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Elastic analysis of an inhomogeneous quantum dot in multilayered
semiconductors using a boundary element method

B. Yang® and E. Pan
Structures Technology Incorporated, 543 Keisler Drive, Suite 204, Cary, North Carolina 27511

(Received 19 April 2002; accepted for publication 1 July 2002

In this work, we examine the elastostatic field due to a buried quanturf@dtin multilayered
semiconductors using a boundary element method. Since the integral kernels employ a special
Green'’s function that satisfies the interfacial continuity and boundary conditions for a multilayered
matrix, coupled with the conventional Kelvin-type Green'’s function for the QD, the present method
only requires discretization along the interface between the matrix and QD to solve the problem.
With this method, the QD can be modeled in general as an inhomogeneity relative to the matrix. We
have examined a practical semiconductor multilayer system of an InAs wetting/GaAs spacer with a
buried cuboidal QD of either wetting or a spacer medium. The QD is correspondingly modeled by
either the inhomogeneity or inclusion approach. Two crystallographic orientations of the spacer
medium, GaA&01) and GaAs$l1l), are considered. The analytical results have shown that these
two approaches generally result in considerable differences in the prediction of the QD-induced
elastic field. Also, different crystallographic orientation of a spacer medium can cause a
characteristic change in the QD-induced field. 2002 American Institute of Physics.
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I. INTRODUCTION only if the QD size is sufficiently small relative to all other
length scales including the spacing of neighboring QDs and
Self-assembled semiconductor heterostructures of quanhke thickness of spacer layer that covers the QDs. In the
tum islands have attracted tremendous attention in recemiecond inclusion approach, the geometry of QDs is taken
years. The processing of the heterostructures is based @mo account, and the materials property is assumed to be
Stranski—Krastanow spontaneous growth of small surface idelentical to that of the spacer medium. By assuming this in
lands from a wetting layer that is restrained to a lattice-these approaches, an analytical Green’s function method may
mismatched substrate. The islands include quasizerdse derived to evaluate the induced strain fields upon the
dimensional dotgor quantum dotdQDs)] and quasione- availability of the point-force Greeen'’s functions for the spe-
dimensional wires on the nanoscale. They are later coverecific configuration. The numerical finite eleme(fE) and
by a thin layer of different medium, nominally, a spacer finite difference(FD) methods may also be used to solve the
layer. Experimental studies have shown that the nanostrugoint-source and finite-size inclusion problems. The last in-
tures with embedded QDs possess certain special electronimmogeneity approach takes into account the effect of dis-
and optical features, rendering possible fascinating novel desimilar materials properties between QDs and the spacer as
vices, such as low-threshold lasers, resonant tunneling davell as the effect of finite geometry of QDs. The QDs usu-
vices, and huge-capacity memory metli§ince these fea- ally are assumed to contain a medium identical to that of the
tures are in part related to the strain fields induced by thevetting layer. In this case, the strain field of QDs has been
QDs, it would be essential to understand the latter before theolved numerically by using the FE and FO***methods.
design of devices. In the advancement of technology thafll of these approaches discussed above are based on the
utilizes the special electronic and optical features, multilay4ocal continuum assumption of matter, which has commonly
ering of the QD nanostructures is often desirdofeTo ac-  been accepted in analyses of long-range fields of &Bs.
curately and efficiently predict the strain field in such hetero-  The short-range fields of QDs can be examined by using
geneous anisotropic media with multiple interactingan atomic-level approacfi-?! Darukaet al* applied classi-
nanoparticles still poses a great challenge to the researetal molecular dynamicéMD) simulation to examine the sur-
societies of physics and engineering. face stress distribution in a Ge/Si QD superlattice. They
The (buried QDs have been approached by pointfound good agreement of their MD simulation results with
