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Elastic and piezoelectric fields around a quantum dot: Fully coupled
or semicoupled model?
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In the study of elastic and piezoelectric fields in semiconductors due to buried quantum dots~QDs!,
the semicoupled piezoelectric model is commonly adopted. However, its accuracy and suitability
have never been studied. In this article, by developing a fully coupled piezoelectric model and
deriving the analytical elastic and piezoelectric fields based on this and the semicoupled models, we
are able to verify that when the piezoelectric coupling is weak, like GaAs with the
electromechanical coupling factorg50.04, the semicoupled model predicts very accurate results as
compared to those based on the fully coupled model. However, if the piezoelectric coupling is
relatively strong, like AlN withg50.32, we have shown that the semicoupled model gives very
serious errors or even totally wrong results. Applying these two models to a uniformly strained AlN
layer grown along the polar axis has also confirmed our observation. Therefore, for semiconductors
like AlN, the fully coupled model presented in this article must be employed in order to give a
reliable and accurate prediction for the elastic and piezoelectric fields. Also presented in this article
is the distribution of the piezoelectric field on the surface of a half-space GaAs due to a buried QD
located at 2 nm below the surface with a volume 4p/3 (nm)3. It is observed that the horizontal
electric field on the traction-free and insulating surface shows some special features and its
maximum magnitude can be as high as 3.53107 V/m when the uniform mismatch eigenstrain is
0.07. Furthermore, the piezoelectric field on the traction-free and conducting surface exhibits
different characters as compared to the traction-free and insulating case. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1448869#
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I. INTRODUCTION

A buried quantum dot~QD!, i.e., an eigenstrain due t
the lattice mismatch between the QD and the surround
piezoelectric matrix, induces not only an elastic field, b
also a piezoelectric field. Since both the elastic and pie
electric fields are equally important in the understanding
the photonic and electronic features in semiconductors,1–3 a
reliable analysis on these fields are crucial to the design
such structures. It is obvious that a decoupled model with
consideration of the effect of the elastic field on the pie
electric field, or vice versa, is unsuitable. Therefore, a fu
coupled or at least a semicoupled model should be used,
the later being commonly adopted in physical community
the prediction of the piezoelectric field. In such a simplifi
model, the QD-induced elastic field is first solved, eith
analytically ~when the geometry is simple and/or the i
volved elastic material is isotropic!4 or numerically other-
wise using either the finite element method or the finite d
ference method.5–8 The purely elastic solution~actually the
elastic strain or stress tensor! is then used to find the polar
ization field, which induces the electric potential and elec
field. Finally, the induced piezoelectric field is solved und
suitable purely piezoelectric boundary conditions. This se
coupled model was previously applied to various semic
ductors, such as group III–V4,8 and group III nitrides.9 So
far, however, no fully coupled piezoelectric model has e

a!Electronic mail: ernian_pan@yahoo.com
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been proposed and applied to the study of the QD-indu
elastic and piezoelectric fields. Furthermore, whether
semicoupled model is suitable or not, a key and fundame
question, has never been answered in the literature.

In a recent article, the author10 solved the generalized
Mindlin’s problem in a fully coupled and generally aniso
tropic piezoelectric half space where the point source can
either the elastic point-force or the electric point-charge d
sity. By examining two typical piezoelectric materials, one
strongly coupled and the other is weakly coupled, the aut
has been able to demonstrate the importance and necess
using the fully coupled piezoelectric model in the predicti
of the elastic and piezoelectric fields induced by a po
force/point charge. We further remark that Ru11,12 solved the
corresponding half-plane problem and his solution for an
clusion of any shape has also shown analytically the effec
the electromechanical coupling on the elastic and piezoe
tric fields.

In this article, we introduce a fully coupled piezoelectr
model for the prediction of the QD-induced elastic and
ezoelectric fields in semiconductors by employing the gen
alized Betti’s reciprocal theorem and the point-force/poi
charge solutions recently developed by the autho10

Furthermore, a detailed study on the semicoupled mode
also given. Assuming elastic isotropy~only for the purpose
of simplifying the derivation of the solution for the sem
coupled model! for the semiconductors GaAs and AlN, w
have derived the analytical solutions, based on the se
coupled model, for the elastic and piezoelectric fields in
5 © 2002 American Institute of Physics
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3786 J. Appl. Phys., Vol. 91, No. 6, 15 March 2002 E. Pan
full- and half-space GaAs, and in a full-space AlN. The
fore, with these solutions, a quantitative assessment on
suitability of the semicoupled model is carried out~as com-
pared to the results based on the fully coupled model!. It is
found that the semicoupled model can predict very ac
rately the elastic and piezoelectric fields induced by a QD
the full- and half-space GaAs. However, the semicoup
model gives serious errors or completely wrong results
the elastic and piezoelectric fields in AlN. This importa
observation has been further confirmed by applying the fu
coupled and semicoupled models to a uniformly strain
AlN layer grown along the polar axis.

Finally, this article presents the distribution of the piez
electric field on the surface of a half-space GaAs due t
buried QD located at 2 nm below the surface with a volu
4p/3 (nm)3. It is observed that the horizontal electric field o
the traction-free and insulating surface possesses some
cial features and its maximum magnitude can be as high
3.5310 V/m when the uniform mismatch eigenstrain is 0.0
Furthermore, the piezoelectric field on the traction-free a
conducting surface exhibits completely new characters
compared to the traction-free and insulating case. All res
presented can be served as benchmark examples for f
researchers in this area and should be also of great intere
the QD device analysis.

