e¬ect of di¬erent boundary conditions
on the elastic and electric  elds based on the present Mindlin solutions.

Considering the complicated nature of the problem and simplicity of the  nal
expression of the Mindlin solution, it is seen that by resorting to the superposition
method, the extended Stroh formalism is indeed a very powerful and elegant method.
A direct Fourier transform method would require a 3D Fourier integral for the full-
space Green’s functions and 4D Fourier integral for the complementary part (Walker
1993). Furthermore, under the assumption of 2D deformation, the corresponding
half-plane solutions can be derived analytically by following a similar procedure, as
shown in Appendix A.

It is also noticed that when the source point is within the half-space (i.e. d 6= 0),
the integrals in (4.1), (4.3), (4.5) and (4.7) are regular and thus can be easily carried
out by a standard numerical integral method such as the Gauss quadrature. When
the source point is on the surface, the generalized Mindlin solution is then reduced
to the generalized Boussinesq solution (i.e. z 6= 0, d = 0); when the  eld and source
points are both on the surface (i.e. z = d = 0), the solution is further reduced
to the so-called surface Green’s function. A detailed study on these special cases
of the generalized Mindlin solution was given in Pan (2002b) for the purely elastic
case.
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5. E® ects of surface boundary conditions

Besides the elastic and electric coupling in an anisotropic piezoelectric half-space,
another important issue is the e¬ect of di¬erent surface conditions on the elastic
and electric  elds. Ru (2001)  rst studied the 2D piezoelectric Eshelby’s problem of
an arbitrarily shaped inclusion. For either traction-free or rigid mechanical condi-
tion combined with either an insulating or conducting condition on the surface, he
derived analytically the elastic and electric quantities due to an inclusion of arbitrary
shape, and discussed the corrections to these quantities if an insulating, instead of a
conducting, surface was assumed, or vice versa (Ru 2001).

Stimulated by Ru’s analysis (2001), we now study the e¬ects of surface boundary
conditions on the elastic and electric  elds in a 3D anisotropic and piezoelectric
half-space. In contrast to the work of Ru (2001), our physical model is 3D with a
concentrated point source, namely, a generalized Mindlin’s problem. Furthermore,
the present study covers 16 di¬erent sets of surface boundary conditions.

When studying the correction to, or di¬erence of, the elastic and electric quantities
due to di¬erent surface boundary conditions, we remark on an interesting feature.
The generalized Kelvin solution (i.e. the in nite Green’s function) has no in®uence
at all to the correction. It is the complementary part of the generalized Mindlin
solution that contributes the correction! We also notice that it is the compound
matrix ·K¡1K that totally controls such a correction. This is actually not surprising
since when deriving the Mindlin solution, it is the complementary part that takes
care of the di¬erent surface boundary conditions, and it is the compound matrix
·K¡1K that directly accomplishes the task! Therefore, the correction to the elastic

and electric quantities is directly proportional to the di¬erence of the integral of the
compound matrix ·K¡1K.

In the study presented below, we restrict ourselves to the four common surface
conditions, namely, the traction-free insulating and conducting, and rigid insulating
and conducting conditions. Other surface conditions, such as the slippery insulating
and conducting surfaces, can be investigated following a similar procedure. Further-
more, our expressions for the extended displacement and stress  elds are for the
source point d within the half-space (d 6= 0) and the  eld point x anywhere in the
half-space. The surface response is a particular case where the  eld point is on the
surface of the half-space (i.e. z = 0). We also mention that results for the derivatives
of the extended displacements and stresses will not be given but can be obtained
similarly.

(a) E® ects of surface mechanical conditions

To  nd the e¬ect of di¬erent surface mechanical conditions on the  eld quantities,
we assume that the electric surface condition is either insulating or conducting. For
an insulating surface, the correction to the extended displacement tensor is found as

U (x; d) U(x; d)ri =
1

2º 2

Z º

0

·AG1frA
T d ³ ; (5.1)

where

(G1fr)IJ =
[( ·K¡1

 K ) ( ·K¡1
ri Kri)]IJ

·pIz + pJd [(x1 d1) cos ³ + (x2 d2) sin ³ ]
: (5.2)
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The  rst subscript `f’ (`r’) to U and ·K¡1K denotes traction-free (rigid) boundary
conditions, and the second subscript `i’ to them denotes the insulating surface.

