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Elastic and piezoelectric fields around a quantum dot: Fully coupled
or semicoupled model?

E. Pan®
Structures Technology Incorporated, 543 Keisler Drive, Suite 204, Cary, North Carolina 27511

(Received 1 October 2001; accepted for publication 18 Decemben 2001

In the study of elastic and piezoelectric fields in semiconductors due to buried quantuf@Dsts

the semicoupled piezoelectric model is commonly adopted. However, its accuracy and suitability
have never been studied. In this article, by developing a fully coupled piezoelectric model and
deriving the analytical elastic and piezoelectric fields based on this and the semicoupled models, we
are able to verify that when the piezoelectric coupling is weak, like GaAs with the
electromechanical coupling factgr= 0.04, the semicoupled model predicts very accurate results as
compared to those based on the fully coupled model. However, if the piezoelectric coupling is
relatively strong, like AIN withg=0.32, we have shown that the semicoupled model gives very
serious errors or even totally wrong results. Applying these two models to a uniformly strained AIN
layer grown along the polar axis has also confirmed our observation. Therefore, for semiconductors
like AIN, the fully coupled model presented in this article must be employed in order to give a
reliable and accurate prediction for the elastic and piezoelectric fields. Also presented in this article
is the distribution of the piezoelectric field on the surface of a half-space GaAs due to a buried QD
located at 2 nm below the surface with a volum&/3t (nm)®. It is observed that the horizontal
electric field on the traction-free and insulating surface shows some special features and its
maximum magnitude can be as high as>31®’ V/m when the uniform mismatch eigenstrain is
0.07. Furthermore, the piezoelectric field on the traction-free and conducting surface exhibits
different characters as compared to the traction-free and insulating cas@00® American
Institute of Physics.[DOI: 10.1063/1.1448869

I. INTRODUCTION been proposed and applied to the study of the QD-induced
elastic and piezoelectric fields. Furthermore, whether the

A buried quantum dofQD), i.e., an eigenstrain due 10 gemicoupled model is suitable or not, a key and fundamental
the lattice mismatch between the QD and the Su”ound'n%uestion has never been answered in the literature.

piezoelectric matrix, induces not only an elastic field, but " | 5 recent article, the authdrsolved the generalized
also a piezoelectric field. Since both the elastic and piezogingiin’s problem in a fully coupled and generally aniso-
electric fields are equally important in the understanding of;qic piezoelectric half space where the point source can be
the photonic and electronic features in semiconductols,  gjther the elastic point-force or the electric point-charge den-
reliable analysis on these fields are crucial to the design ol By examining two typical piezoelectric materials, one is
such.struc?ures. It is obvious that a deeoupled model W,'tho%trongly coupled and the other is weakly coupled, the author
consideration of the effect of the elastic field on the pi€z01 55 peen able to demonstrate the importance and necessity of
electric field, or vice versa, is unsuitable. Therefore, a fu”Yusing the fully coupled piezoelectric model in the prediction
coupled or at least a semicoupled model should be used, Wity (he elastic and piezoelectric fields induced by a point
the later being commonly adopted in physical community forto ce/noint charge. We further remark that'®t? solved the

the prediction of'the piezoelec'tric. field'. In' such a Simpl?ﬁedcorresponding half-plane problem and his solution for an in-
model, the QD-induced elastic field is first solved, either| sion of any shape has also shown analytically the effect of

analytically (when the geometry is simple and/or the in-he glectromechanical coupling on the elastic and piezoelec-
volved elastic material is isotropftor numerically other- tric fields.

wise using eithersthe finite element. metho.d or the finite dif- In this article, we introduce a fully coupled piezoelectric
ference method:® The purely elastic solutiofactually the model for the prediction of the QD-induced elastic and pi-

elastic strain or stress tengas then used to find the polar- o qelectric fields in semiconductors by employing the gener-
ization field, which induces the electric potential and eIectncaHzed Betti's reciprocal theorem and the point-force/point-

fie!d. Finally, the_induced piezoelectric field. i.s solveq Unde_rcharge solutions recently developed by the autfor.
suitable purely plezoelectrlc boundary COﬂdItIO'nS. This SeMityrthermore, a detailed study on the semicoupled model is
coupled model was previously applied to various semicony s given. Assuming elastic isotroggnly for the purpose
ductors, such as group Il and group Il nitrides. So o simplifying the derivation of the solution for the semi-
far, however, no fully coupled piezoelectric model has eVeleoupled model for the semiconductors GaAs and AIN, we
have derived the analytical solutions, based on the semi-

dElectronic mail: ernian_pan@yahoo.com coupled model, for the elastic and piezoelectric fields in a
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full- and half-space GaAs, and in a full-space AIN. There-most all previous studies in strained quantum devices. An-
fore, with these solutions, a quantitative assessment on thether one is to use the semicoupled model where constitutive
suitability of the semicoupled model is carried das com- relation (2a) is used to find the purely elastic field by drop-
pared to the results based on the fully coupled models  ping the second term on the right-hand side., e =0),
found that the semicoupled model can predict very accuand relation(2b) is then used to estimate the electric field
rately the elastic and piezoelectric fields induced by a QD irinduced by the purely elastic fielde., the elastic strain ten-
the full- and half-space GaAs. However, the semicoupledsor withe;; #0). It is obvious that if one is also interested in
model gives serious errors or completely wrong results fothe piezoelectric field, the fully coupled or at least the semi-
the elastic and piezoelectric fields in AIN. This important coupled model should be used.

