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Elastic analysis of an inhomogeneous quantum dot in multilayered
semiconductors using a boundary element method

B. Yanga) and E. Pan
Structures Technology Incorporated, 543 Keisler Drive, Suite 204, Cary, North Carolina 27511

~Received 19 April 2002; accepted for publication 1 July 2002!

In this work, we examine the elastostatic field due to a buried quantum dot~QD! in multilayered
semiconductors using a boundary element method. Since the integral kernels employ a special
Green’s function that satisfies the interfacial continuity and boundary conditions for a multilayered
matrix, coupled with the conventional Kelvin-type Green’s function for the QD, the present method
only requires discretization along the interface between the matrix and QD to solve the problem.
With this method, the QD can be modeled in general as an inhomogeneity relative to the matrix. We
have examined a practical semiconductor multilayer system of an InAs wetting/GaAs spacer with a
buried cuboidal QD of either wetting or a spacer medium. The QD is correspondingly modeled by
either the inhomogeneity or inclusion approach. Two crystallographic orientations of the spacer
medium, GaAs~001! and GaAs~111!, are considered. The analytical results have shown that these
two approaches generally result in considerable differences in the prediction of the QD-induced
elastic field. Also, different crystallographic orientation of a spacer medium can cause a
characteristic change in the QD-induced field. ©2002 American Institute of Physics.
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I. INTRODUCTION

Self-assembled semiconductor heterostructures of q
tum islands have attracted tremendous attention in re
years. The processing of the heterostructures is base
Stranski–Krastanow spontaneous growth of small surface
lands from a wetting layer that is restrained to a lattic
mismatched substrate. The islands include quasiz
dimensional dots@or quantum dots~QDs!# and quasione-
dimensional wires on the nanoscale. They are later cove
by a thin layer of different medium, nominally, a spac
layer. Experimental studies have shown that the nanost
tures with embedded QDs possess certain special elect
and optical features, rendering possible fascinating novel
vices, such as low-threshold lasers, resonant tunneling
vices, and huge-capacity memory media.1 Since these fea
tures are in part related to the strain fields induced by
QDs, it would be essential to understand the latter before
design of devices. In the advancement of technology
utilizes the special electronic and optical features, multil
ering of the QD nanostructures is often desirable.2–6 To ac-
curately and efficiently predict the strain field in such hete
geneous anisotropic media with multiple interacti
nanoparticles still poses a great challenge to the rese
societies of physics and engineering.

The ~buried! QDs have been approached by po
source,2,7 finite-sized inclusion,8–13 and finite-sized
inhomogeneity14–17of eigenstrains embedded in a matrix.
the first point-source approach, the effect of the finite geo
etry of QDs is not taken into account, which is appropria
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only if the QD size is sufficiently small relative to all othe
length scales including the spacing of neighboring QDs a
the thickness of spacer layer that covers the QDs. In
second inclusion approach, the geometry of QDs is ta
into account, and the materials property is assumed to
identical to that of the spacer medium. By assuming this
these approaches, an analytical Green’s function method
be derived to evaluate the induced strain fields upon
availability of the point-force Greeen’s functions for the sp
cific configuration. The numerical finite element~FE! and
finite difference~FD! methods may also be used to solve t
point-source and finite-size inclusion problems. The last
homogeneity approach takes into account the effect of
similar materials properties between QDs and the space
well as the effect of finite geometry of QDs. The QDs us
ally are assumed to contain a medium identical to that of
wetting layer. In this case, the strain field of QDs has be
solved numerically by using the FE15,17and FD14,16methods.
All of these approaches discussed above are based on
local continuum assumption of matter, which has commo
been accepted in analyses of long-range fields of QDs.1,18

The short-range fields of QDs can be examined by us
an atomic-level approach.19–21Darukaet al.19 applied classi-
cal molecular dynamics~MD! simulation to examine the sur
face stress distribution in a Ge/Si QD superlattice. Th
found good agreement of their MD simulation results w
analytical expressions based on the continuum force-dip
model. However, Makeev and Madhukar20 reported a char-
acteristic discrepancy between predictions of the depende
of hydrostatic stress on spacer thickness and island dim
sions using those two approaches. Generally speaking
atomic-level approach would be required from the persp
tive of predicting the elastic constants, mass transport c
ficients, shapes, compositions, etc., of QDs and underst
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ing the underlying physics in the process of QD formatio
However, the computational expense normally is extrem
high, thus prohibiting a simulation of QD nanostructures
large size or over the long term. A strategy for combining
continuum and atomic-level approaches, i.e., a quasic
tinuum approach,22 may in practice be feasible.

