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Abstract

Three-dimensional elastostatic Green’s functions in anisotropic trimaterials are derived, for the first time, by applying

the generalized Stroh’s formalism and Fourier transforms. The Green’s functions are expressed as a series summation

with the first term corresponding to the full-space solution and other terms to the image solutions due to the interfaces.

The most remarkable feature of the present solution is that the image solutions can be expressed by a simple line in-

tegral over a finite interval ½0; 2p�. By partitioning the trimaterial Green’s function into a full-space solution and a
complementary part, the line integral involves only regular functions if the singularity is within one of the three ma-

terials, being treated analytically owning to the explicit expression of the full-space solution. When the singularity is on

the interface, which occurs if the field and source points are both on the same interface, the involved singularity is

handled with the interfacial Green’s functions.

A numerical example is presented for a trimaterial system made of two anisotropic half spaces bonded perfectly by

an isotropic adhesive layer, showing clearly the effect of material layering on the Green’s displacements and stresses.

Furthermore, by comparing the present Green’s solution to the direct (two-dimensional) 2D integral expression which

is also derived in this paper, it is shown that, the computational time for the calculation of the Green’s function can be

substantially reduced using the present solution, instead of the direct 2D integral method. � 2002 Elsevier Science Ltd.
All rights reserved.

Keywords: Green’s function; Stroh formalism; Anisotropic elasticity; Expansion solution; 3D trimaterial; Boundary integral equation

method; Quantum-dot semiconductor devices

1. Introduction

Trimaterials are constructed by sandwiching a plate of uniform thickness with two opposite half-space
media. The interfacial condition may be of perfect or imperfect bond. This structure is of particular interest
in broad areas of engineering and physics, such as structural composite laminates (see, for example, Pagano
(1978a, 1978b); Schoeppner and Pagano (1998) and Jones (1999)), and thin film and coating on substrates
(see, for example, Hu (1991); Suo and Hutchinson (1989); Hutchinson and Suo (1991); Freund (1994); Gao
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and Nix (1999); Liu et al. (2000); Schweitz et al. (2000); Suhir (2000, 2001); Hsueh (2000) and Jenichen et al.
(2001)). A fundamental solution, or a Green’s function, in such a complicated structure is of great value
since it can be directly implemented into a corresponding boundary integral equation formulation for a
numerical study (see, i.e., Pan et al. (2001)). Furthermore, Green’s function solution in trimaterials can be
directly applied to the study of quantum-dot growth in modern semiconductor devices (Pearson and Faux,
2000; Pan and Yang, 2001). While the Green’s functions for layered media of isotropic elasticity and two-
dimensional (2D) anisotropic elasticity were extensively investigated previously (Mindlin, 1936; Chou,
1966; Fares and Li, 1988; Yu and Sanday, 1993; Pan, 1997; Shou and Napier, 1999; Shou, 2000), the
Green’s functions in the corresponding 3D anisotropic elasticity appears to be very limited (Barnett and
Lothe, 1975; Ting, 1996; Wu, 1998; Pan and Yuan, 2000; Pan and Yang, submitted for publication). The
earliest study in this area is, perhaps, by Barnett and Lothe (1975) where they derived the physical-domain
surface Green’s functions in a 3D half-space using the generalized Stroh formalism. Also applying the
generalized Stroh formalism, Ting (1996) derived the 3D Green’s function for anisotropic bimaterials in the
transformed domain. Pan and Yuan (2000) further studied the features of the transformed bimaterial
Green’s function and analytically carried out the integral of the inverse transform in infinite radial direction
in the polar coordinates. By doing so, the physical-domain Green’s function for anisotropic bimaterials is
obtained as a line integral over the interval ½0; p�, reducing significantly the computational time in the
evaluation of the Green’s functions. More recently, Pan and Yang (submitted for publication) derived
the interfacial Green’s functions of anisotropic bimaterials where both the source and field points are on the
interface plane. In this case, a special care is needed to handle the line integral due to the appearance of
singularities up to the third order, one order higher than the common hypersingularity (Pan and Yang,
submitted for publication).
The present work is to derive the 3D Green’s functions for anisotropic trimaterials using the generalized

Stroh’s formalism (Barnett and Lothe, 1975; Ting, 1996; Pan and Yuan, 2000), 2D Fourier transform, and
Mindlin’s superposition method (Mindlin, 1936; Pan and Yuan, 2000). In the formalism, the Green’s
functions are first solved in the 2D Fourier transformed domain. Then, the Green’s functions in the
physical domain are obtained by the Fourier inverse transform. In order to handle the 2D Fourier integral,
an expansion approach of truncated series is proposed. With this approach, each term in the truncated
series can be successfully expressed as a line integral over the interval ½0; 2p�. Consequently, the proposed
expansion solution can substantially reduce the computational burden involved in the calculation of the 3D
trimaterial Green’s functions. A numerical example presented in the paper, using an adaptive quadrature
scheme, shows that within an error of 5% on the calculation of the trimaterial Green’s function, the ex-
pansion solution requires less than 10% of the computational time required by the direct 2D integral.
Furthermore, we remark that the mathematically constructed expansion solution turns out to be similar to
a physics-motivated solution by imaging the source across an interface between dissimilar media. The image
method, as is well known, has been applied to solve many mechanical and physical problems (Fares and Li,
1988; Yu and Sanday, 1993; Shou and Napier, 1999; Shou, 2000). A similar approach, namely, eigenex-
pansion, was also proposed recently to solve certain 2D problems involving orthotropic and anisotropic
strips (Matemilola and Stronge, 1995; Chiu and Wu, 1998).
This paper is organized as follows: In Section 2, a boundary-value problem of the anisotropic elasto-

static trimaterial subjected to a point force is formulated. The three media are assumed to be bonded
perfectly along the interfaces. In Section 3, the general solution in a homogeneous region by the generalized
Stroh’s formalism is summarized. In Section 4, the trimaterial Green’s functions in the physical domain are
constructed using the expansion approach. By imposing a revised set of boundary conditions along the
interfaces, we first express the Green’s functions in the Fourier-transformed domain in terms of a truncated
series. Utilizing certain unique features in the transformed-domain Green’s functions, each term in the
series is further reduced to a line integral over the finite interval ½0; 2p�, a remarkable reduction on the
computational burden involved in the trimaterial Green’s function evaluation. In Section 5, a numerical
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example is given to illustrate the efficiency and accuracy of the proposed expansion approach along with a
convergence study. Finally, some conclusions are drawn in Section 6.
For the purpose of comparison, a direct 2D integral solution is also presented in the Appendix C for the

trimaterial Green’s functions. This solution is expressed as a sum of the homogeneous infinite-space so-
lution and a complementary part. Since the infinite-space Green’s function has an explicit expression, only
the complementary part needs to be integrated numerically by a 2D quadrature.

2. Problem description

Let us consider a trimaterial composite made of a plate of uniform thickness H perfectly bonded by
two half-space media, as shown in Fig. 1. A Cartesian coordinate system, ðx1; x2; x3Þ, is attached to the
composite with the x3-axis perpendicular to the interfaces. Furthermore, the plate is labeled as material 0,
the lower half-space as material 1, and the upper half-space as material 2. The three media are homoge-
neous, anisotropic, and linearly elastic, with distinct material properties in general. The Hooke’s law for
each material is given by

rij ¼ Cijklekl; ð1Þ
where rij is the stress tensor, ekl the strain tensor, and Cijkl the elastic stiffness tensor consisting of 21 in-
dependent elements in general and different for different media. 1

Let us further apply a point-force f to the trimaterial composite at a source point X. The equilibrium
equation at a field point x can be written, in the absence of other body forces, as (Ting, 1996)

Cijkl xð Þuk;lj xð Þ ¼ �fid xð � XÞ; ð2Þ
where d(x� X) is the Dirac delta function, ui is the displacement, and ,lj indicates the partial derivatives
with respect to xl and xj sequentially. The condition of infinitesimal deformation is implied such that
ekl ¼ ðuk;l þ ul;kÞ=2.
The perfectly bonded condition along the interfaces of the trimaterial are expressed as

u0 ¼ u1 and t0 ¼ t1; at x3 ¼ h1; ð3Þ

u0 ¼ u2 and t0 ¼ t2; at x3 ¼ h2; ð4Þ

Fig. 1. A trimaterial system consisting of a plane-layer medium sandwiched by two opposite half-space media. The three media are in

general distinct in materials properties. A Cartesian coordinate system is established with the x3-axis perpendicular to the interfaces.
The point force f is applied at an arbitrary source point X.