source®’ finite-sized inclusiof*® and finite-sized analytical expressions based on the continuum force-dipole
inhomogeneity 1" of eigenstrains embedded in a matrix. In model. However, Makeev and MadhuKareported a char-
the first point-source approach, the effect of the finite geomacteristic discrepancy between predictions of the dependence
etry of QDs is not taken into account, which is appropriateof hydrostatic stress on spacer thickness and island dimen-
sions using those two approaches. Generally speaking, an
dCurrent address: Materials Reliability Division, National Institute of Stan- a.‘tomlc_leve! a_pproach WOl,'”d be required from the perspec-
dards and Technology, Boulder, CO 80305; electronic mail: tive Of predicting the elastic constants, mass transport coef-
boyang@boulder.nist.gov ficients, shapes, compositions, etc., of QDs and understand-
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InAs wetting/GaAs substrate, shown in Fig. 1. The Cartesian
coordinate systemxg, X;, X3), is chosen such that theg
axis is perpendicular to the matrix surface and that the origin
GaAs-spacer (0, 0, 0 is on the top surface right above the center of the
InAs-wetting /,, 3t QD. The crystallographic directiofd.00], [010], and[001]
GaAs-substrate QD of the InAs crystals are taken to be along the global coordi-
FIG. 1. Multlayered semiconductor system of InAs wetting/GaAs spacerpates.xl’ Xz, andxs, respectlvely. The cry;tgllographlc orl-
InAs wetting/GaAs substrate with a buried cuboidal QD of dimensions€Ntations of the GaAs crystals will be specified later. The QD
axaxal2. is on the top surface of the interior InAs-wetting layer and
covered by the GaAs-spacer layer. The sides of the cuboidal
QD are taken to be along the global coordinaigs,x,, and
ing the underlying physics in the process of QD formation.y, respectively. The interfaces between the different subdo-
However, the computational expense normally is extremelynains all are perfectly bonded. The matrix surface is free of
high, thus prohibiting a simulation of QD nanostructures oftyaction. The eigenstrain in the QD is assumed to be uniform
large size or over the long term. A strategy for combining theang hydrostatic, i.es(}=£°8;; , and that in the matrix layers
continuum and atomic-level approaches, i.e., a quasiconp pe zero. Note that in reality, the wetting layers should also
tinuum approach? may in practice be feasible. have uniform distribution of nonzero eigenstrain, similar to
In this article, we apply a continuum-based boundarythe QD. In this case, the field to be derived under the above
element(BE) method to examine the elastic strain fields of acondition of zero eigenstrain in the multilayered matrix is
generally inhomogeneous QD in multilayered semiconducyctyally the part of the field induced by the QD. The total
tors. Compared to the domain-based FE and FD methods, thg|d can be obtained by applying the rule of superposition of
BE method has the following general advantages. First, théhe induced field to the homogeneous field that is derived as
problem of dimensionality is reduced by one. Second, thef there were no QD but with the matrix eigenstrain under the
interior domain is not discretized because there the governsgme boundary and interfacial conditions. The elastic con-
ing equation is satisfied exactly. Finally, if any stress concenstants for GaAs ar€,,=118,C,,=54, andC,,= 59 and for
tration or singularity exists, it can be more accurately anqpag areC,,=83, C1,=45, andC,,= 40 (GP3 in their crys-
conveniently modeled. Note that the last advantage is Sig”iﬁrallographic base axes. The dimensions of the cuboidal QD
cant in the modeling of QDs where cuboidal and pyramidalyre 3 ax a/2. The thickness of both the wetting layers,
shapes are often assumed. At the edges and corners of thq§%qua| to 0.4 while the spacer thicknesk,, will be varied
geometries, stress singularity appears. Compared to convefjr |ater simulations.
tional ones, the unique characteristic of the present BE T solve the problem shown in Fig. 1, we apply the
method is the utilization of a special Green’s function thatnonconventional multilayered BE method to the semicon-
satisfies the interfacial continuity and boundary conditionsyyctor multilayers discussed above, coupled with the con-
for the multilayered matri** coupled with the conven- yentional BE method using the Kelvin-type fundamental so-
tional Kelvin-type Green’s function for the QD. This feature ytion to the QD. The present BE method is developed based