In this article, we apply a continuum-based bounda
element~BE! method to examine the elastic strain fields o
generally inhomogeneous QD in multilayered semicond
tors. Compared to the domain-based FE and FD methods
BE method has the following general advantages. First,
problem of dimensionality is reduced by one. Second,
interior domain is not discretized because there the gov
ing equation is satisfied exactly. Finally, if any stress conc
tration or singularity exists, it can be more accurately a
conveniently modeled. Note that the last advantage is sig
cant in the modeling of QDs where cuboidal and pyrami
shapes are often assumed. At the edges and corners of
geometries, stress singularity appears. Compared to con
tional ones, the unique characteristic of the present
method is the utilization of a special Green’s function th
satisfies the interfacial continuity and boundary conditio
for the multilayered matrix,23,24 coupled with the conven
tional Kelvin-type Green’s function for the QD. This featu
allows us to design the BE method without involving t
interfaces and surfaces of the matrix unless a different s
ation occurs. In the other words, the present BE analysis
generally inhomogeneous QD in multilayered semicond
tors needs to numerically discretize only the interface
tween the matrix and QD.

In Sec. II, the formulation of a cuboidal QD in a mult
layered matrix is described. In Sec. III, the BE method is fi
validated by comparing the numerical results of an inclus
QD to the analytical result by the Green’s function method13

Then, it is applied to examine the effect of inhomogeneity
a buried QD relative to the embedding spacer medium
induced elastic field. We have investigated a semicondu
system of InAs wetting/GaAs spacer with two different cry
tallographic orientations of the spacer medium. It is sho
that the effect of the inhomogeneity of a QD is significant
this semiconductor system. Also, different crystallograp
orientation of the spacer medium can cause character
changes in the QD-induced elastic field. In Sec. IV, conc
sions based on this study are drawn.

II. FORMULATION

Let us consider the problem of a cuboidal QD embedd
in a multilayered half space of an InAs wetting/GaAs spac

FIG. 1. Multlayered semiconductor system of InAs wetting/GaAs spa
InAs wetting/GaAs substrate with a buried cuboidal QD of dimensio
a3a3a/2.
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InAs wetting/GaAs substrate, shown in Fig. 1. The Cartes
coordinate system, (x1 , x1 , x3), is chosen such that thex3

axis is perpendicular to the matrix surface and that the or
~0, 0, 0! is on the top surface right above the center of t
QD. The crystallographic directions@100#, @010#, and @001#
of the InAs crystals are taken to be along the global coo
natesx1 , x2 , andx3 , respectively. The crystallographic or
entations of the GaAs crystals will be specified later. The Q
is on the top surface of the interior InAs-wetting layer a
covered by the GaAs-spacer layer. The sides of the cubo
QD are taken to be along the global coordinates,x1 , x2 , and
x3 , respectively. The interfaces between the different sub
mains all are perfectly bonded. The matrix surface is free
traction. The eigenstrain in the QD is assumed to be unifo
and hydrostatic, i.e.,« i j

0 5«0d i j , and that in the matrix layers
to be zero. Note that in reality, the wetting layers should a
have uniform distribution of nonzero eigenstrain, similar
the QD. In this case, the field to be derived under the ab
condition of zero eigenstrain in the multilayered matrix
actually the part of the field induced by the QD. The to
field can be obtained by applying the rule of superposition
the induced field to the homogeneous field that is derived
if there were no QD but with the matrix eigenstrain under t
same boundary and interfacial conditions. The elastic c
stants for GaAs areC115118,C12554, andC22559 and for
InAs areC11583,C12545, andC22540 ~GPa! in their crys-
tallographic base axes. The dimensions of the cuboidal
area3a3a/2. The thickness of both the wetting layers,l w ,
is equal to 0.1a while the spacer thickness,l s , will be varied
in later simulations.

To solve the problem shown in Fig. 1, we apply th
nonconventional multilayered BE method to the semico
ductor multilayers discussed above, coupled with the c
ventional BE method using the Kelvin-type fundamental s
lution to the QD. The present BE method is developed ba
on the following boundary integral-equation formulation:

cui
~M !~X!5E

]M
@ui j*

~M !~X,x!pj
~M !