1 The standard notation system is used in the text. All Latin subscript indices range from 1 to 3. Greek subscript indices range from

1 to 2. A bold symbol for a tensor implies its subscript indices in the range from 1 to 3. Summation over repeated subscripts over their

range is implied.
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where t ¼ rn with n ¼ ð0; 0; 1ÞT in which T denotes transpose of a vector or matrix, h1 and h2 are the vertical
levels of the lower and upper interfaces (Fig. 1), respectively, and the subscripts 0, 1, and 2 attached to the
displacement and traction tensors indicate their association with the corresponding medium.
Furthermore, it is required that as jxj approaches infinity, the solution u vanishes, i.e.,
lim
xj j!1

uk xð Þ ¼ 0: ð5Þ

This is called the radiation condition for a point-source solution in an infinite space.
This paper is, therefore, to solve the 3D response of the trimaterial composite to a point force f acting in

any direction, as governed by Eq. (2), under the conditions, Eqs. (3)–(5). For this goal, it is sufficient to
attain the fundamental solutions due to a unit point force acting in each direction of the axes. The fun-
damental solutions, also called Green’s functions, are denoted by u�ji x;Xð Þ for displacement and r�

jki x;Xð Þ
for stress. The last subscript i indicates the direction of the unit point force. Once these fundamental so-
lutions are obtained, solutions at field point x due to the (arbitrary) f at source point X are readily obtained
by

uj xð Þ ¼ u�ji x;Xð Þfi; rjk xð Þ ¼ r�
jki x;Xð Þfi: ð6Þ

It is noted that while u is a vector, u� is a tensor of the second rank. Similarly, r� is a tensor of one rank
higher than r.

3. General solution in transformed domain

The approach we proposed is to first solve the trimaterial Green’s function problem in the 2D Fourier-
transformed domain in terms of the generalized Stroh’s formalism, which is similar to those employed
previously by Barnett and Lothe (1975), Ting (1996), and Pan and Yuan (2000) for the corresponding
Green’s function problem in an infinite, a semi-infinite, and a bimaterial space. The transformed-domain
solution will then be inverted to obtain the physical-domain Green’s function in the next section.
Now, let a 2D Fourier transform ðy1; y2Þ be applied to the in-plane coordinates ðx1,x2Þ of a physical

quantity, for example for the displacement, as

~uui y1; y2; x3ð Þ ¼
Z Z

ui x1; x2; x3ð Þeiyaxa dx1 dx2; ð7Þ

where e stands for the exponential function, and i over e denotes the unit of imaginary number,
ffiffiffiffiffiffiffi
�1

p
. The

integral limits are ð�1;1Þ for both coordinates. Therefore, in the Fourier-transformed domain, governing
Eq. (2) becomes

Ciakbyayb~uuk þ i Ciak3ð þ Ci3kaÞya~uuk;3 � Ci3k3~uuk;33 ¼ fieiyaXad x3ð � X3Þ: ð8Þ

Solving this ordinary differential equation in x3 with f being a unit force in the ith direction yields
the fundamental solution for the Green’s displacement in the jth direction in the transformed domain, ~uu�ji,
as

~uu� y1; y2; x3;Xð Þ ¼ eiyaXa ~uu� 1ð Þ y1; y2; x3;X3ð Þ
j

þ ig�1 Ahe�i�ppgx3iV
�

þ Ahe�ipgx3iW
�k

; ð9Þ

where the over bar denotes complex conjugate, ðg; hÞ are the polar coordinates related to ðy1; y2Þ by
y1 ¼ g cos h and y2 ¼ g sin h, V and W are unknown tensors to be determined by the boundary conditions,
and

e�ipgx3
� �

¼ diag e�ip1gx3 ; e�ip2gx3 ; e�ip3gx3
	 


: ð10Þ
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with pi and A being the eigenvalues and eigenmatrix of the generalized Stroh eigenproblem (Ting, 1996; Pan
and Yuan, 2000). In addition, ~uu�ð1Þ in Eq. (9) is the transformed Green’s displacement in a homogeneous
and infinite space with elastic properties identical to those in the medium in which the field point x is lo-
cated while the point force f is applied at X (with X1 ¼ 0 and X2 ¼ 0 for simplicity), as given in Appendix A.
Since the inverse of this Green’s function, i.e., the physical-domain solution, has been derived explicitly by
Ting and Lee (1997) and Tonon et al. (2001), the Fourier inverse transform needs to be carried out only for
the complementary term in Eq. (9).
The eigenvalues pi and eigenmatrix A ¼ ða1; a2; a3Þ are related by the following Stroh eigenrelation in an

oblique plane spanned by (n1 ¼ cos h, n2 ¼ sin h, 0)T, as

Q
	

þ pi R
�

þ RT
�
þ p2i T



ai ¼ 0; ð11Þ

with

Qik ¼ Ciakbnanb; Rik ¼ Ciak3na; and Tik ¼ Ci3k3: ð12Þ
It is seen that Eq. (11) produces six pairs of pi and ai. However, only three pairs of them are independent.
While A and pi ði ¼ 1; 2; 3Þ are chosen to be the three independent pairs with Im ðpiÞ > 0, the other three
pairs are their complex conjugates, i.e. A and �ppi. Indeed, this fact has been reflected in the solution in Eq.
(9), which is a linear combination of the six basic solutions. Also, it is worth mentioning that A and pi are
functions of materials constants and h only, and the unknowns V andW are functions of g, h, and X3. These
features are important in deriving the corresponding Green’s stress by taking derivatives of ~uu�, as will be
seen below.
Let s be a vector containing the stress components in a plane parallel to the interface, namely, the in-

plane stress vector. The combination of the traction (out-of-plane stress) vector t and the in-plane stress
vector s then contains all the six stress components. Applying the constitutive law of the linear anisotropic
elasticity (Eq. (1)), the corresponding fundamental stress solutions, t� and s�, are then related to the de-
rivatives of displacement, as

t� � r�
13i; r

�
23i; r

�
33i

� �
¼ ðC13klu�ki;l;C23klu�ki;l;C33klu�ki;lÞ; ð13Þ

s� � r�
11i; r

�
12i; r

�
22i

� �
¼ ðC11klu�ki;l;C12klu�ki;l;C22klu�ki;lÞ: ð14Þ

where the derivatives are taken with respect to the field point x. Applying the 2D Fourier transform as
defined in Eq. (7) to Eqs. (13) and (14), and making use of the general solution for the displacement (Eq.
(9)), we then obtain the general solutions for t� and s�, in the transformed domain, as

~tt� y1; y2; x3;Xð Þ ¼ eiyaXab~tt� 1ð Þ y1; y2; x3;X3ð Þ þ ðBhe�i�ppgx3iVþ Bhe�ipgx3iWÞc; ð15Þ