II. FULLY COUPLED MODEL

We consider the fully coupled deformation of a linear
anisotropic piezoelectric semiconductor due to a point for
point charge applied at the source pointy within the given
semiconductor. The equilibrium equations can be expres
as10,13–15

s j i , j1 f id~xÀy!50; Di ,i2qd~xÀy!50, ~1!

where s i j and Di are, respectively, the elastic stress a
electric displacement; andf i andq are, respectively, the am
plitudes of the point force and point charge. As a conventi
lowercase~uppercase! subscripts always range from 1 to 3~1
to 4! and summation over repeated lowercase~uppercase!
subscripts is implied. A subscript comma denotes the pa
differentiation with respect to the coordinates.

For a fully coupled piezoelectric solid, the elastic defo
mation and electric field are coupled together by the follo
ing constitutive relations14,16

s i j 5Ci jlmg lm2ek jiEk ,
~2a,b!

Di5ei jkg jk1e i j Ej ,

where Ci jlm , ei jk , and e i j are, respectively, the elasti
moduli, piezoelectric coefficients, and dielectric constan
The elastic straing i j and electric fieldEi in ~2a,b! are related
to the elastic displacementui and electric potentialf, respec-
tively, by

g i j 5
1

2
~ui , j1uj ,i !; Ei52f ,i . ~3a,b!

We point out that the decoupled state~purely elastic and
purely electric deformations! can be obtained by simply se
ting ei jk50 in ~2a,b!, one of the procedures adopted in a
Downloaded 03 Mar 2002 to 152.1.79.110. Redistribution subject to AI
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most all previous studies in strained quantum devices.
other one is to use the semicoupled model where constitu
relation ~2a! is used to find the purely elastic field by drop
ping the second term on the right-hand side~i.e., ei jk50!,
and relation~2b! is then used to estimate the electric fie
induced by the purely elastic field~i.e., the elastic strain ten
sor withei jkÞ0!. It is obvious that if one is also interested
the piezoelectric field, the fully coupled or at least the sem
coupled model should be used.

The fully coupled elastic and piezoelectric fields can
conveniently studied using the Barnett–Lothe notation.15 In
terms of this notation, the elastic displacementui and electric
potentialf, the elastic straing i j and electric fieldEi , the
elastic stresss i j and electric displacementDi , and the elas-
tic and electric moduli~Ci jlm , ei jk , ande i j ! can be grouped
together as:10,13,15,17

uI5H ui , I 51,2,3

f, I 54
, ~4!

g I j 5H g i j , I 51,2,3

2Ej , I 54
, ~5!

s iJ5H s i j , J51,2,3

Di , J54
, ~6!

CiJKl55
Ci jkl , J,K51,2,3

eli j , J51,2,3; K54

eikl , J54; K51,2,3

2e i l , J5K54

. ~7!

In terms of this shorthand notation, the constitutive relatio
~2a,b! can be unified into

s iJ5CiJKlgKl . ~8!

Similarly, the equilibrium Eq.~1! in terms of the elastic
stress/electric displacement can be recast into

s iJ,i1 f J50, ~9!

with f J being defined as

f J5H f jd~xÀy!, J51,2,3

2qd~xÀy!, J54
. ~10!

The fully coupled piezoelectric model is now applied
the calculation of the elastic and piezoelectric fields in a fu
and half-spaces due to a buried QD. These induced fields
expressed in terms of boundary integrals on the surfac
the QD for a finite-size QD, and in terms of the point-forc
point-charge Green’s function solutions for a point QD. T
generalized Betti’s reciprocal theorem is employed to der
these elastic and piezoelectric fields.

A general eigenstrain problem in an anisotropic and l
early piezoelectric semiconductor~full or half space! can be
reduced to an integral equation in terms of the associa
point-force/point-charge Green’s functions. This integral e
pression is a consequence of the Betti’s reciprocal theorem
piezoelectricity.13 We assume that there are two states as
ciated with the problem domain: One is the eigenstrain pr
lem, i.e., an eigenstraing I j* ~elastic strain and electric field
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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with I 54 for the latter! in a finite subdomainV of the full-
or half-spaceD, and the other is the point-force/point-char
Green’s function problem. Then the elastic displacement
electric potentialuK(y) due to the eigenstraing I j can be
expressed by

uK~y!5E
]D

@uJ
K~x;y!s iJ~x!ni~x!

2s iJ
K ~x;y!ni~x!uJ~x!#dS~x!

1E
D

uJ
K~x;y!@2CiJLmgLm* ~x!# ,i ]dV~x!, ~11!

where]D is the boundary ofD which is a spherical surfac
with a large radius for the full-space case, and the surfac
the half-space and a half spherical surface with a large ra
for the half-space case;uJ

K(x,y) ands iJ
K (x;y) are the Green’s

J-th elastic displacement/electric potential andiJ-th stress
components/electric displacements atx due to a point force/
point charge in theK-th direction applied aty. While Pan and
Tonon18 obtained the full-space Green’s functions, Pan a
Yuan19 derived those in a half space under the traction-f
and insulating surface condition. More recently, Pan10 solved
the generalized Mindlin problem where the surface of
piezoelectric half-space is under general boundary co
tions. These Green’s functions, along with their derivativ
with respect to the source coordinatey, are summarized in
Appendices A and B for the sake of easy reference.

Notice that since the eigenstraing I j* is applied only in
the finite subdomainV of D and that the boundary]D is
either in infinity where the integrands are zero or the surf
of the half space on which the Green’s functions are zero
is evident that the integration on the boundary]D in Eq. ~11!
is zero. Therefore, Eq.~11! is reduced to

uK~y!5E
D

uJ
K~x;y!†2@CiJLmgLm* ~x!# ,i‡dV~x!. ~12!

Differentiation in Eq.~12! can be shifted by applying th
Gauss theorem and by noticing that the eigenstrain is n
zero only inV, which gives

uK~y!5E
V

CiJLmuJ,xi

K ~x;y!gLm* ~x!dV~x!. ~13!