„x…2pi j*
~M !~X,x!

3uj
~M !

„x…#dS„x… ~1!

for the multilayered matrix, and

cui
~D !

„X…5E
]D

$ui j*
~D !

„X,x…@pj
~D !

„x…2F j
~D !

„x…#

2pi j*
~D !

„X,x…uj
~D !

„x…%dS„x… ~2!

for the buried QD, whereF j
(D)5Cjklm

(D) « lm
0 nk , in which Ci jlm

is the elastic stiffness tensor, andnk is the unit outward nor-
mal at a boundary point. The coefficientc is equal to 1 ifX
is an interior point and to 0.5 ifX is a boundary point~except
for sharp corners!. The fundamental solutionsui j*

(M ) and
pi j*

(M ) are the special Green’s functions for anisotrop
multilayers.23,24 Meanwhile, ui j*

(D) and pi j*
(D) are Green’s

functions for infinite space of an anisotropic medium.25 The
expressions for strain and stress can be obtained by ta
derivatives of Eqs.~1! and~2! and applying Hooke’s law. For
details of the numerical issues of how to construct a disc
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version of the above boundary integral-equation formulat
and an algorithm to solve it, one can refer to the work
Brebbiaet al.26 We have adopted the iterative scheme of s
cessive overrelaxation to solve the present BE problem.27 In
the following, we shall first verify our formulation by com
paring the BE solution of an inclusion QD to the availab
analytical solution by the Green’s function method using
same multilayered Green’s functions.13 After validation, the
effect of inhomogeneity of a buried QD relative to the e
bedding spacer is examined. Two crystallographic orien
tions of the spacer medium, GaAs~001! and GaAs~111!, will
be considered, where the index indicates the crystallogra
orientation in thex3 direction.

III. ANALYSIS

In order to validate our formulation, we first take the Q
as an inclusion, assuming that the QD consists of the s
medium as the matrix it occupies, i.e., the spacer. In
case, the strain field can be solved analytically by using
Green’s function method.13 The spacer and QD are subs
tuted by the GaAs~001!. The QD-induced hydrostatic strai
along a line (x1 , 0, 0! on the surface obtained, respective
by the analytical method and by the numerical BE meth
with two different meshes are compared in Fig. 2. The coa
mesh is 53533 divisions, respectively, along the three sid
of the QD while the finer mesh is 1031035 divisions. The
constant interpolation function is used in each of the res
ing rectangular elements. The spacer thickness is indicate
Fig. 2. It can be seen that the numerical solutions are clos
the analytical solutions, even with the quite coarse me
When the mesh is refined, the numerical BE solution
proaches the analytical solution, indicating the converge
of the numerical solution with mesh refinement. These f
tures have demonstrated the validity of the present form
tion. We want to remark that the computational time for t
strain field using the analytical Green’s function method
much shorter than that using the numerical BE method
the numerical BE method, the solution is obtained in t
steps: solving the fields along the interface between the
and multilayered matrix, and then calculating the fields
desired locations in postprocessing. In the analytical Gre
function method, the solution procedure comprises only

FIG. 2. Convergence check of the numerical BE solution of an inclus
QD compared tothe analytical solution by the Green’s function method
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computation of an integral that corresponds to the sec
step in the former. Therefore, if the QD can be approache
an inclusion, the Green’s function method is more desira
than the numerical BE method. On the other hand, should
QD be approached as inhomogeneity, the numerical
method~or other numerical methods! needs to be adopted i
a trade-off of computational efficiency. Below, we exami
how necessary it is to model a buried QD as inhomogen
against inclusion in the semiconductor system of InAs/Ga

