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Abstract. In this paper, we derive three-dimensional Green’s functions in anisotropic magneto-
electro-elastic full space, half space, and bimaterials based on the extended Stroh formalism.
While in the full space, the Green’s functions are obtained in an explicit form, those in the half
space and bimaterials are expressed as a sum of the full-space Green’s function and a Mindlin-
type complementary part, with the latter being evaluated in terms of a regular line integral over
[0, π]. Despite the complexity involved, the current Green’s function expressions are surprisingly
simple. Furthermore, the piezoelectric, piezomagnetic, and purely elastic Green’s functions can
all be obtained from the current Green’s functions by setting simply the appropriate material
coefficients to zero. A special material case, to which the extended Stroh formalism cannot be
applied directly, has also been identified.

Simple numerical examples are presented for Green’s functions in full space, half space,
and bimaterials with fully coupled and uncoupled anisotropic magneto-electro-elastic material
properties. For given material properties and fixed source and field points, the effect of magneto-
electro-elastic coupling on the Green’s function is discussed. In particular, we observed that
magneto-electro-elastic coupling could significantly alter the magnitude of certain Green’s dis-
placement and stress components, with difference as high as 45% being noticed. This result is
remarkable and should be of great interest in the material analysis and design.

Keywords. Green’s functions, magneto-electro-elastic solids, 3D bimaterials, anisotropy, Stroh
formalism.

Introduction

Owing to their special features like lightweight and high strength, composite ma-
terials are nowadays applied to various areas of science and engineering. More
recent advances are the smart or intelligent materials where piezoelectric and/or
piezomagnetic materials are involved. These materials have the ability of convert-
ing energy from one form to the other (among magnetic, electric, and mechanical
energies). Furthermore, composites made of piezoelectric/piezomagnetric materi-
als exhibit magnetoelectric effect that is not present in single-phase piezoelectric
or piezomagnetic materials [1,2].

In order to study the behavior of composites under various loading situations,
some analytical, experimental, and numerical approaches have been proposed.
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Among the numerical approaches, both the finite element method (FEM) and
the boundary element method (BEM) have received special attention due to their
flexibility and feasibility to various numerical problems. The BEM is becoming
attractive, as it requires discretization of the problem boundary only, offering
certain computational advantages over the domain discretization methods. In ap-
plying the BEM, however, the so-called kernel functions (i.e., Green’s functions, or
fundamental solutions, or singular solutions) need to be given. For the piezoelec-
tric case, Green’s functions in two-dimensional (2D) and three-dimensional (3D)
full spaces and bimaterials have all been investigated and derived [3-6]. While
the piezomagnetic Green’s functions can be directly obtained from the piezoelec-
tric Green’s functions by simply replacing the piezoelectric constants with the
piezomagnetic constants, 3D Green’s functions in a composite made of piezoelec-
tric/piezomagnetic materials, either in a full space or bimaterials, have never been
derived.

Besides its indispensable to the BEM, the Green’s function also has wide ap-
plication in micromechanics and material sciences, as reviewed in the article by
Bacon et al. [7] and documented in the book by Mura [8]. Recent advances
in this area are on the study of various inclusion-related problems in piezoelec-
tric/piezomagnetic materials [1,2, 9-13]. In general, these analyses are in terms
of the well-known Eshelby tensor [8], which is, in general, directly related to the
Green’s functions.

The Stroh formalism has been found to be mathematically elegant and numer-
ical powerful to handle problems in anisotropic materials [3]. Ting [14] reviewed
recent development of the Stroh formalism in applied mechanics and predicted
the potential application of this method to various 3D problems. It is true that
very complicated 2D problems can be treated using the Stroh formalism, even for
the magneto- electro-elastic media [15-18]. Yet, no Green’s functions are available
in the literature for the corresponding 3D magneto-electro-elastic media. With
regard to the 3D anisotropic elastic material, there are only a few papers in the
literature using the Stroh formalism [14], starting from the classic solution for the
surface Green’s displacements on an anisotropic half space by Barnett and Lothe
[19]. After more than twenty years, Ting and Lee [20] derived and discussed the
3D Green’s functions in an anisotropic full space, and Wu [21] derived the corre-
sponding full-space and half-space Green’s functions, both in terms of the Stroh
formalism. Stimulated by these significant advances, Pan and Yuan [5,6] have
been able to derive the 3D bimaterial Green’s functions in both anisotropic elastic
and piezoelectric media. Again the elegant Stroh formalism was used in the pro-
cedure of their derivation. What makes these Green’s functions most attractive is
that the Green’s functions are expressed as a sum of a Kelvin-type solution and a
Mindlin-type part. While the Kelvin-type solution is singular but in an analytical
form, the Mindlin-type part is expressed in terms of a regular line integral over a
finite interval [5,6].
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As a continuous devotion to the research along this line, in this paper we present
the 3D Green’s functions in general anisotropic magneto-electro-elastic full space,
half space and bimaterials. To derive the Green’s functions in 3D full space, we
make use of the Radon transform to reduce the problem to a Cauchy integral
with the pole being the eigenvalues of the Stroh formalism. Therefore, an ana-
lytical and explicit expression is obtained for the 3D Green’s function in general
anisotropic magneto-electro-elastic full space. For the bimaterial case, with half
space being a special case, we first applied the 2D Fourier transform to the equa-
tions of equilibrium to arrive at an extended Stroh formalism in the transformed
domain, assuming that the involved Stroh eigenvalues are all complex. When in-
verting back to the physical domain, we introduced a polar coordinate transform
to get rid of the infinite integral. Finally, we are able to express the bimaterial
Green’s functions in terms of a full-space part or the Kelvin-type solution and a
complementary part or the Mindlin-type part [22]. Therefore we further demon-
strate that the Stroh formalism can equally and successfully be applied to the [3D]
anisotropic piezoelectric/piezomagnetic bimaterials.