Similarly, the correction to the extended traction and in-plane stress tensors are

T (x; d) T (x; d)ri =
1

2º 2

Z º

0

·BG2frA
T d ³ ; (5.3)

S(x; d) S(x; d)ri =
1

2º 2

Z º

0

·CG2frA
T d ³ ; (5.4)

where

(G2fr)IJ =
[( ·K¡1

 K ) ( ·K¡1
ri Kri)]IJ

f ·pIz + pJd [(x1 d1) cos ³ + (x2 d2) sin ³ ]g2
: (5.5)

Equations (5.1), (5.3) and (5.4) clearly show that the e¬ect of di¬erent mechanical
boundary conditions on the extended displacement and stress  elds is controlled by
the di¬erence of the compound matrix ·K¡1K under the traction-free insulating (` ’)
and rigid insulating (`ri’) boundary conditions.

To obtain the e¬ect of di¬erent mechanical boundary conditions on the extended
displacement and stress  elds for a given conducting surface, one can simply replace
the di¬erence of the compound matrix ·K¡1K under the ` ’ and `ri’ boundary con-
ditions with the di¬erence of the compound matrix ·K¡1K under the `fc’ and `rc’
boundary conditions. Formally, this is to replace the subscript `i’ with the subscript
`c’.

(b) E® ects of surface electric conditions

Similarly, to see the e¬ect of di¬erent surface electric conditions on the  eld quan-
tities for a traction-free or rigid surface, we only need to  nd the di¬erence of the
integral of the compound matrix ·K¡1K . For traction-free surface, the correction to
the extended displacement tensor is found to be

U (x; d) U (x; d)fc =
1

2 º 2

Z º

0

·AG1icAT d ³ ; (5.6)

where

(G1ic)IJ =
[( ·K¡1

 K ) ( ·K¡1
fc Kfc)]IJ

·pIz + pJ d [(x1 d1) cos ³ + (x2 d2) sin ³ ]
: (5.7)

The correction to the corresponding extended traction and in-plane stress tensors
are found to be

T (x; d) T (x; d)fc =
1

2 º 2

Z º

0

·BG2icA
T d ³ ; (5.8)

S(x; d) S(x; d)fc =
1

2 º 2

Z º

0

·CG2icAT d ³ ; (5.9)

where

(G2ic)IJ =
[( ·K¡1

 K ) ( ·K¡1
fc Kfc)]IJ

f ·pIz + pJd [(x1 d1) cos ³ + (x2 d2) sin ³ ]g2
: (5.10)

Again, if we replace the traction-free boundary condition by the rigid boundary
condition, then the e¬ect of di¬erent electric surface conditions on the elastic and
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electric quantities for a mechanically rigid surface can be obtained. This is done by
simply replacing the di¬erence of the compound matrix ·K¡1K under the ` ’ and
`fc’ boundary conditions with the di¬erence of the compound matrix ·K¡1K under
the `ri’ and `rc’ boundary conditions.

6. Numerical examples

Having derived the generalized Mindlin solution and discussed the e¬ect of di¬erent
boundary conditions on the elastic and electric quantities, we now present numerical
examples on the variation of these quantities on the surface when a point source
is applied within the half-space. Two typical piezoelectric materials are selected for
the half-space. One is a left-hand quartz in a rotated coordinate system (Tiersten
1969) with elastic constants, piezoelectric coē cients, and dielectric constants being,
respectively,

[C ] =

2

6666664

0:8674 0:0825 0:2715 0:0366 0 0
0:0825 1:2977 0:0742 0:057 0 0

0:2715 0:0742 1:0283 0:0992 0 0
0:0366 0:057 0:0992 0:3861 0 0

0 0 0 0 0:6881 0:0253
0 0 0 0 0:0253 0:2901

3

7777775
(1011 N m¡2);

(6.1)

[e] =

2

4
0:171 0:152 0:0187 0:067 0 0

0 0 0 0 0:108 0:095
0 0 0 0 0:0761 0:067

3

5 (C m¡2); (6.2)

["] =

2

4
0:3921 0 0

0 0:3982 0:0086
0 0:0086 0:4042

3

5 (10¡10 C V¡1 m¡1): (6.3)