The domain integral in Eq.~13! can be further trans
formed to the surface ofV if the eigenstrain is constant. Tha
is

uK~y!5CiJLmgLm* E
]V

uJ
K~x;y!ni~x!dS~x!, ~14!

whereni(x) are the outward normal components on the s
face ofV.

To find the elastic strain and electric fields, we take
derivatives of Eq.~14! with respect to the observation pointy
~i.e., the source point of the point-force/point-charge Gree
function!, which yields
Downloaded 03 Mar 2002 to 152.1.79.110. Redistribution subject to AI
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gkp~y!5
1

2
gLm* E

]V
CiJLm@uJ,yp

k ~x;y!

1uJ,yk

p ~x;y!#nj~x!dS~x!; k51,2,3, ~15a!

gKp~y!5gLm* E
]V

CiJLm uJ,yp

K ~x;y!nj~x!dS~x!; K54

~15b!

with the corresponding stress and electric displacement fi
being

s iJ~y!5CiJKp@gKp~y!2xgKp* # ~16!

wherex equals to 1 if the observation pointy is within the
eigenstrain domainV, and 0 otherwise.

Finally, for a point~or concentrated! eigenstrain applied
at pointx, the induced elastic displacement/electric poten
and elastic strain/electric fields can be expressed directly
the point-force/point-charge Green’s functions without eith
volumetric or surface integration. Assuming that the po
eigenstrain or point QD has an equal intensity of a sph
with radiusa ~i.e., with a volumeva54pa3/3! centered atx,
then the QD-induced elastic displacement/electric poten
and strain/electric fields are found to be, respectively,

uK~y!5smL
K ~x;y!gLm* va ~17!

and

gkp~y!5
1

2
gLm* @smL,py

k ~x;y!1smL,ky

p ~x;y!#va; k51,2,3

~18a!

gKp~y!5gLm* smL,py

K ~x;y!va ; K54 ~18b!

Equation ~17! indicates that the elastic displacemen
electric potential aty in the K-th direction ~K54 for the
electric potential! due to a QD atx with components~Lm!
(L54 for the electric field! is equivalent to the elastic stres
electric displacement field atx with components~mL! ~L
54 for the electric displacement! due to a point force/point
charge aty in theK-th direction~K54 for the point-charge!.
We remark that while a similar observation can be made
Eq. ~18!, this equivalent property, between a point forc
point charge and a point eigenstrain~or point QD!, is an
extension to the piezoelectricity of the purely elastic equi
lent property between a point-force and a point-dislocat
solution.20,21

III. SEMICOUPLED MODEL

In the semicoupled model, the purely elastic proble
@i.e., using Eq.~2a! with ei jk50# due to a QD is solved first
subject to the given elastic boundary condition if any boun
ary exists.

After the elastic strain tensorg i j is obtained, the follow-
ing relation is then used to find the QD-induced polarizat
field Pi ,1,4

Pi5ei jkg jk . ~19!
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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It is seen that this relation is actually quite similar to Eq.~2b!
with e i j being zero. The electric field is solved using t
following governing equations subject to the electric boun
ary condition if any boundary exists:1,16

Di ,i5re ; h i jkEj ,k50; Di5e i j Ej1Pi , ~20a,b,c!

wherere is the external charge density;h i jk the alternating
symbol which equals 1 if~ijk! is a cyclic permutation of
~123!, equals21 if ~ijk! is an anticyclic permutation o
~123!, and equals 0 otherwise. It is obvious that Eq.~20b! for
the electric fieldEi is automatically satisfied if Eq.~3b! is
used. Expressing the electric field by the gradient of the e
tric potential in Eq.~20c! and substituting the result into Eq
~20a! gives the following equation for the electric potentia

e i j f ,i j 52re1Pk,k . ~21!

Thus, Pk,k can be seen alternatively as a negative cha
density.4,8

Since the equivalent charge densityPk,k is related to the
purely elastic strain field, an exact closed-form solution
Eq. ~21! exists only for certain elastic materials in either fu
or half-space.22–26 Therefore, to simplify our derivation an
arrive at some analytical results using the semicoup
model for the purpose of comparison with the fully coupl
model, we assume that the elastic moduli of the semicond
tor material is isotropic.

IV. SEMICOUPLED SOLUTION IN A FULL SPACE

We now apply the semicoupled model to find the elas
and piezoelectric fields in a semiconductor full space due
a buried QD. Both the GaAs and AlN semiconductors will
considered. While GaAs is a weakly coupled material w
an electromechanical coupling factorg50.04, AlN is a
strongly coupled one withg50.32. It is also noticed that in
order to find the piezoelectric field, one has to derive first
corresponding purely elastic solution due to the QD. This
presented next.

A. Purely elastic solution in a full space

Assuming that the purely elastic full space is isotrop
and that a uniform QD with a hydrostatic straing I j* 5g0d i j

and an intensity equal to that of a sphere with a radiusa ~i.e.,
va54pa3/3! is located atx5(0,0,0), then the only nonzer
elastic displacement induced by this QD is in the radial
rection of the spherical coordinates.4,23,27That is

ur~r !5
g0va~11n!

4p~12n!r 2
. ~22!

Introducing an elastic displacement potential function as

ui5c ,i ; i 51,2,3, ~23!

c52
g0va~11n!

4p~12n!r
, ~24!

the elastic strain and stress tensors are readily to be obta
as
Downloaded 03 Mar 2002 to 152.1.79.110. Redistribution subject to AI
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g i j 5c ,i j ; i , j 51,2,3
~25a,b!

s i j 5Ci jkl c ,kl ,

whereCi jkl is the fourth-order stiffness tensor, which is cha
acterized by two elastic constants for the isotropic case.