observation has been further confirmed by applying the fully ~ The fully coupled elastic and piezoelectric fields can be
coupled and semicoupled models to a uniformly strainecconveniently studied using the Barnett—Lothe notatiom
AIN layer grown along the polar axis. terms of this notation, the elastic displacemenand electric

Finally, this article presents the distribution of the piezo-potential ¢, the elastic strainy;; and electric fieldg;, the

electric field on the surface of a half-space GaAs due to @lastic stresg;; and electric displacemef;, and the elas-
buried QD located at 2 nm below the surface with a volumetic and electric moduliCj;, , €jjx, ande;;) can be grouped
47/3 (nm)°. It is observed that the horizontal electric field on together ag®131517
the traction-free and insulating surface possesses some spe-

. . : X . u, 1=123
cial features and its maximum magnitude can be as high as |, _{ p 4

1=
’yij y |:1,2,3

~E, I=4"

4

3.5X 10 V/m when the uniform mismatch eigenstrain is 0.07.
Furthermore, the piezoelectric field on the traction-free and
conducting surface exhibits completely new characters as [
compared to the traction-free and insulating case. All results
presented can be served as benchmark examples for future [

®)

O'ij, J:1,2,3

researchers in this area and should be also of great interestto . —
D;, J=4"

the QD device analysis.

6

Cijkl f J,K:1,2,3
e“j s J:1,2,3; K=4
We consider the fully coupled deformation of a linearly ~ Ciski= o J=4- K=123 (7)
anisotropic piezoelectric semiconductor due to a point force/ Ikt ’ w
point charge applied at the source poynwvithin the given €l J=K=4
semiconductor. The equilibrium equations can be expresse@ terms of this shorthand notation, the constitutive relations
as 1 (2a,b can be unified into

o'ji’j+fi5(x—y)=0; Di,i—qﬁ(x—y)=0, (1)

Il. FULLY COUPLED MODEL

ai3= Cigki Yki - (8

where o7; and D; are, respectively, the elastic stress andgjmjlarly, the equilibrium Eq.(1) in terms of the elastic
electric displacement; anfd andq are, respectively, the am- gtress/electric displacement can be recast into
plitudes of the point force and point charge. As a convention,

lowercasguppercasesubscripts always range from 1 tqB oy, +13,=0, 9

to 4) a_nd §U|_”nma}tion over repeated lowercdsppercase _with f, being defined as

subscripts is implied. A subscript comma denotes the partial

differentiation with respect to the coordinates. | fidx=y), J=123
For a fully coupled piezoelectric solid, the elastic defor- I —qd(x—y), J=4

mation and electric field are coupled together by the follow-

ing constitutive relatiori§+6

(10

The fully coupled piezoelectric model is now applied to
the calculation of the elastic and piezoelectric fields in a full-
i = Cijim Yim— &xjiEk» and half-spaces due to a buried QD. These induced fields are
(2a,b expressed in terms of boundary integrals on the surface of

the QD for a finite-size QD, and in terms of the point-force/
where Cjjim, €jk, and €; are, respectively, the elastic point-charge Green's function solutions for a point QD. The
moduli, piezoelectric coefficients, and dielectric constantsgeneralized Betti's reciprocal theorem is employed to derive
The elastic strairy;; and electric fielcE; in (2a,0 are related  these elastic and piezoelectric fields.

Di=eijk vkt €jE;,

to the elastic displacement and electric potentiap, respec- A general eigenstrain problem in an anisotropic and lin-
tively, by early piezoelectric semiconduct@ull or half spacé can be
1 reduced to an integral equation in terms of the associated
Yij =§(ui1j+ Uji); Ei=—¢;. (3a,  point-force/point-charge Green’s functions. This integral ex-

pression is a consequence of the Betti's reciprocal theorem in

We point out that the decoupled stafrirely elastic and  piezoelectricity:®> We assume that there are two states asso-

purely electric deformationscan be obtained by simply set- ciated with the problem domain: One is the eigenstrain prob-
ting €, =0 in (2a,b, one of the procedures adopted in al-lem, i.e., an eigenstrf:lim,*j (elastic strain and electric field,
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with | =4 for the lattey in a finite subdomairf) of the full- 1, .

or half-spaceD, and the other is the point-force/point-charge  Ykp(Y) = EYLmLQCiJLm[UJ,yp(X;y)

Green’s function problem. Then the elastic displacement and

electric potentialug(y) due to the eigenstrairy;; can be +u’j]yk(x;y)]nj(x)dS(x); k=1,2,3, (153
expressed by

K 7Kp(Y):7’fmf CiJLmUJK,yp(X;Y)nj(X)dS(X)i K=4
uK(y)=LD[UJ(x;y)cfu(X)ni(x) 9

(15b)
— gﬁ(x;y)ni(x)uJ(x)]ds(x) with the corresponding stress and electric displacement fields
being
Kiy- . .
+ fDUJ(X,y)[ CIJLm’th(X)],I]dV(X)a (11) O'IJ(y):CIJKp['pr(y)—X')/;p] (16)

) o ) where y equals to 1 if the observation poigtis within the
wheredD is the boundary oD which is a spherical surface eigenstrain domai, and 0 otherwise.

with a large radius for the full-space case, and the surface of Finally, for a point(or concentratedeigenstrain applied

the half-space and a hzla<lf spherical ﬁurf.ace with a large r'adiu§t pointx, the induced elastic displacement/electric potential
for the half-space casey(x,y) andoj;(x;y) are the Green's 4 elastic strain/electric fields can be expressed directly by