Another one is the poled lead{zirconate{titanate (PZT-4) ceramic (Dunn & Taya
1993) with elastic constants, piezoelectric coē cients, and dielectric constants being,
respectively,

[C ] =

2

6666664

1:39 0:778 0:743 0 0 0
0:778 1:39 0:743 0 0 0
0:743 0:743 1:15 0 0 0

0 0 0 0:256 0 0
0 0 0 0 0:256 0
0 0 0 0 0 0:306

3

7777775
(1011 N m¡2); (6.4)

[e] =

2

4
0 0 0 0 12:7 0
0 0 0 12:7 0 0
5:2 5:2 15:1 0 0 0

3

5 (C m¡2); (6.5)

["] =

2

4
0:646 05 0 0

0 0:646 05 0
0 0 0:561 975

3

5 (10¡8 C V¡1 m¡1): (6.6)

It is seen that the quartz belongs to the monoclinic system in class 2 with x being the
diagonal axis, while the ceramic belongs to the hexagonal system in class 6 mm with z
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in the poling direction (Tiersten 1969). Furthermore, the quartz is a weakly coupled
piezoelectric material and the ceramic is a strongly coupled one. Actually, using
the dimensionless parameter, g, which indicates the degree of the electromechanical
coupling (Adachi 1985; Suo et al . 1992), de ned as g = em ax=

p
("m axCm ax), we

found that g equals 0.07 and 0.5, respectively, for the quartz and ceramic. We remark
that for semiconductors GaAs and AlN, the parameter g is roughly 0.04 and 0.25,
respectively (Adachi 1985; Chin et al . 1994; Mohammad & Morkoc 1996; Bernardini
et al . 1997; Wright 1997). Thus, while GaAs is a weakly coupled material, AlN is a
strongly coupled one.

Numerical results are presented for the dimensionless stress and electric displace-
ment, caused by a point force or a negative point electric charge (see (2.1) and
(2.10)). While the source is  xed at d = (0; 0; 1), the  eld point varies on the surface
of the half-space as z = (x; x; 0), x 2 [ 1; 1], with the dimensional coordinate being
recovered by simply multiplying L (= 1 m). Also, in order to obtain the dimensional
stress and electric displacement (i.e. for stress in N m¡2 and electric displacement in
C m¡2), one needs only to carry out the following simple multiplication or division
(with Cm ax = 1:2977 1011 N m¡2 and Em ax = 0:171 C m¡2 for the quartz, and
Cm ax = 1:39 1011 N m¡2 and Em ax = 15:1 C m¡2 for the ceramic):

(i) for the stress due to a point force (F1 and F3 in the  gures), divide the results
by L2;

(ii) for the stress due to a negative electric charge (F4 in the  gures), multiply the
results by Cm ax=(Em axL2);

(iii) for the electric displacement due to a point force, multiply the results by
Em ax=(Cm axL2);

(iv) for the electric displacement due to a negative electric charge, divide the results
by L2.

In each  gure, four curves are plotted: a solid line with solid triangles for the
traction-free insulating surface (ins, traction-free); a dashed line with open triangles
for the traction-free conducting surface (con, traction-free); a solid line with solid
diamonds for the rigid insulating surface (ins, rigid); and a dashed line with open
diamonds for the rigid conducting surface (con, rigid). In so doing, the corrections
to the  eld quantities due to di¬erent surface conditions, discussed in the previous
section, can be observed directly from these  gures. Furthermore, according to the
 eld and source types, the results are grouped into four cases and are discussed
below.

(a) Electric response due to a mechanical point source

Parts (a) and (b) of  gure 1 show, respectively, the variation of the normalized
electric displacements Dx and Dz on the surface of the quartz half-space due to a
point force in the z-direction (i.e. F3). The corresponding Dx and Dz on the surface of
the ceramic half-space are plotted in  gure 1c; d. (They are either symmetric or anti-
symmetric about x = 0 since the ceramic is hexagonal or transversely isotropic.) It
is observed from these  gures that di¬erent surface boundary conditions can cause
signi cant di¬erence on the electric response when a mechanical point source is
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Figure 1. Variations of the normalized electric displacements Dx and Dz on the surface (z = 0) of
the quartz (a) and (b) half-spaces due to a point force applied at = (0; 0; 1) in the z-direction,
for the traction-free insulating (ins, traction-free), traction-free conducting (con, traction-free),
rigid insulating (ins, rigid), and rigid conducting (con, rigid) surface conditions.