~ss� y1; y2; x3;Xð Þ ¼ eiyaXab~ss� 1ð Þ y1; y2; x3;X3ð Þ þ ðChe�i�ppgx3iVþ Che�ipgx3iWÞc; ð16Þ
where ~tt� 1ð Þ and ~ss� 1ð Þ, derived from ~uu� 1ð Þ, are the Green’s stresses in the transformed domain, as given in
Appendix A. Again, the Fourier inverse transforms of these Green’s functions, i.e., the physical-domain
Green’s stresses have been derived recently (Tonon et al., 2001), and therefore, the Fourier inverse
transform needs to be carried out only for the complementary part of Eqs. (15) and (16).
Also in Eqs. (15) and (16), the matrices B and C are defined as B ¼ ðb1; b2; b3Þ, and C ¼ ðc1; c2; c3Þ, and

are related to the matrix A by

bi ¼ � 1
pi
Qð þ piRÞai; ð17Þ

ci ¼ Diai; ð18Þ
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with

Dkli ¼ C1klana þ piC1kl3 for k ¼ 1; 2; and D3li ¼ C22lana þ piC22l3: ð19Þ

where the matrix C is different from the fourth-rank elastic stiffness tensor Cijkl. For clarity, the elastic
stiffness tensor is always written in its component form in the text.
Once the transformed-domain solutions are found, the corresponding physical-domain solutions can be

derived by the Fourier inverse transform. For instance, the physical-domain displacement can be expressed
as

ui x1; x2; x3ð Þ ¼ 1

2pð Þ2
Z Z

~uuiðy1; y2; x3Þe�ixaya dy1 dy2; ð20Þ

where the integral limits in y1 and y2 are ð�1;1Þ. The inverse transform may also be taken in the polar
coordinates ðg; hÞ instead of ðy1; y2Þ, as

ui x1; x2; x3ð Þ ¼ 1

2pð Þ2
Z Z

g~uuiðg; h; x3Þe�igðx1 cos hþx2 sin hÞ dgdh; ð21Þ

where 0 < g < 1 and h over a period of 2p. In terms of either expression, the integration, in general, needs
to be evaluated numerically in the whole plane. Even with the fast Fourier transform (FFT) technique, the
computational effort may still be very large, prohibiting an efficient numerical implementation of the
boundary integral equation formulation using these Green’s functions. Therefore, it would be very ap-
preciable if the involved 2D integrals can be reduced analytically. This is achieved by the expansion
approach presented in the next section.

4. Trimaterial Green’s functions in physical domain

Motivated by the line-integral solution for the 3D Green’s functions in anisotropic bimaterials (Pan and
Yuan, 2000) and the image method (Yu and Sanday, 1993; Shou, 2000), we propose an expansion solution
for the trimaterial Green’s functions. It will be shown later that for such a complicated problem, i.e.,
general anisotropy with three material layers, the Green’s functions can be expressed accurately by using
only three or four terms with each of them being a simple line integral over ½0; 2p�.
To seek the trimaterial Green’s functions by an expansion approach, we assume that the Green’s

functions in the Fourier-transformed domain can be expressed in the following series forms,

~uu�0 y1; y2; x3;Xð Þ ¼ eiyaXa ~uu
� 1ð Þ
0 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

~uu
� nð Þ
0 y1; y2; x3;X3ð Þ

!

¼ eiyaXa ~uu
� 1ð Þ
0 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

½~uu� nð Þ
01 y1; y2; x3;X3ð Þ þ ~uu

� nð Þ
02 y1; y2; x3;X3ð Þ�

!
; ð22Þ

~tt�0 y1; y2; x3;Xð Þ ¼ eiyaXa ~tt
� 1ð Þ
0 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

~tt
� nð Þ
0 y1; y2; x3;X3ð Þ

!

¼ eiyaXa ~tt
� 1ð Þ
0 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

~tt
� nð Þ
01 y1; y2; x3;X3ð Þ

h
þ~tt

� nð Þ
02 y1; y2; x3;X3ð Þ

i!
; ð23Þ
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~ss�0 y1; y2; x3;Xð Þ ¼ eiyaXa ~ss
� 1ð Þ
0 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

~ss
� nð Þ
0 y1; y2; x3;X3ð Þ

!

¼ eiyaXa ~ss
� 1ð Þ
0 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

~ss
� nð Þ
01 y1; y2; x3;X3ð Þ

h
þ ~ss

� nð Þ
02 y1; y2; x3;X3ð Þ

i!
; ð24Þ

for h1 < x3 < h2 (material 0),

~uu�1 y1; y2; x3;Xð Þ ¼ eiyaXa ~uu
� 1ð Þ
1 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

~uu
� nð Þ
1 y1; y2; x3;X3ð Þ

!
; ð25Þ

~tt�1 y1; y2; x3;Xð Þ ¼ eiyaXa ~tt
� 1ð Þ
1 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

~tt
� nð Þ
1 y1; y2; x3;X3ð Þ

!
; ð26Þ

~ss�1 y1; y2; x3;Xð Þ ¼ eiyaXa ~ss
� 1ð Þ
1 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

~ss
� nð Þ
1 y1; y2; x3;X3ð Þ

!
; ð27Þ

for x3 < h1 (material 1), and

~uu�2 y1; y2; x3;Xð Þ ¼ eiyaXa ~uu
� 1ð Þ
2 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

~uu
� nð Þ
2 y1; y2; x3;X3ð Þ

!
; ð28Þ

~tt�2 y1; y2; x3;Xð Þ ¼ eiyaXa ~tt
� 1ð Þ
2 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

~tt
� nð Þ
2 y1; y2; x3;X3ð Þ

!
; ð29Þ

~ss�2 y1; y2; x3;Xð Þ ¼ eiyaXa ~ss
� 1ð Þ
2 y1; y2; x3;X3ð Þ

 
þ
X1
n¼1

~ss
� nð Þ
2 y1; y2; x3;X3ð Þ

!
; ð30Þ

for x3 > h2 (material 2).
In Eqs. (22)–(30),

~uu
� nð Þ
01 y1; y2; x3;X3ð Þ ¼ ig�1A0he�i�pp0gx3iV nð Þ

0 ; ð31Þ

~tt
� nð Þ
01 y1; y2; x3;X3ð Þ ¼ B0he�i�pp0gx3iV nð Þ

0 ¼ �igM0~uu
� nð Þ
01 y1; y2; x3;X3ð Þ; ð32Þ

~ss
� nð Þ
01 y1; y2; x3;X3ð Þ ¼ C0he�i�pp0gx3iV nð Þ

0 ¼ �igN0~uu� nð Þ
01 y1; y2; x3;X3ð Þ; ð33Þ

~uu
� nð Þ
02 y1; y2; x3;X3ð Þ ¼ ig�1A0 e

�ip0gx3
� �

W
nð Þ
0 ; ð34Þ

~tt
� nð Þ
02 y1; y2; x3;X3ð Þ ¼ B0he�ip0gx3iW nð Þ

0 ¼ �igM0~uu
� nð Þ
02 y1; y2; x3;X3ð Þ; ð35Þ

~ss
� nð Þ
02 y1; y2; x3;X3ð Þ ¼ C0 e

�ip0gx3
� �

W
nð Þ
0 ¼ �igN0~uu� nð Þ

02 y1; y2; x3;X3ð Þ; ð36Þ

~uu
� nð Þ
1 y1; y2; x3;X3ð Þ ¼ ig�1A1 e

�ip1gx3
� �

W
nð Þ
1 ; ð37Þ

~tt
� nð Þ
1 y1; y2; x3;X3ð Þ ¼ B1 e

�ip1gx3
� �

W
nð Þ
1 ¼ �igM1~uu

� nð Þ
1 y1; y2; x3;X3ð Þ; ð38Þ
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~ss
� nð Þ
1 y1; y2; x3;X3ð Þ ¼ C1 e