J-th elastic displacement/electric potential aieth stress he point-force/point-charge Green’s functions without either
components/electric displacementscalue to a point force/  oiymetric or surface integration. Assuming that the point
point cglarge_m th&-th direction applied &. While Pan and  gjgenstrain or point QD has an equal intensity of a sphere
Tonon'® obtained the full-space Green's functions, Pan andyith radiusa (i.e., with a volumev ,= 47a%/3) centered ax

9 . . . . " )
Yuart® derived those in a half space under the traction-freghen the QD-induced elastic displacement/electric potential

and insulating surface condition. More recently, Pawlved  and strain/electric fields are found to be, respectively,
the generalized Mindlin problem where the surface of the

piezoelectric half-space is under general boundary condi- Uk(y)=0o.(%Y) Vi mwa a7
tions. These Green’s functions, along with their derivatives
with respect to the source coordinagteare summarized in and
Appendices A and B for the sake of easy reference. 1

Notice that since the eigenstraiyf; is applied only in  Ykp(Y) = Eyfm[ﬂﬁ]L,py(X;Y)JrU%L,ky(xiy)]va; k=1,2,3

the finite subdomairf) of D and that the boundaryD is (189
either in infinity where the integrands are zero or the surface

of the half space on which the Green’s functions are zero, ityk,(y) = 'yfmarﬁL’py(X;y)va; K=4 (18b)

is evident that the integration on the boundaBy in Eq. (11)

is zero. Therefore, Ec[_‘l_]_) is reduced to Equation (17) indicates that the elastic diSplacement/

electric potential aty in the K-th direction (K=4 for the
electric potentigl due to a QD atx with componentgLm)
ug(y)= fD uSOGY[=[Ciom¥im()1,1dV(X). (120 (L=4 for the electric fieldlis equivalent to the elastic stress/
electric displacement field at with components(mL) (L
=4 for the electric displacementiue to a point force/point
n(;harge al in theK-th direction(K =4 for the point-charge
We remark that while a similar observation can be made for
Eq. (18), this equivalent property, between a point force/
point charge and a point eigenstraior point QD), is an
ug(y)= J CiJ,_mugfx_(x;y) Y m(X)dV(X). (13 extension to the piezoelectricity of the purely elastic equiva-
@ ' lent property between a point-force and a point-dislocation

solution?%?!

Differentiation in Eq.(12) can be shifted by applying the
Gauss theorem and by noticing that the eigenstrain is no
zero only in€), which gives

The domain integral in Eq(13) can be further trans-
formed to the surface db if the eigenstrain is constant. That
is
. SEMICOUPLED MODEL

uK(y)=CiJLmyfmf uf(x;y)n(x)dS(x), (14 In the semicoupled model, the purely elastic problem
e [i.e., using Eq(2a) with e;;=0] due to a QD is solved first,

subject to the given elastic boundary condition if any bound-
wheren;(x) are the outward normal components on the sur

‘ary exists.
face OfQ' , . . After the elastic strain tensoy;; is obtained, the follow-
.TO .fmd the elastic strain and electric fields, we tak_e thelng relation is then used to find the QD-induced polarization
derivatives of Eq(14) with respect to the observation point field p. 14
(i.e., the source point of the point-force/point-charge Green'’s t
function), which yields Pi=€ijk Yk - (19
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It is seen that this relation is actually quite similar to E2b) =¢ 1,j=1,23

. . o . ) Yij Jij ') Ly
with €;; being zero. The electric field is solved using the (25a,h
following governing equations subject to the electric bound-  7ij =Cij ¥

ary condition if any boundary exists® whereC;, is the fourth-order stiffness tensor, which is char-
. . acterized by two elastic constants for the isotropic case.
Dii=pe; 7mikEjx=0; Di=e;Ej+P;, (20a,b,¢ y P

wherep, is the external charge density;;, the alternating
symbol which equals 1 ifijk) is a cyclic permutation of
(123, equals -1 if (ijk) is an anticyclic permutation of Since the only nonzero piezoelectric constant in GaAs is
(123, and equals 0 otherwise. It is obvious that E20b) for  e;, (=e,s=es), the polarization field based on EQ9) of

the electric fieldE; is automatically satisfied if Eq3b) is the semi-coupled model is therefore reduced to

used. Expressing the electric field by the gradient of the elec-
tric potential in Eq.(20¢) and substituting the result into Eq.
(203 gives the following equation for the electric potential Using Eq. (23)—(25), the polarization field can be easily

found as
€ijbij= —Ppet Pik- (21

B. Piezoelectric fields in full-space GaAs

Py= 2e14')’yz ; Py: 2e14Y; Po= 2e14')’xy . (26)

0
Thus, Py can be seen alternatively as a negative charge  p,—2e = — 3ewyva(lty) yz

density*® 27(1—v) 5’

Since the equivalent charge dendiy is related to the 0
purely elastic strain field, an exact closed-form solution to  p _ ¢ N €14y va(l+v) xz 27)
Eq. (21) exists only for certain elastic materials in either full- yT e 2m(l-v) 5’
or half-spacé?2° Therefore, to simplify our derivation and
arrive at some analytical results using the semicoupled p.—> o 3e17va(1+v) Xy
model for the purpose of comparison with the fully coupled 2= 2814 xy= 2m(1—v) 5’
model, we assume that the elastic moduli of the semiconduc- )
tor material is isotropic. which yields

Pk= 6e14‘ﬂ,><yz- (28)
Thus, the electric potential should satisfy the following Pois-