applied (similar features have been also observed by the author when a point force
is applied in the x-direction). Therefore, in general, a coupled piezoelectric model
should be used. Otherwise, the electric components Dx and Dz would be zero if an
uncoupled model is used, which is obviously contradictory to what we have observed
in  gure 1a; b for the fully coupled model.
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Figure 1. (Cont.) Variations of the normalized electric displacements Dx and Dz on the surface
(z = 0) of the ceramic (c) and (d) half-spaces due to a point force applied at = (0; 0; 1) in
the z-direction, for the traction-free insulating (ins, traction-free), traction-free conducting (con,
traction-free), rigid insulating (ins, rigid), and rigid conducting (con, rigid) surface conditions.

(b) Mechanical response due to an electric point source

While parts (a) and (b) of  gure 2 show, respectively, the variation of the normal-
ized stress components ¼ xx and ¼ zz on the surface of the quartz half-space due to a
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Figure 2. Variations of the normalized stress components ¼ xx and ¼ z z on the surface (z = 0) of
the quartz (a) and (b) half-spaces due to a negative point electric charge applied at = (0; 0; 1),
for the traction-free insulating (ins, traction-free), traction-free conducting (con, traction-free),
rigid insulating (ins, rigid), and rigid conducting (con, rigid) surface conditions.

negative point electric charge (i.e. F4), parts (c) and (d) of  gure 2 show the corre-
sponding variation of ¼ xx and ¼ zz on the surface of the ceramic half-space. It is seen
that, except for ¼ zz in the vicinity of the epicentre of the quartz half-space, di¬erent
boundary conditions predict completely di¬erent surface stresses if a point electric
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Figure 2. (Cont.) Variations of the normalized stress components ¼ xx and ¼ z z on the surface
(z = 0) of the ceramic (c) and (d) half-spaces due to a negative point electric charge applied at

= (0; 0; 1), for the traction-free insulating (ins, traction-free), traction-free conducting (con,
traction-free), rigid insulating (ins, rigid), and rigid conducting (con, rigid) surface conditions.

charge is applied within the half-space. Again, for this case, the coupled piezoelectric
model needs to be used, even for the weakly coupled quartz half-space. An uncou-
pled purely electric model would have no in®uence on the mechanical response of the
uncoupled system.
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Figure 3. Variations of the normalized electric displacement components Dx and Dz on the
surface (z = 0) of the quartz (a) and (b) half-spaces due to a negative point electric charge applied
at = (0; 0; 1), for the traction-free insulating (ins, traction-free), traction-free conducting (con,
traction-free), rigid insulating (ins, rigid), and rigid conducting (con, rigid) surface conditions.

(c) Electric response due to an electric point source

Parts (a) and (b) of  gure 3 show the variation of the normalized electric displace-
ment components Dx and Dz , respectively, on the surface of the quartz half-space
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Figure 3. (Cont.) Variations of the normalized electric displacement components Dx and Dz

on the surface (z = 0) of the ceramic (c) and (d) half-spaces due to a negative point electric
charge applied at = (0; 0; 1), for the traction-free insulating (ins, traction-free), traction-free
conducting (con, traction-free), rigid insulating (ins, rigid), and rigid conducting (con, rigid)
surface conditions.

due to a negative point electric charge. The corresponding Dx and Dz on the surface
of the ceramic half-space are plotted in  gure 3c; d. For the quartz half-space ( g-
ure 3a; b), it is observed that the two curves corresponding to the traction-free and
rigid conditions are nearly identical to each other for the given electric boundary
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Figure 4. Variations of the normalized stress components ¼ xx and ¼ z z on the surface (z = 0) of
the quartz (a) and (b) half-spaces due to a point force applied at = (0; 0; 1) in the z-direction,
for the traction-free insulating (ins, traction-free), traction-free conducting (con, traction-free),
rigid insulating (ins, rigid), and rigid conducting (con, rigid) surface conditions.