�ip1gx3
� �

W
nð Þ
1 ¼ �igN1~uu� nð Þ

1 y1; y2; x3;X3ð Þ; ð39Þ

~uu
� nð Þ
2 y1; y2; x3;X3ð Þ ¼ ig�1A2he�i�pp2gx3iV nð Þ

2 ; ð40Þ

~tt
� nð Þ
2 y1; y2; x3;X3ð Þ ¼ B2he�i�pp2gx3iV nð Þ

2 ¼ �igM2~uu
� nð Þ
2 y1; y2; x3;X3ð Þ; ð41Þ

~ss
� nð Þ
2 y1; y2; x3;X3ð Þ ¼ C2he�i�pp2gx3iV nð Þ

2 ¼ �igN2~uu� nð Þ
2 y1; y2; x3;X3ð Þ; ð42Þ

whereM ¼ BA�1, N ¼ CA�1, and V
nð Þ
0 ,W

nð Þ
0 ,W

nð Þ
1 and V

nð Þ
2 are unknowns to be determined by the boundary

conditions, Eqs. (3) and (4). Note that for x3 < h1 and x3 > h2, the radiation condition, Eq. (5) has been
satisfied, retaining only one of the V and W as unknowns.
To find the unknown coefficients involved in Eqs. (31)–(42), we impose, instead of Eqs. (2) and (3), the

following revised boundary conditions at x3 ¼ h1 and x3 ¼ h2, by truncating the series at a finite N and
ignoring the remaining terms,

~uu
� 1ð Þ
0 h1ð Þ þ

XN�1

n¼1
~uu
� nð Þ
01 h1ð Þ

h
þ ~uu

� nð Þ
02 h1ð Þ

i
þ ~uu

� Nð Þ
01 h1ð Þ ¼ ~uu

� 1ð Þ
1 h1ð Þ þ

XN
n¼1

~uu
� nð Þ
1 h1ð Þ; ð43Þ

~tt
� 1ð Þ
0 h1ð Þ þ

XN�1

n¼1

~tt
� nð Þ
01 h1ð Þ

h
þ~tt

� nð Þ
02 h1ð Þ

i
þ~tt

� Nð Þ
01 h1ð Þ ¼ ~tt

� 1ð Þ
1 h1ð Þ þ

XN
n¼1

~tt
� nð Þ
1 h1ð Þ; ð44Þ

~uu
� 1ð Þ
0 h2ð Þ þ

XN�1

n¼1
~uu
� nð Þ
01 h2ð Þ

h
þ ~uu

� nð Þ
02 h2ð Þ

i
þ ~uu

� Nð Þ
02 h2ð Þ ¼ ~uu

� 1ð Þ
2 h2ð Þ þ

XN
n¼1

~uu
� nð Þ
2 h2ð Þ; ð45Þ

~tt
� 1ð Þ
0 h2ð Þ þ

XN�1

n¼1

~tt
� nð Þ
01 h2ð Þ

h
þ~tt

� nð Þ
02 h2ð Þ

i
þ~tt

� Nð Þ
02 h2ð Þ ¼ ~tt

� 1ð Þ
2 h2ð Þ þ

XN
n¼1

~tt
� nð Þ
2 h2ð Þ; ð46Þ

where the common arguments, y1, y2, and X3, in the functions are omitted for simplicity and will be resumed
as necessary for clarity.
Solving the set of Eqs. (43) and (44) and the set of Eqs. (45) and (46) respectively gives

M1

�
�M0

�
~uu
� Nð Þ
01 h1ð Þ ¼M1 ~uu

� 1ð Þ
1 h1ð Þ

�
� ~uu

� 1ð Þ
0 h1ð Þ

�
� ig�1 ~tt

� 1ð Þ
1 h1ð Þ

�
�~tt

� 1ð Þ
0 h1ð Þ

�

þ
XN�1

n¼1
M0

�h
�M1

�
~uu
� nð Þ
01 h1ð Þ þ M0ð �M1Þ~uu� nð Þ

02 h1ð Þ
i
; ð47Þ

M2

�
�M0

�
~uu
� Nð Þ
02 h2ð Þ ¼M2 ~uu

� 1ð Þ
2 h2ð Þ

�
� ~uu

� 1ð Þ
0 h2ð Þ

�
� ig�1 ~tt

� 1ð Þ
2 h2ð Þ

�
�~tt

� 1ð Þ
0 h2ð Þ

�

þ
XN�1

n¼1
M0

�h
�M2

�
~uu
� nð Þ
01 h2ð Þ þ M0

�
�M2

�
~uu
� nð Þ
02 h2ð Þ

i
; ð48Þ

M1

�
�M0

�XN
n¼1

~uu
� nð Þ
1 h1ð Þ ¼M0 ~uu

� 1ð Þ
1 h1ð Þ

�
� ~uu

� 1ð Þ
0 h1ð Þ

�
� ig�1 ~tt

� 1ð Þ
1 h1ð Þ

�
�~tt

� 1ð Þ
0 h1ð Þ

�

þ
XN�1

n¼1
M0

�
�M0

�
~uu
� nð Þ
02 h1ð Þ; ð49Þ
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M2

�
�M0

�XN
n¼1

~uu
� nð Þ
2 h2ð Þ ¼M0 ~uu

� 1ð Þ
2 h2ð Þ

�
� ~uu

� 1ð Þ
0 h2ð Þ

�
� ig�1 ~tt

� 1ð Þ
2 h2ð Þ

�
�~tt

� 1ð Þ
0 h2ð Þ

�

þ
XN�1

n¼1
M0

�
�M0

�
~uu
� nð Þ
01 h2ð Þ: ð50Þ

Suppose that the above revised boundary conditions Eqs. (43)–(46) and the derived Eqs. (47)–(50) are valid
for arbitrary Nð> 0Þ. Then, by subtracting two successive solutions, i.e., at N and N � 1, Eqs. (47)–(50) can
be rewritten in a recursive form as

~uu
� 1ð Þ
01 h1ð Þ ¼ M1

�
�M0

��1
M1 ~uu

� 1ð Þ
1 h1ð Þ

�h
� ~uu

� 1ð Þ
0 h1ð Þ

�
� ig�1 ~tt

� 1ð Þ
1 h1ð Þ

�
�~tt

� 1ð Þ
0 h1ð Þ

�i
; ð51Þ

~uu
� 1ð Þ
02 h2ð Þ ¼ M2

�
�M0

��1
M2 ~uu

� 1ð Þ
2 h2ð Þ

�h
� ~uu

� 1ð Þ
0 h2ð Þ

�
� ig�1 ~tt

� 1ð Þ
2 h2ð Þ

�
�~tt

� 1ð Þ
0 h2ð Þ

�i
; ð52Þ

~uu
� 1ð Þ
1 h1ð Þ ¼ M1

�
�M0

��1
M0 ~uu

� 1ð Þ
1 h1ð Þ

�h
� ~uu

� 1ð Þ
0 h1ð Þ

�
� ig�1 ~tt

� 1ð Þ
1 h1ð Þ

�
�~tt

� 1ð Þ
0 h1ð Þ

�i
; ð53Þ

~uu
� 1ð Þ
2 h2ð Þ ¼ M2

�
�M0

��1
M0 ~uu

� 1ð Þ
2 h2ð Þ

�h
� ~uu

� 1ð Þ
0 h2ð Þ

�
� ig�1 ~tt

� 1ð Þ
2 h2ð Þ

�
�~tt

� 1ð Þ
0 h2ð Þ

�i
: ð54Þ

for the first order (N ¼ 1), and

~uu
� Nð Þ
01 h1ð Þ ¼ M1

�
�M0

��1
M0ð �M1Þ~uu� N�1ð Þ

02 h1ð Þ; ð55Þ

~uu
� Nð Þ
02 h2ð Þ ¼ M2

�
�M0

��1
M0

�
�M2

�
~uu
� N�1ð Þ
01 h2ð Þ; ð56Þ

~uu
� Nð Þ
1 h1ð Þ ¼ M1

�
�M0

��1
M0

�
�M0

�
~uu
� N�1ð Þ
02 h1ð Þ; ð57Þ

~uu
� Nð Þ
2 h2ð Þ ¼ M2

�
�M0

��1
M0

�
�M0

�
~uu
� N�1ð Þ
01 h2ð Þ; ð58Þ

for N ¼ 2, 3; . . . ;1.
Finally, by substituting the above solutions into Eqs. (31), (34), (37) and (40), attaining the unknown