IV. SEMICOUPLED SOLUTION IN A FULL SPACE son’s equation

We now apply the semicoupled model to find the elastic 6e14
and piezoelectric fields in a semiconductor full space due to ‘ﬁkk:a‘ﬂyxyz' (29
a buried QD. Both the GaAs and AIN semiconductors will be . . .
considered. While GaAs is a weakly coupled material withWhICh permits a solution &s
an electromechanical coupling factgr=0.04, AIN is a 99% (14 v)ey, Xyz
strongly coupled one witly=0.32. It is also noticed that in b= e 5 (30

m(l—v)ege, 5

order to find the piezoelectric field, one has to derive first the
corresponding purely elastic solution due to the QD. This iswhile the electric fieldE; can be obtained by taking the

presented next. derivative of the electric potential, the electric displacement
A. Purely elastic solution in a full space Eilgzig;))e found using Eq20¢) along with the polarization
ie .

Assuming that the purely elastic full space is isotropic,
and that a uniform QD with a hydrostatic straj/q*g = yoaij . o .
and an intensity equal to that of a sphere with a radi(ise., ~ C. Piezoelectric fields in full-space AIN
va=4ma’3) is located ak=(0,0,0), then the only nonzero = i isation field i
T - 1Y)y He ~elo - or a wurtzite AIN, the polarization field is related to the
elastic displacement induced by this QD is in the radial di-gt;ain tensor 86
rection of the spherical coordinaté$>?’ That is

0 [ Yxx ]
Yva(ltv)
u(r)=————. (22) Yyy
' 4m(1—v)r? Px 0 0 0 0 es50 o
) L . . PyI=f 0 0 O es 0 O . (3D
Introducing an elastic displacement potential function as 2y,
P, €3 €33 €3 O 0 O
ui:l//,i ; i:11213: (23) 272x
2
Yo (1+v) . ) ] LY ]
- dm(1—v)r’ (24)  We mention that this structure is also called transversely iso-

tropic with the poling direction along theaxis.
the elastic strain and stress tensors are readily to be obtained Similarly, using the solved elastic strain figl@53, the
as polarization field is found to be
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3815’}/0l)a(1+ V) XZ X
Py=2e15 x;= — T on(i-) 5
3615'}’0U a( 1+ V) yZ
Py=2e5 y,= — m r—5, (32
|
P,=e3:( l;b,xx_" lp,yy) + e33‘//,zz h y
Y va(1+w) 2 3(x*+y?)
R |
which gives ¢
I:)k,k: (2e15t+e39)( l//,xxz+ ¢,yyz) + e33¢',zzz- (33) Z
Consequently, the electric potential satisfies the following FIG. 1. QD atz=h (nm) below the surface of a half space.

Poisson’s equation

1
¢,kk:£[(2e15+ eSl)(l;b,xxz"_ ‘/’,yyz)+e33‘/",zzz-| (34) Rl: \/m

from which, a solution is found as R,= X2+ y2+ (z+h)Z.
37%a(1+v)(2e15+ €31~ €332

(36)

= Then, the elastic displacements in the half space due to the
Bm(1=v)eos QD can be found &%3?7
X2+ 2 2
X[—( 5y )——3 : (35) ! _Yva(l+w)x[ 1 3-4v 62(z+h) a7
r 5r X Aq(1-v) RS RS RS

Again, similar to the GaAs case, the electric field is ob-
tained by taking the derivative of the electric potential, andWhile u, can be obtained from E¢37) by replacing the
the electric displacement field is then obtained using Eqvariablex withy, u, is expressed as
(200 with the given polarization field32).

We will numerically show later that in the full-space ~Yva(l+v)[z—h (3-4v)(z+h) +E
GaAs where the electromechanical coupling is weak, the Z Amx(l-v) Rf Rg Rg
semicoupled model predicts nearly identical elastic and elec-
tric fields as those based on the fully coupled rigorous model. 6z(z+h)?

However, the semicoupled model gives completely wrong _T '

results for both the elastic and electric fields in the full-space 2

AIN where the electromechanical coupling is strong. It is

therefore concluded that even for the full-space AIN, theB. Piezoelectric field in half-space GaAs
semicoupled model should not be used! While the semi-  The polarization field is again related to the elastic strain
coupled model can be safely used for the full-space GaAs tgnsor as in Eq(19), and is found to be

study the QD-induced elastic and piezoelectric fields, its suit-

(38

ability and accuracy to the half-space GaAs is explored in the 39 e4(1+ ,,)y[ (z—h) (z+h)
next section. Px=2e14yy,= — -
2m(1-v) R RS
V. HALF-SPACE GaAs 2z 10z(z+h)?
_ _ t = (39
When a QD is located close to the surface, the influence R> R>

of the surface must be considered. In this situation, the ana- . ) , )
lytical solution developed in the previous section for a QD inWhIIe Py can be obtained fror?, by replacingx with y, P,
a full-space can not be used. Instead, the solution in a hahhas
space based on the semicoupled model needs to be derived.