condition (insulating or conducting). Therefore, the electric response on the sur-
face of the quartz half-space (i.e. with weak coupling) is mainly controlled by the
electric boundary condition and can be analysed using the corresponding uncoupled
purely electric model. However, for the strongly coupled ceramic half-space, the fully
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Figure 4. (Cont.) Variations of the normalized stress components ¼ xx and ¼ z z on the surface
(z = 0) of the ceramic (c) and (d) half-spaces due to a point force applied at = (0; 0; 1) in
the z-direction, for the traction-free insulating (ins, traction-free), traction-free conducting (con,
traction-free), rigid insulating (ins, rigid), and rigid conducting (con, rigid) surface conditions.

coupled piezoelectric model must be used, as is clearly shown in  gure 3c; d, where
di¬erent mechanical surface conditions predict substantially di¬erent Dx and Dz .
It is particularly interesting that while an uncoupled purely electric model causes
the horizontal electric displacement (Dx and Dy) to be zero on the conducting sur-
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face, the corresponding fully coupled model predicts a non-zero horizontal electric
displacement on the surface under the rigid conducting condition ( gure 3c).

(d) Mechanical response due to a mechanical point source

While the normalized stress components ¼ xx and ¼ zz on the surface of the quartz
half-space due to a point force in the z-direction are plotted, respectively, in parts
(a) and (b) of  gure 4, the corresponding ¼ xx and ¼ zz on the surface of the ceramic
half-space are depicted in  gure 4c; d. It is apparent that, for the quartz half-space,
the surface stresses are mainly controlled by the mechanical boundary conditions,
and therefore the corresponding uncoupled purely elastic model can be adopted to
simplify the analysis ( gure 4a; b). However, for the strongly coupled ceramic half-
space ( gure 4c; d), the corresponding uncoupled elastic model is found to be suitable
only in the vicinity of x = 0 on the surface with a relatively large error tolerance
(say ca. 10%). We  nally remark that a similar feature has also been observed for
the stress components due to a point force in the x-direction.

7. Conclusions

In this paper, we have solved Mindlin’s problem in an anisotropic and piezoelectric
half-space with 16 di¬erent sets of surface boundary conditions. The generalized
Mindlin solution is derived based on the extended Stroh formalism and 2D Fourier
transforms in combination with Mindlin’s superposition method, and is expressed as
a sum of the generalized Kelvin solution and a complementary part. While the former
is in an explicit form, as previously derived by Pan & Tonon (2000), the latter is
expressed in terms of a simple line integral over [0; º ]. Of the 16 di¬erent sets, only the
solution to the traction-free insulating surface was solved before (Pan & Yuan 2000);
solutions to other 15 sets of boundary conditions are presented for the  rst time.
Furthermore, by following a similar procedure, we have also derived analytically the
corresponding 2D solutions for the 16 di¬erent sets of surface boundary conditions.

The e¬ect of di¬erent surface conditions on the elastic and electric quantities
has been studied and discussed in detail for the four common surface conditions,
namely, traction-free insulating and conducting, and rigid insulating and conducting
conditions. To illustrate the signi cance of di¬erent boundary conditions as well as
the electromechanical coupling in piezoelectric problem analysis, numerical examples
are carried out for two typical piezoelectric materials, namely, the quartz with weak
coupling and ceramic with strong coupling. It is found that, if the point source is
mechanical (electric), then the corresponding mechanical (electric) response on the
surface of the half-space is nearly independent of the electric (mechanical) boundary
conditions for the quartz. In other words, for these cases, the corresponding uncou-
pled purely elastic (electric) model could be employed to avoid the complexity due
to the coupling. However, owning to its high degree of electromechanical coupling
for the ceramic, the uncoupled purely elastic (electric) model is only applicable for
certain quantities in the vicinity of x = 0 on the surface and should be adopted
with caution. On the other hand, if one is also interested in the mechanical (electric)
response on the surface of the half-space due to an electric (mechanical) point source,
then the four di¬erent sets of boundary conditions can all signi cantly a¬ect the sur-
face response and the coupled (preferably the fully coupled) piezoelectric model must
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be used, even if the electromechanical coupling is weak. These features are believed
to be particularly useful in the study of the corresponding 3D Eshelby’s problem
and in the numerical modelling of strained quantum devices based on the Green’s
function method.

The author thanks Professor C. Q. Ru of the University of Alberta for valuable discussions and
the two reviewers for their constructive comments.