tensors V
nð Þ
0 ,W

nð Þ
0 ,W

nð Þ
1 and V

nð Þ
2 , and rearranging the results, the Nth-order solutions of the displacement in

the transformed domain for arbitrary x3 are obtained as

~uu
� Nð Þ
0 x3ð Þ ¼ ~uu

� Nð Þ
01 x3ð Þ þ ~uu

� Nð Þ
02 x3ð Þ; for h1 < x3 < h2; ð59Þ

with

~uu
� Nð Þ
01 x3ð Þ ¼ A0he�i�pp0g x3�h1ð ÞiA�1

0 ~uu
� Nð Þ
01 h1ð Þ; ð59aÞ

~uu
� Nð Þ
02 x3ð Þ ¼ A0 e

�ip0g x3�h2ð Þ� �
A�1
0 ~uu

� Nð Þ
02 h2ð Þ; ð59bÞ

and

~uu
� Nð Þ
1 x3ð Þ ¼ A1 e

�ip1g x3�h1ð Þ� �
A�1
1 ~uu

� Nð Þ
1 h1ð Þ; for x3 < h1; ð60Þ

~uu
� Nð Þ
2 x3ð Þ ¼ A2he�i�pp2g x3�h2ð ÞiA�1

2 ~uu
� Nð Þ
2 h2ð Þ; for x3 > h2; ð61Þ

for N ¼ 1, 2; . . . ;1, with their values at x3 ¼ h1 or at x3 ¼ h2 being derived by the recursive Eqs. (51)–(58).
Since the Green’s functions at the root order, i.e. the infinite-space ones, are known, one can derive the
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Green’s functions at higher orders one by one. Also, by recalling the relationships of t� and s� to u� in Eqs.
(32), (33), (35), (36), (38), (39), (41) and (42), the stress vectors are obtained by multiplying the displacement
solutions by ig�1, and M, N or their conjugates accordingly.
It is noted that these expansion solutions can be reduced to the existing homogeneous infinite-space

or bimaterial solutions (Pan and Yuan, 2000) by letting the elastic stiffness tensors in all the three mate-
rials or two adjacent materials be identical correspondingly. Another interesting reduction is to let the
elastic stiffness tensor in one of the half spaces be zero. This leads to a model for a finite thickness plate
over a half space, with potential applications to thin film and coating related problems. Furthermore, these
expansion solutions resemble the image-method solutions. For instance, the first term on the right-hand
side of these equations (with a superscript (1)) is the zero-order image (i.e., loading point itself), corre-
sponding to the homogeneous infinite-space Green’s function with source point at ð0; 0;X3Þ. Since this
Green’s function has been derived explicitly in the physical-domain (Ting and Lee, 1997; Tonon et al.,
2001), no inverse Fourier transforms need to be carried out for this term when the physical-domain value is
needed. Similarly, the second term on the right-hand side of these equations (i.e., N ¼ 1) is the first-order
image that corresponds to the bimaterial Green’s functions made of materials 1 and 0, or of materials 0
and 2, respectively. The source points of these bimaterial Green’s functions are the images of the actual
source point ð0; 0;X3Þ across the interface planes x3 ¼ h1 and x3 ¼ h2 (Fig. 1). Once again, these bimaterial
Green’s functions in the physical domain have been derived recently by Pan and Yuan (2000), where
only a regular line integral over ½0; p� is involved. Furthermore, it is observed that all other terms in the
series expansion correspond to different orders of image and should also be reducible to a regular line
integral.
The inverse transform-operator, Eq. (20) or (21), can now be applied to the above expansion solutions

to find their counterparts in the physical domain, which unfortunately contain a 2D integral over the in-
finite plane. However, the expansion solutions embrace certain unique features that allow an analytical
reduction of the integral dimensions in the inverse transform, similar to the bimaterial solutions (Pan and
Yuan, 2000), as described below.
To reduce the integral dimensions, we first develop an explicit expansion solution in the transformed

domain, term by term, rooted in the homogeneous infinite-space solution. Without loss of generality, we
find, for instance, that the transformed displacement tensor can be written as a sum of terms with each term
having the following form:

~uu� Nð Þ ¼
X
ig�1JNþ1 e

�irN g
� �

JN � � � e�irng
� �

Jn � � � e�ir0g
� �

J0; ð62Þ

for displacement, and

~tt� Nð Þ ¼
X

JNþ1 e
�irN g

� �
JN � � � e�irng

� �
Jn � � � e�ir0g

� �
J0; ð63Þ

for traction tensor and the same for in-plane stress tensor s�. In Eqs. (62) and (63), the tensors JnðhÞ and
vectors rnðhÞ are independent of g but functions of h. It is also remarked that the explicit expressions for
these tensors and vectors depend also on the relative location of the source and field points, and therefore
are very complicated and very lengthy. However, to illustrate the derivation and the features of these ex-
pressions, the explicit expression for the displacement vector (62) is given in Appendix B when both the
source and field points are in the plate (i.e., in material 0).
Inserting expressions (62) and (63) multiplied by eiyaXa into the inverse-transform operator, Eq. (21), gives

u� Nð Þ ¼ 1

2pð Þ2
Z Z

g~uu�ðNÞeiyaðXa�xaÞ dgdh

¼
X 1

2pð Þ2
Z Z

iJNþ1 e
�irN g

� �
JN � � � e�irng

� �
Jn � � � e�ir0g

� �
J0e

iyaðXa�xaÞ dgdh; ð64Þ
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for the displacement u�, and

t� Nð Þ ¼ 1

2pð Þ2
Z Z

g~tt�ðNÞeiyaðXa�xaÞ dgdh

¼
X 1

2pð Þ2
Z Z

gJNþ1 e
�irN g

� �
JN � � � e�irng

� �
Jn � � � e�ir0g

� �
J0e

iyaðXa�xaÞ dgdh; ð65Þ

for the traction t�, with a similar expression for the in-plane stress s�. In Eqs. (64) and (65), the integral
dimension limits in the polar coordinates are 0 < g < 1 and h over a period of 2p.
With the transformed Green’s displacement and stress being written as the multiplication of a series of

exponential functions of g and a factor of g, as shown in Eqs. (64) and (65), it is seen now that the double
integrals involved are reducible to a 1D integral by carrying out the integral in g over (0,1). The reduced
integrals are given by

u� Nð Þ
ji ¼

X 1

2pð Þ2
I
2p

Gji
1

s

�
þ id sð Þ

�
dh; ð66Þ

t� Nð Þ
ji ¼

X 1

2pð Þ2
I
2p

Gji

�
� 1
s2
þ id0 sð Þ

�
dh; ð67Þ

where dðkÞ is the Dirac delta, and the prime indicates the first derivative, with
Gji ¼ JjkNþ1

� �
Nþ1 JkNþ1kN

� �
N
� � � Jknþ1kn
� �

n
� � � Jk1ið Þ0; ð68Þ

s ¼ rkNþ1

� �
N
þ � � � rknþ1

� �
n
þ � � � rk1ð Þ0 � X1ðð � x1Þ cos h þ X2ð � x2Þ sin hÞ: ð69Þ

Note that the in-plane stress s� has a similar expression as for t� and that u�, t� and s� do not share the same
Gji and s. The finite-integral terms in Eqs. (66) and (67) exist when s ¼ 0, in the situation when the source
and field points are on the same interface plane. A detailed interfacial solution for a bimaterial system can
be found in Pan and Yang (submitted for publication).
In summary, with the expansion approach we proposed, the trimaterial Green’s functions in the physical

domain are derived in terms of an infinite series. It is shown that each term in the series, excluding the
infinite-space term that can be treated analytically, can be expressed by a simple line integral over the
interval ½0; 2p�. Therefore, the trimaterial Green’s functions obtained with the expansion approach should
be able to reduce the computational time substantially as compared to the direct 2D integral method given
in the Appendix C. This is verified and illustrated numerically in the next section.