0 _
Following the similar procedure, we first derive the elastic  p_— ey, = 3y veeu(ltvixy) 1 3-4v
field and then the piezoelectric field. 2m(1-v) R R
A. Purely elastic solution in half-space GaAs 10z(z+h)
Let us again assume that a QD with a uniform hydro- B R; (40

static strainy}; = y°8;; and a volumer ,=4a*/3 is centered
at a distance=h below the surface of the half-space GaAs Using Eq.(21), we found the following Poisson’s equation
(Fig. 1). We further define for the electric potential
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_ Yvae1(1+v)xy | 45z—h) o 3% e141+v)xy [ —=3(z—h) . (5+4v)(z+h)
P w= 2m(1—v)ege, R/ ¢= 47(1—v)e€ge, RS RS
15(7—4v)(z+h) 90z 630z(z+h)? 1 5(z+h)?| 9(z+h) 15z+h)®
+ Z +— 5 . +6h| — 7 - — + Z .
R2 RZ R2 RZ RZ R2 RZ
(471) (44
Alternatively, this can be written as For the homogeneous solution, which depends on the given

Yop.en(1+ D) boundary condition, the following two cases are discussed.
_ av<14 _ -1
{=3(Ry )y + (5+4v) 1. Traction-free conducting surface

1= 2m(1—v)ege,
_ _ For a conducting surface, we require that the electric
1 1 _
X(Ry ™) xyzt ON(R; 1) yzz= 6(Ro) xyzzd- (42) potential on the surface=0 vanishes, i.e.$=0. Using this
Since Eq.(42) needs to be solved with the given bound- condition along with Eqs(43) and (44), the homogeneous
ary condition on the surface of the half space, it is thereforesolution for the electric potential is obtained as
convenient to express the electric potential as a sum of a

0 2
particular and homogeneous solution, i.e., h_ 37 vael(l+v)xy| (5+4v)h N 15h“(z+h)
¢=P+ ", 43 Am(1=v)eosy R2 R;
where the first term on the right-hand side is a particular (45

solution of Eq.(42) and the second term is the homogeneous . . .
solution added to satisfy the given piezoelectric boundary?. Traction-free insulating surface

condition on the surface of the half space. Similarly, for an insulating surface, we require tHa
The particular solution of Eq42), after some simple but =0 on the surfacez=0. For this case, the homogeneous
tedious derivations, is found to be solution for the electric potential can be expressed as

. 3y% e 1+ v)xy | (1—4v)h  15h%(z+h)| 39 %.ei 1+ v)(1—4v)
¢ (X,y,2)= +

4dm(1l—v)ege, Rg R; 87 (1—v)€ge,

o o0 kxky
X dk,dky, 46
foofoc[(kx—x)2+(ky—y)2+zz]1/2[k)2(+k§+h2]5’2 o (40

where the double Fourier integrals can be carried out using Material coefficients of the GaA®01) are used for both
an efficient and adaptive quadrature proposed by Yang. the full and half space.e., for the half-space GaAs, the
With the electric potential being solved for both surfacesurface of the half space is in th@01] direction. The iso-
boundary conditions, the electric field can be found by takingropic elastic constantgin 10° N/m?) are C;;=172, Cy,
the derivative of the electric potential. The electric displace-=54, andC,,=59 with a Poisson’s ratiar=0.2389. We
ment field is then obtained using ERO¢ along with the  mention that whileC,, and C,, are the elastic constants of
polarization fields(39) and (40). GaAs??930 C,; is obtained by the isotropic relation, i.e.,
C11=C1,+2Cy4,. Also for GaAs, the only nonzero piezo-
electric coefficient ise;, (=e,5=e39)=—0.16 C/nt.>* We
VI RESULTS remark that the negative sign &, was neglected in some
Having derived the elastic and piezoelectric solutionsPrevious publications based on the semicoupled middef;
based on both the fully coupled and semicoupled models, w&hich gives the piezoelectric field with equal magnitude of,
now carry out the comparison studies using these solution®Ut OPposite signs to, that using the right. Finally, the
In the numerical study, we assume, for simplicity, that thef€lative dielectric constant is chosenes- 12.58 Therefore,
mismatch eigenstrain in the QD is hydrostatic, i.g], the electromechanical coupling facwfor GaAs, defined as
=7%8;. We also assume that’=0.07 for both the GaAs g=emax/\/(emax/Cmay), is found to be 0.04where ey,
and AIN semiconductor&:? although this eigenstrain is dif- €5y, andC. are the maximum absolute values of the pi-
ferent for the latter caseThe QD is applied at the origin  ezoelectric coefficients, dielectric constants, and elastic con-
=(0,0,0) for the full-space cadavith no surfacg and atx  stants.
=(0,0h) for the half-space case. For the examples presented The elastic constants for AIN isalso in 18 N/m?)
next, the radius in the QD volume,=47a®3 is fixed at C;;=304, C;,=160>% which gives C,,=72 by assuming
a=1 nm, and the depth &t=2 nm(for the half-space cage isotropy. Therefore, the Poisson’s ratio for this materiab is
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FIG. 3. Variations of the electric fiele, in GaAs and AIN along the line
x=(X,X,X) due to a QD at the origix=(0,0,0), predicted based on the

FIG. 2. Variations of the electric potential in GaAs and AIN along the line A
fully coupled and semicoupled models.

x=(X,X,x) due to a QD at the origix=(0,0,0), predicted based on the
fully coupled and semicoupled models.