B. Piezoelectric fields in full-space GaAs

Since the only nonzero piezoelectric constant in GaA
e14 ~5e255e36!, the polarization field based on Eq.~19! of
the semi-coupled model is therefore reduced to

Px52e14gyz ; Py52e14gzx ; Pz52e14gxy . ~26!

Using Eq. ~23!–~25!, the polarization field can be easil
found as

Px52e14c ,yz52
3e14g

0va~11n!

2p~12n!

yz

r 5
,

Py52e14c ,xz52
3e14g

0va~11n!

2p~12n!

xz

r 5
, ~27!

Pz52e14c ,xy52
3e14g

0va~11n!

2p~12n!

xy

r 5
,

which yields

Pk,k56e14c ,xyz. ~28!

Thus, the electric potential should satisfy the following Po
son’s equation

f ,kk5
6e14

e0e r
c ,xyz, ~29!

which permits a solution as4

f52
9g0va~11n!e14

4p~12n!e0e r

xyz

r 5
. ~30!

While the electric fieldEi can be obtained by taking th
derivative of the electric potential, the electric displacem
Di can be found using Eq.~20c! along with the polarization
field ~27!.

C. Piezoelectric fields in full-space AlN

For a wurtzite AlN, the polarization field is related to th
strain tensor as9,16

F Px

Py

Pz

G5F 0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0
G 3

gxx

gyy

gzz

2gyz

2gzx

2gxy

4 . ~31!

We mention that this structure is also called transversely
tropic with the poling direction along thez axis.

Similarly, using the solved elastic strain field~25a!, the
polarization field is found to be
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Px52e15c ,xz52
3e15g

0va~11n!

2p~12n!

xz

r 5
,

Py52e15c ,yz52
3e15g

0va~11n!

2p~12n!

yz

r 5
, ~32!

Pz5e31~c ,xx1c ,yy!1e33c ,zz

5
g0va~11n!

4p~12n!
~e312e33!F 2

r 3
2

3~x21y2!

r 5 G ,

which gives

Pk,k5~2e151e31!~c ,xxz1c ,yyz!1e33c ,zzz. ~33!

Consequently, the electric potential satisfies the follow
Poisson’s equation

f ,kk5
1

e0e r
@~2e151e31!~c ,xxz1c ,yyz!1e33c ,zzz# ~34!

from which, a solution is found as

f52
3g0va~11n!~2e151e312e33!z

8p~12n!e0e r

3H ~x21y2!

r 5
2

2

5r 3J . ~35!

Again, similar to the GaAs case, the electric field is o
tained by taking the derivative of the electric potential, a
the electric displacement field is then obtained using
~20c! with the given polarization field~32!.

We will numerically show later that in the full-spac
GaAs where the electromechanical coupling is weak,
semicoupled model predicts nearly identical elastic and e
tric fields as those based on the fully coupled rigorous mo
However, the semicoupled model gives completely wro
results for both the elastic and electric fields in the full-spa
AlN where the electromechanical coupling is strong. It
therefore concluded that even for the full-space AlN, t
semicoupled model should not be used! While the se
coupled model can be safely used for the full-space GaA
study the QD-induced elastic and piezoelectric fields, its s
ability and accuracy to the half-space GaAs is explored in
next section.

V. HALF-SPACE GaAs

When a QD is located close to the surface, the influe
of the surface must be considered. In this situation, the a
lytical solution developed in the previous section for a QD
a full-space can not be used. Instead, the solution in a h
space based on the semicoupled model needs to be der
Following the similar procedure, we first derive the elas
field and then the piezoelectric field.

A. Purely elastic solution in half-space GaAs

Let us again assume that a QD with a uniform hyd
static straing I j* 5g0d i j and a volumeva54pa3/3 is centered
at a distancez5h below the surface of the half-space GaA
~Fig. 1!. We further define
Downloaded 03 Mar 2002 to 152.1.79.110. Redistribution subject to AI
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R15Ax21y21~z2h!2

~36!
R25Ax21y21~z1h!2.

Then, the elastic displacements in the half space due to
QD can be found as22,23,27

ux5
g0va~11n!x

4p~12n! H 1

R1
3

1
324n

R2
3

2
6z~z1h!

R2
5 J . ~37!

While uy can be obtained from Eq.~37! by replacing the
variablex with y, uz is expressed as

uz5
g0va~11n!

4p~12n! H z2h

R1
3

2
~324n!~z1h!

R2
3

1
2z

R2
3

2
6z~z1h!2

R2
5 J , ~38!

B. Piezoelectric field in half-space GaAs

The polarization field is again related to the elastic str
tensor as in Eq.~19!, and is found to be

Px52e14gyz52
3g0vae14~11n!y

2p~12n! H ~z2h!

R1
5

1
~z1h!

R2
5

1
2z

R2
5
2

10z~z1h!2

R2
7 J . ~39!

While Py can be obtained fromPx by replacingx with y, Pz

has

Pz52e14gxy52
3g0vae14~11n!xy

2p~12n! H 1

R1
5

1
324n

R2
5

2
10z~z1h!

R2
7 J . ~40!

Using Eq.~21!, we found the following Poisson’s equatio
for the electric potential

FIG. 1. QD atz5h ~nm! below the surface of a half space.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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f ,kk5
g0vae14~11n!xy

2p~12n!e0e r
H 45~z2h!

R1
7

1
15~724n!~z1h!

R2
7

1
90z

R2
7

2
630z~z1h!2

R2
9 J .

~41!

Alternatively, this can be written as

f ,kk5
g0vae14~11n!

2p~12n!e0e r
$23~R1

21! ,xyz1~514n!