We now consider the same multilayered semiconduc
system as above. At this time, however, the QD is assum
to contain the same medium as the InAs-wetting layer~in-
stead of the GaAs spacer! in the inhomogeneity approach
This approach of QDs is considered to be a more reali
approximation than the inclusion approach due to the f
that the QD is grown from the wetting layer via mass tran
port but covered by the foreign spacer medium. However,
note that even the assignment of the same medium of
parent wetting layer to the QD may not make an exact
proach to the problem because the QD growth, as norm
believed, is of the diffusional type of phase transition th
involves a change in composition at a mass point. In ot
words, the QDs may have different compositions and he
difference materials properties than the wetting layer. T
evaluation of the elastic property of QDs, either experimen
or theoretical, remains a great challenge to researchers
cause of the small scales. Figure 3 shows the variation
hydrostatic strain«kk along (x1 , 0, 0! on the top surface of
the QD at three different values of spacer thickness co
pared to the result by the inclusion approach. Note tha
this example, the GaAs~001! is used for the spacer and su
strate while the InAs~001! is used for the wetting layers an
QD. All other parameters are kept the same as in the prev
simulation. It can be seen that the hydrostatic strain show
maximum value at the origin~0, 0, 0! right above the cente
of the QD in the first two cases of spacer thickness equa
0.6a @Fig. 3~a!# and 1.2a @Fig. 3~b!#. In the third case of
spacer thickness, equal to 2.2a @Fig. 3~c!#, the profile of hy-
drostatic strain has gone through a transition from convex
concave at the top region. Meanwhile, the amplitude of
drostatic strain rapidly decreases with an increase in sp
thickness. Due to the symmetry of the materials and the
shape, the field induced over the QD is symmetric relative
the x2 axis as well as to thex1 axis ~not shown!. Compared
to the inclusion solution, it is seen that in the case of spa
thickness equal to 0.6a, which is small compared to the QD
height of 0.5a, there appears not to be much difference b
tween the two solutions. The relative difference is rather
vious at larger spacer thickness. Because the spacer me
is elastically stiffer than the wetting medium, the peak va
of hydrostatic strain over the CD is larger by the inhomog
neity approach than by the inclusion approach.

Finally, we examine the elastic field of a buried QD
the multilayered semiconductor system with the spacer
substrate medium being substituted by the GaAs~111!. Simi-
lar to in the previous analysis, the surface hydrostatic str
field over the cuboidal QD is obtained with the QD bein
approached as either inclusion or inhomogeneity. The res
for three different values of spacer thickness are plotted

n
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Fig. 4. In comparison to the plots in Fig. 3 for spacer a
substrate made of the GaAs~001!, several distinct feature
can be observed. First, the hydrostatic strain profile over
QD is asymmetric relative to thex2 axis, but symmetric rela-
tive to thex1 axis which is not shown. Second, the effect
QD inhomogeneity on the elastic field is pronounced for
three values of spacer thickness. Finally, the transition fr
convexity to concavity of the hydrostatic strain field abo
the QD with respect to spacer thickness is not observe
the case of the GaAs~111! as the spacer and substrate.

IV. CONLCUION

We have examined the elastic field of a buried QD
multilayered semiconductors by applying a BE metho

FIG. 3. Variation of normalized hydrostatic strain («kk /«0) along (x1 , 0, 0!
over the QD at various values of spacer thicknessl s : ~a! 0.6a; ~b! 1.2a; ~c!
2.2a. The solutions by the approaches of inhomogeneity and inclusion
compared. The spacer is substituted by the GaAs~001!.
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Since the integral kernels employ the special Green’s fu
tion that satisfies the interfacial and boundary conditions
the multilayered matrix, the present BE method only requi
discretization along the interface between the matrix and
to solve the problem. With this method, the QD can be m
eled in general as inhomogeneous relative to the matrix.
an example, we have examined the practical semicondu
multilayer system of InAs wetting/GaAs spacer with a cub
dal QD. The QD was modeled as either inclusion or inhom
geneity in two crystallographic orientations of spac
GaAs~001! and GaAs~111!. By comparing the numerical in
clusion solution to the analytical solution by the Green
function method, the present formulation has been valida
Also, by comparing the results by the two approaches
inclusion and inhomogeneity, it has been shown that th

re

FIG. 4. Variation of normalized hydrostatic strain («kk /«0) along (x1 , 0, 0!
over the QD at various values of spacer thicknessl s : ~a! 0.6a; ~b! 1.2a; ~c!
2.2a. The solutions by the approaches of inhomogeneity and inclusion
compared. The spacer is substituted by the GaAs~111!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



t
nt
se

e

nd

er

.

pl.

and

3088 J. Appl. Phys., Vol. 92, No. 6, 15 September 2002 B. Yang and E. Pan
approaches generally result in considerable differences in
prediction of the QD-induced elastic field. Also, differe
crystallographic orientation of a spacer medium can cau
characteristic change in the field.
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