Since the piezoelectric field is directly relatéat more
specifically proportionalto the elastic field, one would ex-
. . _ pect that when using the semicoupled model to predict the
.:0'3448' T_he plgzoelgctrlg structure of AlN IS transverselyelastic field, the result will be correct for GaAs and wrong
|sotrop|c with poling d|rec.t|c.)n along the axis and has the for AIN. This is indeed the case. Similar to the electric quan-
following nonzero - coefficients: es;= %'55’ €31( =€) = tities in GaAs, the elastic quantities in GaAs can also be very
—0.58, and_e15(=e24)= ~0.48 (Q/n"r). FS|4naI.Iy,.the rela- accurately predicted based on the semicoupled model. How-
tive dielectric c;onstant fpr ANN s =8.5. . Similarly, the ever, the elastic field in AIN can be wrong if the semicoupled
eIectrqmechamcaI coupling factgrior AIN is g=0.32, ex- model is used. For example, Fig. 4 shows the variations of
actly eight times larger than that for GaAs. the elastic strain field in AIN along the line=(x,x,x) due
A. Full-space GaAs and AIN to the QD at the origirx=(0,0,0), predicted based on both
the fully coupled and semicoupled models. It is obvious that

Shown in Fig. 2 are the variations of electric potential i hile the fully coupled model predicts nonzero strain com-

the full-space GaAs and AIN along the lixe= (x,x,x) due
to the QD located at the origir=(0,0,0), predicted based
on the fully coupled and semicoupled models. We remark
that while the electric potentials in GaAs and AIN along the
line x=(x,x,0) and in GaAs along the ling=(0,0z) are
zero, the electric potential in AIN along the line=(0,02)
has a large magnitud@about ten timesas compared to that
along the linex=(x,x,x). It is also observed from Fig. 2 that
while both the fully coupled and semicoupled models predict
nearly identical electric potential in GaAs, the electric poten-
tials in AIN predicted based on the two models are different,
in particular when the observation point is close to the QD.

Figure 3 shows the variation of the electric fiddg in
GaAs and AIN along the lin&=(x,x,x) due to the QD at -0.006
the originx=(0,0,0). Again, the electric fields in GaAs pre-
dicted based on both the fully coupled and semic_ouple_d --Ac--  Semi-coupled strain_xy
models are nearly the same. However, the electric fields in  -0.008 ' T
AIN based on the two models are substantially different, and —@— Fully coupled hydrostatic strain

|
2

AIN

—— _
—h—

Elastic Strain

Fully coupled strain_xx

Fully coupled strain_xy

in general, the semicoupled model underestimates the mag . | . | . ‘ .
nitude of the electric field. More specifically, at the observa- ) 1 3 4 5 6
tion point x=(x,x,x)=(1,1,1) nm, the magnitude of the x(=y=z) nm

electric field E, predicted by the semicoupled model is IG. 4. Variations of the elastic strain in AIN along the lire (x,x,Xx) due

roughly one half of that predicted based on the fully coupledy 4 gp at the originc=(0,0,0), predicted based on the fully coupled and
model. semicoupled models.
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ponent y,, and nonzero hydrostatic strai,,, the semi-
coupled model gives zero results for them, as can be easily
seen from Eqs(23)—(25).

Our important observation on the elastic and piezoelec-
tric fields induced by a QD in AIN has been further con-
firmed by applying the fully coupled and semicoupled mod-
els to a uniformly strained AIN layer grown along the polar
axis2® Using the material properties for AIRE® we found
that along the straining direction, the electric field predicted ¢ [————
by the semicoupled model is 25% smaller than that based org °°
the fully coupled model. More seriously, the predicted nor- *
mal stresses in the straining direction based on the two mod-

els even have different sigrise., if the applied strain is of 057 Te—r
extension, the semicoupled and fully coupled models then
predict a tensile and compressive stress, respeclively

-1.0+ r

o =
5] o

B. Half-space GaAs \ a\

By applying the semicoupled and fully coupled models e A 0. 0.0 05 10 15
to the full-space GaAs and AIN, we have been able to show y10rm
that while the semicoupled model can predict accurate elastigG. 5. Contours of the electric potentig (102 V) on the traction-free
and piezoelectric fields in semiconductor GaAs, it should notnd insulating surface of the half-space GaAs due to a Q=& nm.
be used for AIN since otherwise substantial or serious errors
may occur. An obvious reason is that GaAs is weakly
coupled(g=0.04), while AIN is relatively strongly coupled also noticed that the maximum magnitude of the horizontal
(g=0.32. electric field can be as high as X80’ V/m, the same mag-

In this section, we study the elastic and piezoelectricnitude as obtained in Ref. 1 for the corresponding superlat-
fields induced by a buried QD in a half-space GaAs, a castice case. We remark that these features have never been
that has not been studied analytically in the literature. Asteported in the literature, and should be of interest to the
sume that a QD is placed bt=2 nm below the surface of design of strained QD semiconductor devices.
the half-space GaA&-ig. 1), we have been able to show that Finally, Fig. 8 shows the contours of the vertical electric
for the two common types of surface conditions, i.e..field E, (10" V/m) on the traction-free and conducting sur-
traction-free conducting and traction-free insulating, theface. The effect of different electric surface conditions on the
semicoupled model can still predict accurately the elastic anslertical electric field can be observed by comparing Fig. 8
piezoelectric fields as compared to those based on the fully
coupled model. Since such, we only present some piezoelec-

tric results obtained using the fully coupled model and at the 15 - '

same time to show the influence of different surface condi-

tions on the piezoelectric fields on the surface of the GaAs. \@j
Depicted in Fig. 5 are the contours of the electric poten- 19

tial ¢ (102 V) on the traction-free and insulating surface of —

the half-space GaAs due to a QD of volumg=4ma®/3 ——18
(a=1 nm) applied atz=h (=2 nm). It is interesting that 051 ——24
even though the present model uses a point QD the contoul
feature is still similar to that in Ref. 8. That is, the positive &
and negative electric potential values alternatively occupy € °]
one of the four quarters, with a maximum magnitude being *
0.023 V.