3~R2
21! ,xyz16h~R2

21! ,xyzz26~R2! ,xyzzz%. ~42!

Since Eq.~42! needs to be solved with the given boun
ary condition on the surface of the half space, it is theref
convenient to express the electric potential as a sum
particular and homogeneous solution, i.e.,

f5fp1fh, ~43!

where the first term on the right-hand side is a particu
solution of Eq.~42! and the second term is the homogeneo
solution added to satisfy the given piezoelectric bound
condition on the surface of the half space.

The particular solution of Eq.~42!, after some simple bu
tedious derivations, is found to be
in

ce
in
ce

n
, w
on
h

-

nt
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fp5
3g0vae14~11n!xy

4p~12n!e0e r
H 23~z2h!

R1
5

1
~514n!~z1h!

R2
5

16hF 1

R2
5
2

5~z1h!2

R2
7 G2

9~z1h!

R2
5

1
15~z1h!3

R2
7 J .

~44!

For the homogeneous solution, which depends on the g
boundary condition, the following two cases are discusse

1. Traction-free conducting surface
For a conducting surface, we require that the elec

potential on the surfacez50 vanishes, i.e.,f50. Using this
condition along with Eqs.~43! and ~44!, the homogeneous
solution for the electric potential is obtained as

fh5
3g0vae14~11n!xy

4p~12n!e0e r
H 2

~514n!h

R2
5

1
15h2~z1h!

R2
7 J .

~45!

2. Traction-free insulating surface
Similarly, for an insulating surface, we require thatDz

50 on the surfacez50. For this case, the homogeneo
solution for the electric potential can be expressed as
fh~x,y,z!5
3g0vae14~11n!xy

4p~12n!e0e r
H ~124n!h

R2
5

1
15h2~z1h!

R2
7 J 1

3g0vae14~11n!~124n!

8p2~12n!e0e r

3E
2`

` E
2`

` kxky

@~kx2x!21~ky2y!21z2#1/2@kx
21ky

21h2#5/2
dkxdky , ~46!
e

f
.,
-

of,

i-
on-
where the double Fourier integrals can be carried out us
an efficient and adaptive quadrature proposed by Yang.28

With the electric potential being solved for both surfa
boundary conditions, the electric field can be found by tak
the derivative of the electric potential. The electric displa
ment field is then obtained using Eq.~20c! along with the
polarization fields~39! and ~40!.

VI. RESULTS

Having derived the elastic and piezoelectric solutio
based on both the fully coupled and semicoupled models
now carry out the comparison studies using these soluti
In the numerical study, we assume, for simplicity, that t
mismatch eigenstrain in the QD is hydrostatic, i.e.,g I j*
5g0d i j . We also assume thatg050.07 for both the GaAs
and AlN semiconductors,24,25although this eigenstrain is dif
ferent for the latter case.9 The QD is applied at the originx
5(0,0,0) for the full-space case~with no surface! and atx
5(0,0,h) for the half-space case. For the examples prese
next, the radius in the QD volumeva54pa3/3 is fixed at
a51 nm, and the depth ath52 nm~for the half-space case!.
g

g
-

s
e
s.

e

ed

Material coefficients of the GaAs~001! are used for both
the full and half spaces~i.e., for the half-space GaAs, th
surface of the half space is in the@001# direction!. The iso-
tropic elastic constants~in 109 N/m2! are C115172, C12

554, andC44559 with a Poisson’s ration50.2389. We
mention that whileC12 and C44 are the elastic constants o
GaAs,2,29,30 C11 is obtained by the isotropic relation, i.e
C115C1212C44. Also for GaAs, the only nonzero piezo
electric coefficient ise14 (5e255e36)520.16 C/m2.2,4 We
remark that the negative sign ine14 was neglected in some
previous publications based on the semicoupled model,8,31,32

which gives the piezoelectric field with equal magnitude
but opposite signs to, that using the righte14. Finally, the
relative dielectric constant is chosen ase r512.5.8 Therefore,
the electromechanical coupling factorg for GaAs, defined as

g5emax/A(emax/Cmax), is found to be 0.04~where emax,
emax, andCmax are the maximum absolute values of the p
ezoelectric coefficients, dielectric constants, and elastic c
stants!.

The elastic constants for AlN is~also in 109 N/m2!
C115304, C125160,33 which gives C44572 by assuming
isotropy. Therefore, the Poisson’s ratio for this material isn
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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50.3448. The piezoelectric structure of AlN is transvers
isotropic with poling direction along thez axis and has the
following nonzero coefficients:e3351.55, e31(5e32)5
20.58, ande15(5e24)520.48 (C/m2).9 Finally, the rela-
tive dielectric constant for AlN ise r58.5.34 Similarly, the
electromechanical coupling factorg for AlN is g50.32, ex-
actly eight times larger than that for GaAs.

A. Full-space GaAs and AlN

Shown in Fig. 2 are the variations of electric potential
the full-space GaAs and AlN along the linex5(x,x,x) due
to the QD located at the originx5(0,0,0), predicted base
on the fully coupled and semicoupled models. We rem
that while the electric potentials in GaAs and AlN along t
line x5(x,x,0) and in GaAs along the linex5(0,0,z) are
zero, the electric potential in AlN along the linex5(0,0,z)
has a large magnitude~about ten times! as compared to tha
along the linex5(x,x,x). It is also observed from Fig. 2 tha
while both the fully coupled and semicoupled models pred
nearly identical electric potential in GaAs, the electric pote
tials in AlN predicted based on the two models are differe
in particular when the observation point is close to the Q

Figure 3 shows the variation of the electric fieldEx in
GaAs and AlN along the linex5(x,x,x) due to the QD at
the originx5(0,0,0). Again, the electric fields in GaAs pre
dicted based on both the fully coupled and semicoup
models are nearly the same. However, the electric field
AlN based on the two models are substantially different, a
in general, the semicoupled model underestimates the m
nitude of the electric field. More specifically, at the observ
tion point x5(x,x,x)5(1,1,1) nm, the magnitude of th
electric field Ex predicted by the semicoupled model
roughly one half of that predicted based on the fully coup
model.