Numerical examples are also presented for full-space, half-space, and bimate-
rial domains with fully coupled and uncoupled anisotropic magneto-electro-elastic
material properties. For the given material properties, the effects of magnetoelec-
tricity and of problem domains (full space, half-space, and bimaterials) on the
extended Green’s displacements and stresses are clearly observed. In particular,
we noticed that for the given source and field points and material properties, the
coupling effect of magnetoelectricity on the Green’s displacements and stresses can
be as high as 40%, a new phenomenon never being reported before.

While the Green’s functions derived in this paper can be directly applied to
some micromechanics-related problems (opening, inclusion, eigenstrain, etc.) in
smart and composite material analysis and design, relatively complicated structure
problems can be solved using the boundary integral equation method with the
current solutions being served as the integral kernels.

Basic equations

Using the extended Barnett and Lothe notation [23], the equations of equilibrium
for the coupled magneto-electro-elastic media can be expressed as [9,12,15,17]:

CiJKl, uK,li + fJ = 0 (1)

In this paper, summation from 1 to 3 (1 to 5) over repeated lowercase (uppercase)
subscripts is assumed, and a subscript comma denotes the partial differentiation
with respect to the coordinates (i.e., x1, x2, x3 or x, y, z). In equation (1), the
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extended displacement and extended body force are defined as

uI =




ui I = 1, 2, 3
φ I = 4
ψ I = 5

; fJ =




fj J = 1, 2, 3
−fe J = 4
−fm J = 5

(2)

Where ui, φ, and ψ are the elastic displacement, electric potential, and magnetic
potential, respectively; fi, fe, and fm are the body force, electric charge, and
electric current (or called magnetic charge as compared to the electric charge),
respectively.

The extended elastic coefficient tensor CiJKl in equation (1) relates the extended
strains to the extended stresses by the constitutive relation

σiJ = CiJKlγKl (3)

where the extended stresses and strains are defined by

σiJ =




σij J = 1, 2, 3
Di J = 4
Bi J = 5

; γIj =




γij I = 1, 2, 3
−Ej I = 4
−Hj I = 5

(4)

and the extended elastic coefficient tensor has the following components

CiJKl =




Cijkl J,K = 1, 2, 3
elij J = 1, 2, 3; K = 4
eikl J = 4; K = 1, 2, 3
qlij J = 1, 2, 3; K = 5
qikl J = 5; K = 1, 2, 3
−λil J = 4; K = 5 or J = 5; K = 4
−εil J,K = 4
−µil J,K = 5

(5)

In equations (4) and (5), σij , Di, and Bi are the stress, electric displacement,
and magnetic induction (i.e., magnetic flux), respectively; γij , Ei, and Hi are the
strain, electric field and magnetic field, respectively; Cijlm, εij , and µij are the
elastic, dielectric, and magnetic permeability tensors, respectively; eijk, qijk, and
λij are the piezoelectric, piezomagnetic, and magnetoelectric coefficients, respec-
tively. It is observed that various uncoupled cases can be reduced from equations
(1)-(5) by setting the appropriate coefficients to zero, which will be investigated
later. It is further noticed that the following symmetry relations hold:

Cijlm = Cjilm = Clmij

ekji = ekij ; qkji = qkij (6)
εij = εji; λij = λji; µij = µji
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Figure 1.
An anisotropic magneto-electro-elastic bimaterial full-space subjected to an extended concen-
trated force f(f1, f2, f3,−fe,−fm) applied at (0, 0, d) in material 1.