While the contours of the horizontal electric fiek, 05
=\/EX2+ Ey2 (10" V/Im) on the traction-free and insulating
surface are shown in Fig. 6, those of the vertical electric field
E, (10" V/m) are presented in Fig. 7. It is observed that
while the vertical electric fieldE, follows the same feature as
the electric potential with a maximum magnitude of 1.2
X 10" V/m, the horizontal electric fiel&, shows an interest- e .
ing feature. The horizontal electric field has a minimum at y 6101 om
the center(the surface point directly above the QDour FIG. 6. Contours of the horizontal electric fid‘ﬁﬂ=\/E1X+ﬁEy(107 V/m) on

equal m_ax_imums on both _Sides of tkendy axes, and four  the traction-free and insulating surface of the half-space GaAs due to a QD
equal minimums on the diagonal axes *vy. It should be ath=2 nm.

-

o5

-1.04
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be of useful feature that can be applied to the design of
semiconductor devices.

VII. CONCLUSIONS

In this article, we have studied the elastic and piezoelec-
tric fields in semiconductors GaAs and AIN due to a buried
QD. By developing a fully coupled piezoelectric model and
deriving the analytical solution for the semicoupled model,
we have shown that the semicoupled piezoelectric model,
adopted commonly in the physics community, is very accu-
rate in the prediction of the elastic and piezoelectric fields in
full- and half-space GaAs. However, use of the semicoupled
model for AIN results in very serious errors for both the
elastic and piezoelectric fields. Our observation on the elastic
and piezoelectric fields in AIN has been further confirmed by
applying the fully coupled and semicoupled models to a uni-
formly strained AIN layer grown along the polar axis. We
remark that, in general, if a semiconductor possesses an elec-
5 oo o's 1o 1% tromechanical coupling facty=0.2, then the fully coupled

y[010] nm model should be used. The advantage of using the semi-
coupled model, instead of the fully coupled one, is apparent
if an exact closed-form solution exists for the former. How-
ever, exact closed-form solution is available only when the
elastic properties can be safely approximated as isotropic,

N - . _ which unfortunately may not be the case for most semicon-
with Fig. 7, and it is found that not only their magnitude, butductors even for the Gak€4252Since isotropic and an-

also the Ioca}tyons of the maximum quantities are qu'te_d'f"lsotropic semiconductors may response quite differently to
ferent. Specifically, much large magnitude for the vertical

lectric field E. is ob d if th face | ot the QD¥' it is therefore suggested that the fully coupled
electric field B, Is observed If the surface Is ”ac“g’”' '€€ piezoelectric model introduced in this article should be em-
conducting, instead of traction-free insulatif® 7x< 10" vs

Z , ) X ployed if a reliable result is required. The fully coupled pi-
t1:2>< 10 d¥'/m). Therefore, b>; apFIy|n? d'ftferfr?t plezgglec— fezoelec’[ric model possesses the same structure as compared
fic conditions, one can not only relocate the position Oy, e purely elastic and anisotropic model. Actually, one
maximum and/or minimum points of the piezoelectric field,

. L ; : eeds only to extend suitably the basic physical quantity di-
but also change the magnitude of this field. This again should . <01 from 3 in elasticityi.e., the three elastic displace-

ment componenjgo 4 in piezoelectridi.e., the three elastic
displacement components plus the electric potential

x [100] nm

——-04
I
%0

/

0

@
i
T
-1.5 -1.0 -0.

FIG. 7. Contours of the vertical electric fiel, (10" V/m) on the traction-
free and insulating surface of the half-space GaAs due to a Q3-at nm.
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APPENDIX A. FULL-SPACE GREEN’'S FUNCTION

In this appendix, we briefly review the Green'’s functions
in an anisotropic and linearly piezoelectric full space, while a
detailed derivation can be found in Pan and Tofbhhese
Green’s functions include elastic displacement/electric po-
tential, elastic stress/electric displacement, and their deriva-
tives with respect to the source coordinates, due to a point
force/point charge.

Assume that a point force/point charge is located at the
y o107 nm origin of the space-fixed Cartesian coordinat€s x;, X»,

FIG. 8. Contours of the vertical electric fiel, (10’ V/m) on the traction- X_3): our purpose is theh to find the complete .three-
free and conducting surface of the half-space GaAs due to a @B atnm. dimensional Green'’s functions at the field pointWe first
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introduce an orthogonal and normalized systéyep,q), in the space-fixed Cartesian coordinates, i(@,0,0, or
with their base(e,p,q) being chosen as the following (0,1,0, or (0,0,7). The analytical expression for the Green'’s
o _ displacement is much simpler using such a veatdhan
e=x/r; r=|x. (A1) >
using any other vectors.
Now, letv be an arbitrary unit vector different from(v+#e), In the analysis of eigenstrain problems using the Green’s
the other two unit vectors orthogonal &écan then be se- function method, the first and second derivatives of the
lected as: Green'’s tensor are also needed. These can be found using
exv some simple yet accurate numerical formulatiti
P=Texv]’ q=eXp. (A2)

We define a matrix’j, using the Stroh formalistfl as APPENDIX B. HALE-SPACE GREEN'S FUNCTION

[(p+{q)=Q+(R+R")+ 7T, A3
(p+£@)=Q+L( )¢ (A3 For the sake of easy reference, we also briefly present
where the Green’s functions in an anisotropic and linearly piezo-
Q=CikiPid, Rk=CixiPidi, Tik=Cjixai electric half-space with traction-free insulating surface con-

ditions. While a detailed derivation can be found in Pan and
(A4)  Yuan'® for this special boundary condition, the reader is re-