FIG. 2. Variations of the electric potential in GaAs and AlN along the li
x5(x,x,x) due to a QD at the originx5(0,0,0), predicted based on th
fully coupled and semicoupled models.
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Since the piezoelectric field is directly related~or more
specifically proportional! to the elastic field, one would ex
pect that when using the semicoupled model to predict
elastic field, the result will be correct for GaAs and wron
for AlN. This is indeed the case. Similar to the electric qua
tities in GaAs, the elastic quantities in GaAs can also be v
accurately predicted based on the semicoupled model. H
ever, the elastic field in AlN can be wrong if the semicoupl
model is used. For example, Fig. 4 shows the variations
the elastic strain field in AlN along the linex5(x,x,x) due
to the QD at the originx5(0,0,0), predicted based on bot
the fully coupled and semicoupled models. It is obvious t
while the fully coupled model predicts nonzero strain co

FIG. 3. Variations of the electric fieldEx in GaAs and AlN along the line
x5(x,x,x) due to a QD at the originx5(0,0,0), predicted based on th
fully coupled and semicoupled models.

FIG. 4. Variations of the elastic strain in AlN along the linex5(x,x,x) due
to a QD at the originx5(0,0,0), predicted based on the fully coupled a
semicoupled models.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp



s

lec
n-
d
ar

te
d
or
o

he

ls
o
s
no
ro
kl

tri
as
s

f
at
e.
h
an
fu
le

th
d

As
n

of

to
e
p

in

g
el
a
s
.2

-
a

tal

lat-
been
the

ric
r-
the
. 8

QD

3792 J. Appl. Phys., Vol. 91, No. 6, 15 March 2002 E. Pan
ponent gxx and nonzero hydrostatic straingkk , the semi-
coupled model gives zero results for them, as can be ea
seen from Eqs.~23!–~25!.

Our important observation on the elastic and piezoe
tric fields induced by a QD in AlN has been further co
firmed by applying the fully coupled and semicoupled mo
els to a uniformly strained AlN layer grown along the pol
axis.35 Using the material properties for AlN,9,36 we found
that along the straining direction, the electric field predic
by the semicoupled model is 25% smaller than that base
the fully coupled model. More seriously, the predicted n
mal stresses in the straining direction based on the two m
els even have different signs~i.e., if the applied strain is of
extension, the semicoupled and fully coupled models t
predict a tensile and compressive stress, respectively!.35

B. Half-space GaAs

By applying the semicoupled and fully coupled mode
to the full-space GaAs and AlN, we have been able to sh
that while the semicoupled model can predict accurate ela
and piezoelectric fields in semiconductor GaAs, it should
be used for AlN since otherwise substantial or serious er
may occur. An obvious reason is that GaAs is wea
coupled~g50.04!, while AlN is relatively strongly coupled
(g50.32!.

In this section, we study the elastic and piezoelec
fields induced by a buried QD in a half-space GaAs, a c
that has not been studied analytically in the literature. A
sume that a QD is placed ath52 nm below the surface o
the half-space GaAs~Fig. 1!, we have been able to show th
for the two common types of surface conditions, i.
traction-free conducting and traction-free insulating, t
semicoupled model can still predict accurately the elastic
piezoelectric fields as compared to those based on the
coupled model. Since such, we only present some piezoe
tric results obtained using the fully coupled model and at
same time to show the influence of different surface con
tions on the piezoelectric fields on the surface of the Ga

Depicted in Fig. 5 are the contours of the electric pote
tial f ~1022 V! on the traction-free and insulating surface
the half-space GaAs due to a QD of volumeva54pa3/3
(a51 nm! applied atz5h ~52 nm!. It is interesting that
even though the present model uses a point QD the con
feature is still similar to that in Ref. 8. That is, the positiv
and negative electric potential values alternatively occu
one of the four quarters, with a maximum magnitude be
0.023 V.

While the contours of the horizontal electric fieldEh

5AEx
21Ey

2 ~107 V/m! on the traction-free and insulatin
surface are shown in Fig. 6, those of the vertical electric fi
Ez ~107 V/m! are presented in Fig. 7. It is observed th
while the vertical electric fieldEz follows the same feature a
the electric potential with a maximum magnitude of 1
3107 V/m, the horizontal electric fieldEh shows an interest
ing feature. The horizontal electric field has a minimum
the center~the surface point directly above the QD!, four
equal maximums on both sides of thex andy axes, and four
equal minimums on the diagonal axesx56y. It should be
Downloaded 03 Mar 2002 to 152.1.79.110. Redistribution subject to AI
ily

-

-

d
on
-
d-

n

w
tic
t

rs
y

c
e
-

,
e
d

lly
c-
e
i-
.
-

ur

y
g

d
t

t

also noticed that the maximum magnitude of the horizon
electric field can be as high as 3.53107 V/m, the same mag-
nitude as obtained in Ref. 1 for the corresponding super
tice case. We remark that these features have never
reported in the literature, and should be of interest to
design of strained QD semiconductor devices.

Finally, Fig. 8 shows the contours of the vertical elect
field Ez ~107 V/m! on the traction-free and conducting su
face. The effect of different electric surface conditions on
vertical electric field can be observed by comparing Fig

FIG. 5. Contours of the electric potentialf ~1022 V! on the traction-free
and insulating surface of the half-space GaAs due to a QD ath52 nm.