5. Numerical examples

Before presenting numerical examples for the trimaterial Green’s function, we first remark that our
trimaterial Green’s functions have been verified for various reduced cases. These include a homogeneous
infinite space where the infinite space is divided artificially into three identical materials, and a bimaterial
space where one of the half spaces is artificially modeled as a plate of uniform thickness over a half space,
both with identical elastic properties. It is found that for these reduced cases, the present trimaterial Green’s
functions predict the same results as those obtained by Tonon et al. (2001) for the infinite space and by Pan
and Yuan (2000) for the bimaterial case. Also, for the true trimaterial systems, a dilatation example in Yu
and Sanday (1993) has been checked and we found that our solution is in consistent with that presented in
Yu and Sanday (1993). Furthermore, the numerical examples for the trimaterial system given below are
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based on both the series and direct 2D solutions, and therefore serve, additionally, as mutual checks for the
direct 2D solution as well as the series solution.
In the following, a trimaterial system, made of two half-space solids perfectly bonded by an adhesive

with thickness equal to one unit (i.e. H ¼ 1), is chosen in the numerical study. The half-space solids are
anisotropic with their elastic constants being given in Table 1 (Tonon et al., 2001) and Table 2 (Pan et al.,
2001), respectively. The adhesive material is assumed to be isotropic, with Young’s modulus E ¼ 0:7464,
and Poison’s ratio m ¼ 0:34. As an example, the source point X is fixed in the middle plane of the adhesive
layer. An adaptive quadrature scheme was applied to compute numerically the physical-domain Green’s
functions by the expansion approach as well as by the direct 2D integral method in the Appendix A. The
computational time required by the expansion approach with two or three terms was found to be less than
10% of that needed by the direct 2D integral method.
Figs. 2–4 show the variations of the Green’s displacement, traction and in-plane stress components with

the field coordinate x3 along a vertical line at ðx1 ¼ 0:5; x2 ¼ 0; x3Þ due to a point force in the x1-, x2-, and
x3-directions, respectively. In these figures, the ‘‘true solutions’’ indicate those obtained by the direct 2D
integral method and ‘‘1-term, 2-term, and 3-term solutions’’ are those by the expansion approach with one,
two, and three successive terms of the series respectively. It is obvious that a good approximation has been
obtained with only two or three terms, particularly, for the traction and stress components. Furthermore,
these results show clearly the influence of the material layering, as well as material anisotropy, on the
Green’s displacement and stress components. For instance, the true solution by the direct 2D integral shows
that the displacement u� and traction t� are continuous across both interfaces at x3 � ðh1 þ h2Þ=2 ¼ �0:5
and 0.5. However, at these interfaces, obvious kinks in these curves are observed, indicating discontinuity in
their derivatives in the x3-direction. On the other hand, the in-plane stress components s� experience clear
discontinuities across the interfaces, due to the mismatch of materials properties between the media.
To show a convergence of the expansion approach with increasing number of successive terms, the

component, u�33, its expansion solution badly deviates from the true value (Fig. 2), is reexamined in detail.
Fig. 5 shows the variation of this component with x1 along a horizontal line (x1; x2 ¼ 0; x3 � ðh1þ
h2Þ=2 ¼ 0Þ (a), the absolute (b), and relative (c) errors for one to four terms. Based on these figures as well
as the previous figures, it is demonstrated that the expansion solutions converge with increasing number of
successive terms, and with only three or four terms, a satisfactory solution can be achieved (i.e., within an
error of 5%). The absolute error becomes smaller when the field point is farther away from the source point

Table 1

Elastic constants of material 1 (reduced Cijkl)

1.45 0.99 0.96 �0.02 �0.31177 �0.15588
1.85 0.96 �0.22 �0.10392 �0.19052

1.28 �0.16 �0.27713 0

0.32 0 �0.10392
0.32 �0.02

0.35

Table 2

Elastic constants of material 2 (reduced Cijkl)

1.03520185 0.052384 0.052384 0 0 0

0.115377 0.040527 0 0 0

0.115377 0 0 0

0.033333 0 0

0.033333 0

0.033333
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(Fig. 5b) while the relative error becomes larger. The reason is that the absolute value of the solution decays
with distance but the influence of the truncated terms (images) becomes more and more comparable to that
of the original source and the first few images (Fig. 5c). Note that the convergence with increasing number
of successive terms is not monotonic, as shown in Fig. 5. The errors are very small in the approximation
with the first two and the first four terms, while they are relatively large with the first three terms.
In addition, we have studied a few other systems of trimaterials with different combinations of materials.

The results showed similar behaviors to what were observed in the previous system. Besides, the smaller the
dissimilarity between the materials, the smaller the truncated series terms to converge. As extreme cases,
when the three materials are all the same, the trimaterial composite reduces to a homogeneous infinite
space. When one of the half-space media is the same as the plate medium, the trimaterial composite reduces
to a bimaterial composite (Pan and Yuan, 2000), where the first expansion term is sufficient to describe the
complementary part due to the single interface.

Fig. 2. Variation of the trimaterial Green’s displacement components along a vertical line ðx1 ¼ 0:5; x2 ¼ 0; x3Þ due to a point force
applied at ðx1 ¼ 0; x2 ¼ 0; x3 ¼ ðh1 þ h2Þ=2Þ in the (a) x1-direction; (b) x2-direction; and (c) x3-direction. The ‘‘true solution’’ repre-
sented by solid line is the solution obtained by the direct 2D integral method and ‘‘1-term, 2-term, and 3-term solutions’’ are those

by the truncated expansion approach with one, two, and three successive terms of the series respectively.
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6. Conclusions

Three-dimensional elastostatic Green’s functions in anisotropic trimaterials have been derived, for the
first time, by applying the generalized Stroh’s formalism and Fourier transforms. The Green’s functions are
expressed as a finite series summation with each term having a clear physical meaning that resembles the
image method. In particular, the first term corresponds to the infinite-space Green’s function, which has an
explicit-form solution (Ting and Lee, 1997; Tonon et al., 2001), and the second term corresponds to the
bimaterial solution developed previously by Pan and Yuan (2000). The most remarkable feature of the
present solution is that every term of the series can be expressed by a simple and regular line integral over
the finite interval ½0; 2p�, resembling one image of the source. The solution developed is practically very
useful since only two or three terms are required in most cases representing fiber composites and materials
as examined by the authors. Furthermore, by partitioning the trimaterial Green’s function into a full-space
solution and a complementary part, the line integral involves only regular functions if the singularity is

Fig. 3. Variation of the trimaterial Green’s out-of-plane stress components along a vertical line ðx1 ¼ 0:5; x2 ¼ 0; x3Þ due to a point
force applied at ðx1 ¼ 0; x2 ¼ 0; x3 ¼ ðh1 þ h2Þ=2Þ in the (a) x1-direction; (b) x2-direction; and (c) x3-direction. The ‘‘true solution’’
represented by solid line is the solution obtained by the direct 2D integral method and ‘‘1-term, 2-term, and 3-term solutions’’ are those

by the truncated expansion approach with one, two, and three successive terms of the series respectively.
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within one of the three material, being treated analytically owning to the explicit expression of the full-space
solution (Ting and Lee, 1997; Tonon et al., 2001). When the singularity is on the interface, which occurs if
the field and source points are both on the same interface, the involved singularity is handled with the
interfacial Green’s functions (Pan and Yang, submitted for publication).
Since the trimaterial model includes many practical physical models as its special cases, such as a thin

film on a substrate, a simple finite plate, and bimaterial, the present solution is of great interests in these
areas where the physical models need to be analyzed numerically. In particular, the present trimaterial
Green’s function can be directly applied to the study of quantum-dot growth in modern semiconductor
devices. The numerical examples presented in this paper have clearly shown the efficiency and accuracy of
the expansion method in comparison to the direct 2D integral solution. The results also show the significant
influence of material layering (or stacking sequences) on the displacement and stress fields. The present
study, using an adaptive quadrature scheme, showed that the computational time for the calculation of the