allows us to design the BE method without involving the g the following boundary integral-equation formulation:
interfaces and surfaces of the matrix unless a different situ-

ation occurs. In the other words, the present BE analysis of a M) « (M) (M) «(M)

generally inhomogeneous QD in multilayered semiconduc- €4~ (X)= ﬁM[“ij (XX)p; ™ 00— pij T (X,X)

tors needs to numerically discretize only the interface be-

tween the matrix and QD. x ui™ () | dS(x) @
In Sec. Il, the formulation of a cuboidal QD in a multi- . _

layered matrix is described. In Sec. lll, the BE method is firstfor the multilayered matrix, and

validated by comparing the numerical results of an inclusion

QD to the analytical result by the Green’s function metﬁ_%d. cu®(x)= J {ui’](D)(X,x)[ PP ()~ F}D)(x)]

Then, it is applied to examine the effect of inhomogeneity of D

a buried QD relative to the embedding spacer medium on (D) (D)

induced elastic field. We have investigated a semiconductor —Pi (XX (x)}dS(x) @

/e of nAs e G Spacer i o SEPt % for e e QD. uherf?1~ Gl oy, 1 W

that the effect of the inhomogeneity of a QD is significant inIS the elastic stiffness tensor, angdis the unit outward nor-

mal at a boundary point. The coefficienis equal to 1 ifX

this semiconductor system. Also, different crystallographu:ls an interior point and to 0.5 X is a boundary pointexcept

orientation of the spacer medium can cause characterlst%r sharp cornejs The fundamental solutionaﬁ('\") and

changes in the QD-induced elastic field. In Sec. 1V, conclu-  (v) . , . . .
sions based on this study are drawn. Pi] are the special Green’s functions for anisotropic
multilayers?®?* Meanwhile, uf ® and p}® are Green's

Il. FEORMULATION funcﬂon; for infinite space of an anisotropic mgd@ﬁﬁ?he .
expressions for strain and stress can be obtained by taking
Let us consider the problem of a cuboidal QD embeddedlerivatives of Egs(1) and(2) and applying Hooke’s law. For
in a multilayered half space of an InAs wetting/GaAs spacerbetails of the numerical issues of how to construct a discrete

InAs-wetting ],
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087 - computation of an integral that corresponds to the second
] Numerical . .
] I,=0.6a == (coarsc mesh) step in the former. Therefore, if the QD can be approached as
061 AN i‘;‘;‘:;“::;) an inclusion, the Green’s function method is more desirable
] \ — Analytical than the numerical BE method. On the other hand, should the
S 0-45 QD be approached as inhomogeneity, the numerical BE
§ method(or other numerical methogieeeds to be adopted in

0'22 a trade-off of computational efficiency. Below, we examine
how necessary it is to model a buried QD as inhomogeneity
against inclusion in the semiconductor system of InAs/GaAs.
We now consider the same multilayered semiconductor
system as above. At this time, however, the QD is assumed
to contain the same medium as the InAs-wetting laier
stead of the GaAs spagein the inhomogeneity approach.
FIG. 2. Convergence check of the numerical BE solution of an inclusionThis approach of QDs is considered to be a more realistic
QD compared tothe analytical solution by the Green’s function method. approximation than the inclusion approach due to the fact
that the QD is grown from the wetting layer via mass trans-
version of the above boundary integral-equation formulatiorPOrt but covered by the forelgn spacer medium, Hoyvever, we
note that even the assignment of the same medium of the

and an algorithm to solve it, one can refer to the work of arent wetting layer to the QD may not make an exact ap-
Brebbiaet al2® We have adopted the iterative scheme of suc—proaCh o theg royblem because theyQD rowth. as normaFI)I
cessive overrelaxation to solve the present BE proBiem. P P 9 ’ y

the following, we shall first verify our formulation by com- believed, is of the diffusional type of phase transition that

: . : : . involves a change in composition at a mass point. In other
paring the BE solution of an inclusion QD to the available . o

: ; ; . : words, the QDs may have different compositions and hence

analytical solution by the Green'’s function method using the

same multilayered Green’s functiohAfter validation, the :T;LZT;% (r;?ﬁae”zllzsi)i?pgt':i tg?g[t)r;e evi\tlﬁglrnegx Iaefmr'ez?j
effect of inhomogeneity of a buried QD relative to the em- property ' P

bedding spacer is examined. Two crystallographic orienta®" theoretical, remains a great challenge to researchers be-

tions of the spacer medium, Ga@81) and GaAs111), wil cause of the small scales. Figure 3 shows the variation of

be considered, where the index indicates the crystallographt dros[;atlf tsr;tralrsgkﬁalong: (Xll’ 0.0 fon the totp;]_s:irface of
orientation in thex; direction. e QD at three different values of spacer thickness com-

pared to the result by the inclusion approach. Note that in
this example, the GaAB80)) is used for the spacer and sub-
strate while the InA®O0)) is used for the wetting layers and