FIG. 6. Contours of the horizontal electric fieldEh5AEx
21Ey

2 (107 V/m! on
the traction-free and insulating surface of the half-space GaAs due to a
at h52 nm.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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with Fig. 7, and it is found that not only their magnitude, b
also the locations of the maximum quantities are quite
ferent. Specifically, much large magnitude for the verti
electric field Ez is observed if the surface is traction-fre
conducting, instead of traction-free insulating~2.73107 vs
1.23107 V/m!. Therefore, by applying different piezoele
tric conditions, one can not only relocate the position
maximum and/or minimum points of the piezoelectric fie
but also change the magnitude of this field. This again sho

FIG. 7. Contours of the vertical electric fieldEz ~107 V/m! on the traction-
free and insulating surface of the half-space GaAs due to a QD ath52 nm.

FIG. 8. Contours of the vertical electric fieldEz ~107 V/m! on the traction-
free and conducting surface of the half-space GaAs due to a QD ath52 nm.
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be of useful feature that can be applied to the design
semiconductor devices.

VII. CONCLUSIONS

In this article, we have studied the elastic and piezoel
tric fields in semiconductors GaAs and AlN due to a buri
QD. By developing a fully coupled piezoelectric model a
deriving the analytical solution for the semicoupled mod
we have shown that the semicoupled piezoelectric mo
adopted commonly in the physics community, is very ac
rate in the prediction of the elastic and piezoelectric fields
full- and half-space GaAs. However, use of the semicoup
model for AlN results in very serious errors for both th
elastic and piezoelectric fields. Our observation on the ela
and piezoelectric fields in AlN has been further confirmed
applying the fully coupled and semicoupled models to a u
formly strained AlN layer grown along the polar axis. W
remark that, in general, if a semiconductor possesses an
tromechanical coupling factorg>0.2, then the fully coupled
model should be used. The advantage of using the se
coupled model, instead of the fully coupled one, is appar
if an exact closed-form solution exists for the former. Ho
ever, exact closed-form solution is available only when
elastic properties can be safely approximated as isotro
which unfortunately may not be the case for most semic
ductors, even for the GaAs.2,24,25,29Since isotropic and an
isotropic semiconductors may response quite differently
the QD,37 it is therefore suggested that the fully couple
piezoelectric model introduced in this article should be e
ployed if a reliable result is required. The fully coupled p
ezoelectric model possesses the same structure as com
to the purely elastic and anisotropic model. Actually, o
needs only to extend suitably the basic physical quantity
mension from 3 in elasticity~i.e., the three elastic displace
ment components! to 4 in piezoelectric~i.e., the three elastic
displacement components plus the electric potential!.
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APPENDIX A. FULL-SPACE GREEN’S FUNCTION

In this appendix, we briefly review the Green’s functio
in an anisotropic and linearly piezoelectric full space, while
detailed derivation can be found in Pan and Tonon.18 These
Green’s functions include elastic displacement/electric
tential, elastic stress/electric displacement, and their der
tives with respect to the source coordinates, due to a p
force/point charge.

Assume that a point force/point charge is located at
origin of the space-fixed Cartesian coordinates~O, x1, x2,
x3!, our purpose is then to find the complete thre
dimensional Green’s functions at the field pointx. We first
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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introduce an orthogonal and normalized system~O;e,p,q!,
with their base~e,p,q! being chosen as the following

eÄx/r ; r5uxu. ~A1!

Now, letv be an arbitrary unit vector different frome (vÅe),
the other two unit vectors orthogonal toe can then be se
lected as:

p5
eÃv

ueÃvu
; qÄeÃp. ~A2!

We define a matrixG jk using the Stroh formalism38 as

G~p1zq![Q1z~R¿RT!1z2T, ~A3!

where

QIK5CjIKl pjql , RIK5CjIKl pjql , TIK5CjIKl qjql

~A4!

The determinant ofG(p1zq) is an eighth-order polynomia
equation ofz and has eight roots. In general, four of them a
the conjugate of the remainder. These roots can be fo
either by expanding the determinant ofG(p1zq) into the
polynomial, or by finding the eight eigenvalues of the fo
lowing linear eigenequation38

FN1 N2

N3 N1
TGF a

bG5zF a

bG , ~A5!

where

N152T21RT, N25T21, N35RT21RT2Q ~A6!

anda andb are the eigenvectors.
Assume that ImzM.0 ~M51,2,3,4!, and z̄M is the con-

jugate ofzM , the Green’s tensor, with its first index for th
elastic displacement/electric potential and the second in
for the point force/point charge, can be finally expressed
plicitly as

UIK~x!52
Im

2pr
(

M51

4

3
AJK~p1zMq!

a9~zM2 z̄M ! )
L51
LÞM

4

~zM2zL!~zM2 z̄L!

, ~A7!

wherea95det(T) is the coefficient ofz8, and AJK are the
co-factors of the matrixGJK . It is now worthwhile to make
some quick comments on the Green’s function express
~A7!: First, for a given pair of field and source points, o
needs only to solve a eighth-order linear eigenequations~or a
eighth-order polynomial equation! once in order to obtain al
the components of the Green’s tensor. Secondly, on obtai
Eq. ~A7!, we have assumed that all the poles are sim
Should the poles be multiple, a slight change in the mate
constants will result in single poles with negligible errors
the computed Green’s tensor.39,40 Thirdly, sinceGJK is sym-
metric, so is its adjointAJK . Therefore, the Green’s displace
ment GJK is symmetric and one needs to calculate only
out of its 16 elements. Finally, although one can choose
vectorv ~Þe! arbitrarily, it should be one of the base vecto
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in the space-fixed Cartesian coordinates, i.e.,~1,0,0!, or
~0,1,0!, or ~0,0,1!. The analytical expression for the Green
displacement is much simpler using such a vectorv than
using any other vectors.