Fig. 4. Variation of the trimaterial Green’s in-plane stress components along a vertical line ðx1 ¼ 0:5; x2 ¼ 0; x3Þ due to a point force
applied at ðx1 ¼ 0; x2 ¼ 0; x3 ¼ ðh1 þ h2Þ=2Þ in the (a) x1-direction; (b) x2-direction; and (c) x3-direction. The ‘‘true solution’’ repre-
sented by solid line is the solution obtained by the direct 2D integral method and ‘‘1-term, 2-term, and 3-term solutions’’ are those by

the truncated expansion approach with one, two, and three successive terms of the series respectively.
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physical-domain Green’s functions based on the expansion approach can be substantially reduced as
compared to the direct 2D integral approach.
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Appendix A. Transformed Green’s displacement and stress in an infinite homogeneous space

The transformed Green’s displacement and stress in an infinite homogeneous space due to a unit axial
point force at ðX1 ¼ 0; X2 ¼ 0; X3Þ, ~uu� 1ð Þ, ~tt� 1ð Þ and ~ss� 1ð Þ are given by

Fig. 5. Variation of the trimaterial Green’s displacement component u�33 in (a), its absolute error in (b), and its relative error in (c), with
x1 along a line at ðx1; x2 ¼ 0; x3 � ðh1 þ h2Þ=2 ¼ 0Þ.
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~uu� 1ð Þ y1; y2; x3;X3ð Þ ¼ ig�1
A e�ipg x3�X3ð Þ� �

A�1 BA�1 � BA
�1� ��1

; x3 < X3;

Ahe�i�ppg x3�X3ð ÞiA�1
BA�1 � BA

�1� ��1
; x3 > X3;

8><
>: ðA:1Þ

~tt� 1ð Þ y1; y2; x3;X3ð Þ ¼
B e�ipg x3�X3ð Þ� �

A�1 BA�1 � BA
�1� ��1

; x3 < X3;

Bhe�i�ppg x3�X3ð ÞiA�1
BA�1 � BA

�1� ��1
; x3 > X3;

8><
>: ðA:2Þ

~ss� 1ð Þ y1; y2; x3;X3ð Þ ¼
C e�ipg x3�X3ð Þ� �

A�1 BA�1 � BA
�1

� ��1
; x3 < X3;

Che�i�ppg x3�X3ð ÞiA�1
BA�1 � BA

�1� ��1
; x3 > X3:

8><
>: ðA:3Þ

Appendix B. Explicit expressions of expansion terms in the trimaterial Green’s function

A complete description of the explicit expressions for the trimaterial Green’s function expansion terms
(Eqs. (62) and (63)) is lengthy and redundant. However, as an example, we derive below the explicit
expression for the Green’s displacement with the source and field points both in the middle layer ðh1 <
X3 < h2; h1 < x3 < h2Þ, corresponding to Eq. (59) inserted with Eqs. (51), (52), (55) and (56).
In this case (h1 < X3 < h2, h1 < x3 < h2), for N ¼ 1, Eqs. (51) and (52) becomes

~uu
� 1ð Þ
01 h1ð Þ ¼ M1

�
�M0

��1
M0ð �M1Þ~uu� 1ð Þ

0 h1ð Þ; ðB:1Þ

~uu
� 1ð Þ
02 h2ð Þ ¼ M2

�
�M0

��1
M0

�
�M2

�
~uu
� 1ð Þ
0 h2ð Þ; ðB:2Þ

where ~uu
� 1ð Þ
0 h1ð Þ and ~uu� 1ð Þ

0 h2ð Þ are given by substituting x3 ¼ h1 and x3 ¼ h2 in Eq. (A.1) respectively. Thus,
substituting Eqs. (B.1) and (B.2) in Eqs. (59a) and (59b) respectively yields

~uu
� 1ð Þ
01 x3ð Þ ¼ A0 e

�i�pp0g x3�h1ð Þ
D E

A
�1
0 M1

�
�M0

��1
M0ð �M1Þ~uu� 1ð Þ

0 h1ð Þ; ðB:3Þ

~uu
� 1ð Þ
02 x3ð Þ ¼ A0 e

�ip0g x3�h2ð Þ� �
A�1
0 M2

�
�M0

��1
M0

�
�M2

�
~uu
� 1ð Þ
0 h2ð Þ: ðB:4Þ

The higher order terms are then derived consecutively; for example, the second-order term is derived below.
For N ¼ 2, first, substituting x3 ¼ h1 and x3 ¼ h2 in Eqs. (B.3) and (B.4) yields

~uu
� 1ð Þ
01 h2ð Þ ¼ A0he�i�pp0gH iA

�1
0 M1

�
�M0

��1
M0ð �M1Þ~uu� 1ð Þ

0 h1ð Þ; ðB:5Þ

~uu
� 1ð Þ
02 h1ð Þ ¼ A0 e

ip0gH
� �

A�1
0 M2

�
�M0

��1
M0

�
�M2

�
~uu
� 1ð Þ
0 h2ð Þ: ðB:6Þ

Further substituting Eqs. (B.5) and (B.6) in Eqs. (55) and (56) respectively yields

~uu
� 2ð Þ
01 h1ð Þ ¼ M1

�
�M0

��1
M0ð �M1ÞA0 eip0gH

� �
A�1
0 M2

�
�M0

��1
M0

�
�M2

�
~uu
� 1ð Þ
0 h2ð Þ; ðB:7Þ

~uu
� 2ð Þ
02 h2ð Þ ¼ M2

�
�M0

��1
M0

�
�M2

�
A0he�i�pp0gH iA

�1
0 M1

�
�M0

��1
M0ð �M1Þ~uu� 1ð Þ

0 h1ð Þ: ðB:8Þ
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Therefore, the second-order terms are obtained as

~uu
� 2ð Þ
01 x3ð Þ ¼ A0he�i�pp0g x3�h1ð ÞiA�1

0 M1

�
�M0

��1
M0ð �M1ÞA0 eip0gH

� �
A�1
0 M2

�
�M0

��1
M0

�
�M2

�
~uu
� 1ð Þ
0 h2ð Þ;

ðB:9Þ

~uu
� 2ð Þ
02 x3ð Þ ¼ A0 e

�ip0g x3�h2ð Þ� �
A�1
0 M2

�
�M0

��1
M0

�
�M2

�
A0he�i�pp0gH iA

�1
0 M1

�
�M0

��1
M0ð �M1Þ~uu� 1ð Þ

0 h1ð Þ:
ðB:10Þ

The following higher order terms may be derived in the same procedure. For this case of h1 < X3 < h2
and h1 < x3 < h2, we found that all the terms can be expressed in the following condensed forms:

~uu
� Nð Þ
01 x3ð Þ ¼ A0he�i�pp0g x3�h1ð Þi½L1heip0gH iL2he�i�pp0gH i�m

L1A
�1
0 ~uu

� 1ð Þ
0 h1ð Þ if N is odd;

L1 e
ip0gH

� �
L2A

�1
0 ~uu

� 1ð Þ
0 h2ð Þ if N is even;

(
ðB:11Þ

~uu
� Nð Þ
02 x3ð Þ ¼ A0 e

�ip0g x3�h2ð Þ� �
½L2he�i�pp0gH iL1 eip0gH

� �
�m L2A

�1
0 ~uu

� 1ð Þ
0 h2ð Þ if N is odd;

L2he�i�pp0gH iL1A�1
0 ~uu

� 1ð Þ
0 h1ð Þ if N is even;

(
ðB:12Þ

with

L1 ¼ A
�1
0 M1

�
�M0

��1
M0ð �M1ÞA0; ðB:13Þ

L2 ¼ A�1
0 M2

�
�M0

��1
M0

�
�M2

�
A0; ðB:14Þ

where m ¼ ðN � 1Þ=2 if N is odd, and (N � 2Þ=2 if N is even.