In order to validate our formulation, we first take the QD QD. All other parameters are kept the same as in the previous
as an inclusion, assuming that the QD consists of the samg&mulation. It can be seen that the hydrostatic strain shows a
medium as the matrix it occupies, i.e., the spacer. In thisnaximum value at the origifD, 0, O right above the center
case, the strain field can be solved analytically by using thef the QD in the first two cases of spacer thickness equal to
Green’s function methotf The spacer and QD are substi- 0.6a [Fig. 3@] and 1.2 [Fig. 3b)]. In the third case of
tuted by the GaA®01). The QD-induced hydrostatic strain spacer thickness, equal to a.pFig. 3(c)], the profile of hy-
along a line &4, 0, 0 on the surface obtained, respectively, drostatic strain has gone through a transition from convex to
by the analytical method and by the numerical BE methodconcave at the top region. Meanwhile, the amplitude of hy-
with two different meshes are compared in Fig. 2. The coarsdrostatic strain rapidly decreases with an increase in spacer
mesh is 55X 3 divisions, respectively, along the three sidesthickness. Due to the symmetry of the materials and the QD
of the QD while the finer mesh is 2QL0X5 divisions. The shape, the field induced over the QD is symmetric relative to
constant interpolation function is used in each of the resultthe x, axis as well as to th&; axis (not shown. Compared
ing rectangular elements. The spacer thickness is indicated o the inclusion solution, it is seen that in the case of spacer
Fig. 2. It can be seen that the numerical solutions are close tilnickness equal to 0z which is small compared to the QD
the analytical solutions, even with the quite coarse meshheight of 0.8, there appears not to be much difference be-
When the mesh is refined, the numerical BE solution apiween the two solutions. The relative difference is rather ob-
proaches the analytical solution, indicating the convergenceious at larger spacer thickness. Because the spacer medium
of the numerical solution with mesh refinement. These feais elastically stiffer than the wetting medium, the peak value
tures have demonstrated the validity of the present formulaef hydrostatic strain over the CD is larger by the inhomoge-
tion. We want to remark that the computational time for theneity approach than by the inclusion approach.
strain field using the analytical Green’s function method is  Finally, we examine the elastic field of a buried QD in
much shorter than that using the numerical BE method. Irthe multilayered semiconductor system with the spacer and
the numerical BE method, the solution is obtained in twosubstrate medium being substituted by the GaA8. Simi-
steps: solving the fields along the interface between the QIlar to in the previous analysis, the surface hydrostatic strain
and multilayered matrix, and then calculating the fields affield over the cuboidal QD is obtained with the QD being
desired locations in postprocessing. In the analytical Green'approached as either inclusion or inhomogeneity. The results
function method, the solution procedure comprises only thdor three different values of spacer thickness are plotted in
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IIl. ANALYSIS
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FIG. 3. Variation of_ normalized hydrostatic ;tralmk(/s ) along (X1, 0, 0 over the QD at various values of spacer thickniess(a 0.6a; (b) 1.2a; (c)

over the QD at various values of spacer thickrigss(@) 0.6a; (b) 1.2a; (c) 2.2a. The solutions by the approaches of inhomogeneity and inclusion are
2.2a. The solutions by the approaches of inhomogeneity and inclusion ar%ompared. The spacer is substituted by the GaBs.

compared. The spacer is substituted by the Ga@®.

Fig. 4. In comparison to the plots in Fig. 3 for spacer andSince the integral kernels employ the special Green’s func-
substrate made of the Ga@91), several distinct features tion that satisfies the interfacial and boundary conditions of
can be observed. First, the hydrostatic strain profile over théhe multilayered matrix, the present BE method only requires
QD is asymmetric relative to the, axis, but symmetric rela- discretization along the interface between the matrix and QD
tive to thex, axis which is not shown. Second, the effect of to solve the problem. With this method, the QD can be mod-
QD inhomogeneity on the elastic field is pronounced for alleled in general as inhomogeneous relative to the matrix. As
three values of spacer thickness. Finally, the transition fronan example, we have examined the practical semiconductor
convexity to concavity of the hydrostatic strain field abovemultilayer system of InAs wetting/GaAs spacer with a cuboi-
the QD with respect to spacer thickness is not observed idal QD. The QD was modeled as either inclusion or inhomo-
the case of the GaAtll) as the spacer and substrate. geneity in two crystallographic orientations of spacer,
GaAgq001) and GaAs$111). By comparing the numerical in-
clusion solution to the analytical solution by the Green'’s
function method, the present formulation has been validated.
We have examined the elastic field of a buried QD inAlso, by comparing the results by the two approaches of
multilayered semiconductors by applying a BE method.inclusion and inhomogeneity, it has been shown that these

IV. CONLCUION
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