In the analysis of eigenstrain problems using the Gree
function method, the first and second derivatives of
Green’s tensor are also needed. These can be found u
some simple yet accurate numerical formulations.18,26

APPENDIX B. HALF-SPACE GREEN’S FUNCTION

For the sake of easy reference, we also briefly pres
the Green’s functions in an anisotropic and linearly piez
electric half-space with traction-free insulating surface co
ditions. While a detailed derivation can be found in Pan a
Yuan19 for this special boundary condition, the reader is
ferred to Pan10 for other general surface conditions. The p
ezoelectric half-space Green’s function is expressed as a
of the full-space Green’s function presented in Appendix
and a complementary part, which resemble the Mindlin’s
lution for the corresponding elastic and isotropic h
space.41 The complementary part is expressed in terms o
regular line integral, which can be easily evaluated by a st
dard numerical quadrature.

We first introduce the extended Stroh eigenvalues
eigenvectors, which are mathematically elegant and num
cally powerful.38 These Stroh eigenvaluepJ and the corre-
sponding 431 eigenvectoraJ are the solutions of the follow-
ing eigenrelation19

@Q1pJ~R1RT!1pJ
2T#aJ50, ~B1!

where the superscriptT denotes matrix transpose, and

QIK5CaIKbnanb , RIK5CaIK3na , TIK5C3IK3

~B2!

with

~n1 ,n2![~cosu,sinu! ~B3!

and a and b taking the values of 1 and 2. Similar to th
full-space case, the eigenvalues of equation~B1! are either
complex or purely imaginary due to the positive requirem
on the strain energy density.

We then define other two vectorsbJ ~431! and cJ ~5
31! related to the Stroh eigenvectoraJ as

bJ5~RT1pJT!aJ52
1

pJ
~Q1pJR!aJ, ~B4!

cJ5DJaJ,

where the 534 matrix DJ is defined by

~DJ!kL5H C1kLana1pJC1kL3~k51,2!

C22Lana1pJC22L3~k53!

Ci4Lana1pJCi4L3~ i 5k23!~k54,5!

~B5!

Assume thatpJ , aJ , andbJ ~J51,2,...,8! are the distinct
eigenvalues and the associated eigenvectors, we then ch
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Im pJ.0, pJ545 p̄J , aJ145āJ , bJ145b̄J ,

cJ145 c̄J ~J51,2,3,4!
~B6!

A5@a1 ,a2 ,a3 ,a4#, B5@b1 ,b2 ,b3 ,b4#,

C5@c1 ,c2 ,c3 ,c4#,

where Im stands for the imaginary part and the overbar
notes the complex conjugate, and the eigenvectorsaJ , andbJ

satisfy

bI
TaJ1aI

TbJ5d IJ ~B7!

with d IJ being the Kronecker delta.
Let us now denote byU`(x;y) the full-space Green’s

function tensor given by~A7! of Appendix A with its row
and column indices corresponding to the elas
displacement/electric potential and point force/point char
respectively. Then, the half-space Green’s tensor, with
components bearing the same physical meaning, can be
ten in a concise form as10,19

U~x;y!5U`~x;y!1
1

2p2E0

p

ĀG1ATdu, ~B8!

where

~G1! IJ5
~B̄21B! IJ

2 p̄Ix31pJy32@~x12y1!cosu1~x22y2!sinu#
.

~B9!

Similarly, let T`(x;y) andS`(x;y) be the full-space Green’
elastic stress/electric displacement with their components~or
the row indices! being defined as

~T`!urow5~s31,s32,s33,D3!T,
~B10!

~S`!urow5~s11,s12,s22,D1 ,D2!T,

and their column indices for the point force/point charg
Then, the half-space Green’s elastic stress/electric displ
ment can be derived as:10,19

T~x;y!5T`~x;y!1
1

2p2E0

p

B̄G2ATdu,

~B11!

S~x;y!5S`~x;y!1
1

2p2E0

p

C̄G2ATdu.

In Eqs.~B11!,

~G2! IJ

5
~B̄21B! IJ

$2 p̄Ix31pJy32@~x12y1!cosu1~x22y2!sinu#%2
.

~B12!

Derivatives of the Green’s elastic displacement/elec
potential with respect to the source point~y1 ,y2 ,y3) can be
easily carried out and the results are:

]U~x;y!

]yj
5

]U`~x;y!

]yj
2

1

2p2E0

p

ĀG2^gj&A
Tdu, ~B13!
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where

^g1&5diag@cosu,cosu,cosu,cosu#,

^g2&5diag@sinu,sinu,sinu,sinu#, ~B14!

^g3&5diag@p1 ,p2 ,p3 ,p4#.

Similarly, the derivatives of the Green’s elastic stre
electric displacement with respect to the source po
(y1 ,y2 ,y3) are:

]T~x;y!

]yj
5

]T`~x;y!

]yj
2

1

2p2E0

p

B̄G3^gj&A
Tdu,

~B15!
]S~x;y!

]yj
5

]S`~x;y!

]yj
2

1

2p2E0

p

C̄G3^gj&A
Tdu,

where

~G3! IJ5
~B̄21B! IJ

$2 p̄Ix31pJy32@~x12y1!cosu1~x22y2!sinu#%3

~B16!

Equations~B8!, ~B11!, ~B13!, and ~B15! are the com-
plete Green’s functions in an anisotropic and linearly pie
electric half space with traction-free insulating bounda
conditions, or the generalized Mindlin solution in anisotrop
piezoelectric half space. Mindlin solutions to other types
surface boundary conditions, along with some typical n
merical examples can be found in Pan.10
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