Appendix A. 2D piezoelectric half-plane Green’s functions
under general boundary conditions

Similar to the Mindlin’s problem presented in the main text, we consider an aniso-
tropic and piezoelectric half-space with its surface at z = 0. Here, however, we
assume that the deformation is independent of the y-coordinate (i.e. the general-
ized plane strain deformation in the (x; z) plane). We further let an extended line
force f = (f1; f2; f3; q) and an extended line dislocation (i.e. a Burgers vector)
b = (¢u1; ¢u2; ¢u3; ¢ ¿ ) be applied at (x; z) = (0; d) with d > 0. We remark that
the half-plane Green’s function for the traction-free insulating surface was derived
previously using the one-complex-variable function approach (see, for example, Pan
1999). However, for the more general surface boundary conditions discussed in this
paper, the Stroh formalism is found to be more convenient.

Similar to the purely elastic half-plane case (Ting 1996), it can be shown that
the half-plane Green’s functions (i.e. the extended displacement and stress function
vectors) can be expressed as

u =
1

º
ImfAhln(z ¤ p ¤ d)iq 1 g +

1

º
Im

4X

J = 1

fAhln(z ¤ ·pJd)iqJ g;

Ã =
1

º
ImfBhln(z ¤ p ¤ d)iq 1 g +

1

º
Im

4X

J = 1

fBhln(z ¤ ·pJd)iqJ g;

9
>>>>>=

>>>>>;

(A 1)

where the extended stress function vector Ã is related to the elastic stresses and
electrical displacements by

¼ 1J = ÁJ;3; ¼ 3J = ÁJ;1: (A 2)

Also in (A 1), Im stands for the imaginary part, and pJ , A, and B are the Stroh
eigenvalues and eigenmatrices of the eigenequation (3.3) with the matrices Q, R,
and T being de ned by (3.4) in which ³ = 0. Finally, in (A 1),

hln(z ¤ p ¤ d)i = diag[ln(z1 p1d); ln(z2 p2d); ln(z3 p3d); ln(z4 p4d)];

hln(z ¤ ·pJ d)i = diag[ln(z1 ·pJd); ln(z2 ·pJd); ln(z3 ·pJd); ln(z4 ·pJ d)];

¾

(A 3)
with the complex variable zJ being de ned by

zJ = x + pJz: (A 4)

It is noted that the  rst term in (A 1) corresponds to the full-plane Green’s functions
with

q 1 = ATf + BTb: (A 5)
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The second term in (A 1) is the complementary part of the solution with the complex
constant vectors qJ (J = 1; 2; 3; 4) to be determined. For the 16 sets of the surface
boundary conditions discussed in x 2 of the main text, we de ne a new complex
matrix K of 4 4 exactly the same way as for the 3D case (i.e. (3.18)), namely,

K = IuA + ItB: (A 6)

With this newly de ned complex matrix K, the involved complex constants in (A 1)
can be found, in a remarkably simple and uni ed form, as

qJ = K¡1 ·KIJ ·q 1 ; (A 7)

where the diagonal matrices IJ have the following diagonal elements:

I1 = diag[1; 0; 0; 0]; I2 = diag[0; 1; 0; 0];

I3 = diag[0; 0; 1; 0]; I4 = diag[0; 0; 0; 1]:

¾
(A 8)

Thus, the extended displacement and stress function vectors in a generally anisotropic
and piezoelectric half-plane with the 16 di¬erent sets of surface boundary conditions
and due to an extended line force f = (f1; f2; f3; q) or an extended line dislocation
b = (¢u1; ¢u2; ¢u3; ¢ ¿ ) are all derived in a very concise form. Comparing the 2D
solutions with the 3D ones, it is noted that while the eigenvalues, eigenmatrices, and
the related matrices are constants (depend only upon the material properties) in the
2D solutions, their counterparts in 3D solutions are all functions of the Fourier trans-
form variable ³ . Consequently, the 2D solutions are analytical while the 3D solutions
involve a line integral for the variable ³ over [0; º ].

With the extended displacement and stress function vectors being given by (A 1),
their derivatives with respect to the  eld and source points can be analytically carried
out and the resulting Green’s functions can then be applied to various problems
associated with a half-plane under general boundary conditions. It is remarked that,
out of these 16 two-dimensional Green’s solutions, only the solution to the traction-
free insulating surface was solved before (see, for example, Pan 1999); solutions to
other 15 sets of surface boundary conditions have not been reported in the literature.
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