The determinant of (p-+ ¢q) is an eighth-order polynomial ferred to 'PaH’ for other gene,ral surf'acel conditions. The pi-
equation of and has eight roots. In general, four of them areSZoelectric half-space G’reen S funcnon IS expr_essed as asum
the conjugate of the remainder. These roots can be founff the full-space Green's funct_lon presented in Appe_n(’nx A
either by expanding the determinant B{p+¢q) into the and a complementary part, which resemble the Mindlin’s so-

polynomial, or by finding the eight eigenvalues of the fol- lution for the corresponding elastic and isotropic half
lowing linear eigenequatidh spacé’! The complementary part is expressed in terms of a

regular line integral, which can be easily evaluated by a stan-

Ny Nzjja a dard numerical quadrature.
N, NI|lb = bl’ (AS) We first introduce the extended Stroh eigenvalues and
H eigenvectors, which are mathematically elegant and numeri-
where

cally powerful®® These Stroh eigenvalug; and the corre-
N,=—T 'R, N,=T" !, N;=RT'R™-Q (A6) sponding4<1 eigenvecton, are the solutions of the follow-

1= . . .
_ ing eigenrelatiof?
anda andb are the eigenvectors.

Assume that Ind,,>0 (M=1,2,3,4, and,, is the con- [Q+ps(R+R")+p3T]a;=0, (BY)
jugate ofy, the Green'’s tensor, with its first index for the where the superscriglt denotes matrix transpose, and
elastic displacement/electric potential and the second indeXx '
for the point force/point charge, can be finally expressed ex-  Qx=C,ksnaNg, Rik=CuksNa:, Tik=Caiks
plicitly as

| 4 (B2
m
UIK(X):_%ME:]_ W|th
(n1,ny)=(cosék,sinb) (B3)
A +
X Jf(p {u®) , (A7) and a and B taking the values of 1 and 2. Similar to the

S B S full-space case, the eigenvalues of equatiBa) are either
A5(Lw—Lw) Lﬂl (Gn= 0= 40) complex or purely imaginary due to the positive requirement
on the strain energy density.
whereag=det(T) is the coefficient ofZ8, and A« are the We then define other two vectols (4X1) andc; (5
co-factors of the matrit',x . It is now worthwhile to make X 1) related to the Stroh eigenvectay as
some quick comments on the Green’s function expression
(A7): First, for a given pair of field and source points, one _(pT __ i

. . : by=(R"+p;T)a (Q+psR)ay, (B4)
needs only to solve a eighth-order linear eigenequationa PJ
eighth-order polynomial equatiponce in order to obtain all
the components of the Green’s tensor. Secondly, on obtaining
Eq. (A7), we have assumed that all the poles are simplewhere the 54 matrix D; is defined by
Should the poles be multiple, a slight change in the material
constants will result in single poles with negligible errors in CiktaNat PsCukia(k=1,2)
the computed Green’s tensBri° Thirdly, sincel 5 is sym- (D)) =1 CoaaNa+tPsCons(k=3) (B5)
metric, so is its adjoinf;« . Therefore, the Green'’s displace- e _
ment G, is symmetric and one needs to calculate only 10 CiataNat PsCias(i=k=3)(k=49
out of its 16 elements. Finally, although one can choose the Assume thap;, a;, andb; (J=1,2,...,8 are the distinct
vectorv (#e) arbitrarily, it should be one of the base vectors eigenvalues and the associated eigenvectors, we then choose

L#M

¢;=Djay,
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Imp;>0, P;_a=Py, a3:4=3;, by.s=by, where

C3+4=C (J=1,2,34
A:[alia21a31a4]1 B:[bl1b21b31b4]y

(g1) =diad cos#,cosf,cosé,cosb],
(B6) (9,)=diad sin 8,sin@,sin,sin ], (B14)
C=[c;,6,,C3,C4], (93)=diad p1,P2,P3,P4].

. . Similarly, the derivatives of the Green’s elastic stress/
where Im stands for the imaginary part and the overbar de- . . . :
. . electric displacement with respect to the source point
notes the complex conjugate, and the eigenveetprandb;

satisfy (Y1,Y2.y3) are:
2% 3y 2220 3<gj> )

with 8,5 being the Kronecker delta.

Let us now denote by”(x;y) the full-space Green’s aS(xy)  IS*(Xy) 1 (m_ (B15)
function tensor given byA7) of Appendix A with its row PV va— _zj CG3<gj>ATd6,
and column indices corresponding to the elastic Vi Vi 2mJ0
displacement/electric potential and point force/point chargewhere
respectively. Then, the half-space Green’s tensor, with its —
components bearing the same physical meaning, can be wri{-G )= (B""B)is
ten in a concise form a%'? P = PiXat Paya—[(X1—y1)COSO+ (X, —Y,)sin 4]}
U(xy)=U*(x;y)+ izf AG,ATdo, (B8) (B16)
2mwJo Equations(B8), (B11), (B13), and (B15) are the com-
where plete Green’s functions in an anisotropic and linearly piezo-

. electric half space with traction-free insulating boundary

(B71B); conditions, or the generalized Mindlin solution in anisotropic

DiXat (X —V1)COSO+ (Xo—V-)Sin G piezoelectric half space. .Mlndhn solut|c_>ns to other t_ypes of

PiXatPyYs—[(x1= Y1) (X2 ¥2)sin6] surface boundary conditions, along with some typical nu-
(B9) merical examples can be found in P4n.

(Giy=
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