Appendix C. Direct 2D integral evaluation of trimaterial Green’s functions

We mentioned previously that the physical-domain trimaterial Green’s functions can also be evaluated
directly using the 2D inverse Fourier transforms in the polar coordinate system, with sacrifice of intensive
computational time. To check with our expansion solution, we give, in this appendix, a brief derivation for
the direct 2D integral solution. We start with the general solutions in the Fourier-transformed domain
described in Section 3. To derive the Green’s functions in the trimaterials, one may first assign the ho-
mogeneous-domain solution with unknowns to each one of the media and solve for the unknowns by
imposing the interfacial and radiation conditions, Eqs. (3)–(5). Explicitly, these homogeneous-domain
solutions for each domain are given, in the Fourier-transformed domain, as a sum of an infinite-domain
Green’s function and a complementary part:

~uu�0 y1; y2; x3;Xð Þ ¼ eiyaXa ~uu
� 1ð Þ
0 y1; y2; x3;X3ð Þ

�
þ ig�1 A0he�i�pp0g x3�h1ð ÞiV0

j
þ A0 e

�ip0g x3�h2ð Þ� �
W0

k�
; ðC:1Þ

~tt�0 y1; y2; x3;Xð Þ ¼ eiyaXa ~tt
� 1ð Þ
0 y1; y2; x3;X3ð Þ

�
þ B0he�i�pp0g x3�h2ð ÞiV0
j

þ B0 e
�ip0g x3�h1ð Þ� �

W0

k�
; ðC:2Þ

~ss�0 y1; y2; x3;Xð Þ ¼ eiyaXa ~ss
� 1ð Þ
0 y1; y2; x3;X3ð Þ

�
þ C0he�i�pp0g x3�h2ð ÞiV0
j

þ C0 e
�ip0g x3�h1ð Þ� �

W0

k�
; ðC:3Þ

for h1 < x3 < h2 (material 0),

~uu�1 y1; y2; x3;Xð Þ ¼ eiyaXa ~uu
� 1ð Þ
1 y1; y2; x3;X3ð Þ

�
þ ig�1A1 e

�ip1g x3�h1ð Þ� �
W1

�
; ðC:4Þ

~tt�1 y1; y2; x3;Xð Þ ¼ eiyaXa ~tt
� 1ð Þ
1 y1; y2; x3;X3ð Þ

�
þ B1 e

�ip1g x3�h1ð Þ� �
W1

�
; ðC:5Þ
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~ss�1 y1; y2; x3;Xð Þ ¼ eiyaXa ~ss
� 1ð Þ
1 y1; y2; x3;X3ð Þ

�
þ C1 e

�ip1g x3�h1ð Þ� �
W1

�
; ðC:6Þ

for x3 < h1 (material 1), and

~uu�2 y1; y2; x3;Xð Þ ¼ eiyaXa ~uu
� 1ð Þ
2 y1; y2; x3;X3ð Þ

�
þ ig�1A2he�i�pp2g x3�h2ð ÞiV2

�
; ðC:7Þ

~tt�2 y1; y2; x3;Xð Þ ¼ eiyaXa ~tt
� 1ð Þ
2 y1; y2; x3;X3ð Þ

�
þ B2he�i�pp2g x3�h2ð ÞiV2

�
; ðC:8Þ

~ss�2 y1; y2; x3;Xð Þ ¼ eiyaXa ~ss
� 1ð Þ
2 y1; y2; x3;X3ð Þ

�
þ C2he�i�pp2g x3�h2ð ÞiV2

�
; ðC:9Þ

for x3 > h2 (material 2). Note that for x3 < h1 and x3 > h2, the radiation condition, Eq. (5) has been sat-
isfied, retaining one of the tensors V and W as unknown.
Substituting the above expressions into Eqs. (3) and (4) results in four independent equations, with four

unknown tensors V0, W0, V1 and W2, for given y1 and y2, and a fixed X3, as

~uu
� 1ð Þ
1 h1ð Þ � ~uu

� 1ð Þ
0 h1ð Þ ¼ ig�1 A0V0

�
þ A0 e

ip0gH
� �

W0 � A1W1

�
; ðC:10Þ

~tt
� 1ð Þ
1 h1ð Þ �~tt

� 1ð Þ
0 h1ð Þ ¼ B0V0 þ B0 e

ip0gH
� �

W0 � B1W1; ðC:11Þ

~uu
� 1ð Þ
2 h2ð Þ � ~uu

� 1ð Þ
0 h2ð Þ ¼ ig�1 A0he�i�pp0gH iV0

�
þ A0W0 � A2V2

�
; ðC:12Þ

~tt
� 1ð Þ
2 h2ð Þ �~tt

� 1ð Þ
0 h2ð Þ ¼ B0he�i�pp0gH iV0 þ B0W0 � B2V2; ðC:13Þ

where the arguments y1 and y2 and X3 in the functions are omitted for simplicity and will be resumed as
necessary for clarity. Solving this set of equations gives V0 in the form,

V0 ¼ Eð � FÞ�1 A�1
1 A0

��
� B�1

1 B0
��1
D01 � eip0gH

� �
A

�1
2 A0

�
� B

�1
2 B0

��1
D02

�
; ðC:14Þ

with

D01 ¼ �igA�1
1 ~uu

� 1ð Þ
1 h1ð Þ

�
� ~uu

� 1ð Þ
0 h1ð Þ

�
� B�1

1
~tt
� 1ð Þ
1 h1ð Þ

�
�~tt

� 1ð Þ
0 h1ð Þ

�
; ðC:15Þ

D02 ¼ �igA�1
2 ~uu

� 1ð Þ
2 h2ð Þ

�
� ~uu

� 1ð Þ
0 h2ð Þ

�
� B

�1
2

~tt
� 1ð Þ
2 h2ð Þ

�
�~tt

� 1ð Þ
0 h2ð Þ

�
; ðC:16Þ

E ¼ A�1
1 A0

�
� B�1

1 B0
��1

A�1
1 A0

�
� B�1

1 B0
�
; ðC:17Þ

F ¼ eip0gH
� �

A
�1
2 A0

�
� B

�1
2 B0

��1
A

�1
2 A0

�
� B

�1
2 B0

�
he�i�pp0gHi: ðC:18Þ

Consequently, other three unknown tensors can be derived sequentially, as

W0 ¼ A
�1
2 A0

�
� B

�1
2 B0

��1
D02

j
� �AA�1

2
�AA0

�
� B

�1
2
�BB0

�
he�i�pp0gH iV0

k
; ðC:19Þ

W1 ¼ A�1
1 A0V0

h
þ A0 e

ip0gH
� �

W0 þ ig ~uu
� 1ð Þ
1 h1ð Þ

�
� ~uu

� 1ð Þ
0 h1ð Þ

�i
; ðC:20Þ

V2 ¼ A
�1
2 A0he�i�pp0gH iV0
j

þ A0W0 þ ig ~uu
� 1ð Þ
2 h2ð Þ

�
� ~uu

� 1ð Þ
0 h2ð Þ

�k
: ðC:21Þ
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Finally, by substituting these tensors back into the expressions for ~uu�, ~tt� and ~ss� in Eqs. (C.1)–(C.9), a
solution to the trimaterial Green’s functions in the transformed domain is obtained as a sum of the infinite-
space Green’s solution and a complementary term. Simply by substituting the transformed-domain solution
into the inverse-transform operator, Eq. (20) or (21), the corresponding physical-domain solution is ob-
tained in terms of a 2D integral over an infinite plane. This integral is carried out by an adaptive quadrature
scheme. We emphasize, however, the 2D integral is only needed for the complementary part of the Fourier-
domain solution since the infinite-space Green’s function is already available in an explicit form (Ting and
Lee, 1997; Tonon et al., 2001). Such a partition of the trimaterial solution into an infinite-space solution
and a complementary part has the advantage of avoiding numerical integral of singular function as the
singularity is involved in the infinite-space solution only (Pan and Yuan, 2000).
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