Finally, the extended strains and displacements are related by

γij =
1
2
(ui,j + uj,i)

Ei = −φ,i; Hi = −ψ,i

(7)

In the following sections, we will use the extended displacement to stand for
the elastic displacement, electric, and magnetic potentials, as defined in equation
(2), and the extended stress for the stress, electric displacements, and magnetic
induction as defined in equation (4).

It is observed that the structures of equations (1) and (3) are similar to their
purely elastic and piezoelectric counterparts. Therefore, the solution method de-
veloped recently by Pan and Yuan [5,6] will be adopted and applied to derive the
Green’s functions in general anisotropic magneto-electro-elastic materials.

Problem description

We consider an anisotropic magneto-electro-elastic bimaterial full-space where
x3 > 0 and x3 < 0 are occupied by materials 1 and 2, respectively (Figure 1),
with the interface being at x3 = 0 plane. Without loss of generality, we assume
that an extended concentrated force f = (f1, f2, f3,−fe,−fm) is applied at (0, 0, d)
in material 1 with d > 0.

The continuity conditions at the interface x3 = 0 require that the extended
displacement and traction vectors are continuous, with the later, named t, being
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defined by
t = (σ31, σ32, σ33, D3, B3) (8)

At the plane x3 = d where the extended point force is applied, the extended
displacement vector is continuous while the extended traction vector experiences
a jump across the x3 = d plane, with the magnitude equal to the extended point
force. Besides these continuity conditions, the solutions in the regions of x3 > d
and x3 < 0 are required to vanish as x3 approaches +∞ and −∞, respectively.

Stroh formalism and general solutions in the transformed domain

Similar to the purely elastic and/or piezoelectric bimaterial problems [5,6], we
apply the two-dimensional Fourier transforms

ũK(y1, y2, x3) =
∫ ∫

uk(x1, x2, x3)ei(y1x1+y2x2)dx1dx2 (9)

to equation (1). Therefore in the transformed domain, this equation, in the absence
of the extended force, becomes

CαIKβyαyβũK + i(CαIK3 + C3IKα)yαũK,3 − C3IK3ũK,33 = 0 (10)

where α, β = 1, 2. Now, letting
 y1

y2

0


 = ηn, n =


n1

n2

0


 =


 cos θ

sin θ
0


 , m =


 0

0
1


 (11)

a general solution of equation (10) can then be expressed as

ũ(y1, y2, x3) = ae−ipηx3 (12)

with p and a satisfying the following extended eigenrelation:

[Q + p(R + RT ) + p2T]a = 0 (13)

where

QIK = CjIKsnjns, RIK = CjIKsnjms, TIK = CjIKsmjms (14)

and the superscript T denotes the matrix transpose. Equation (13) is the extended
magneto-electro-elastic Stroh eigenrelation in the oblique plane spanned by n and
m defined in equation (11), a direct extension of the elastic and piezoelectric Stroh
eigenrelation. Similar to the elastic and piezoelectric cases [3,24], it can be show
that the eigenvalues of equation (13) are either complex or purely imaginary (by
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requiring a positive internal energy for the system). Once the eigenvalue problem
(13) is solved, the extended displacements in the Fourier transformed domain are
then obtained from equation (12).

In order to find the extended stresses in the Fourier transformed domain, we
start with the physical domain relation. In the physical domain, the extended
traction vector t on the x3 = constant plane and the extended in-plane stress
vector s are related to the extended displacements as

t = (C31KluK,l, C32KluK,l, C33KluK,l, C34KluK,l, C35KluK,l) (15)

s ≡ (σ11, σ12, σ22, D1, D2, B1, B2)
= (C11KluK,l, C12KluK,l, C22KluK,l, C14KluK,l, C24KluK,l, C15KluK,l, C25KluK,l)

(16)

Taking the Fourier transform, we then find that the transformed extended traction
and in-plane stress vectors can be expressed as

t̃ = −iηbe−ipηx3 (17)

s̃ = −iηce−ipηx3 (18)

with
b = (RT + pT)a = −1

p
(Q + pR)a

c = Ha
(19)

where the matrix H is defined by

H =




C111αnα + pC1113 C112αnα + pC1123 C113αnα + pC1133 C114αnα + pC1143 C115αnα + pC1153

C121αnα + pC1213 C122αnα + pC1223 C123αnα + pC1233 C124αnα + pC1243 C125αnα + pC1253

C221αnα + pC2213 C222αnα + pC2223 C223αnα + pC2233 C224αnα + pC2243 C225αnα + pC2253

C141αnα + pC1413 C142αnα + pC1423 C143αnα + pC1433 C144αnα + pC1443 C145αnα + pC1453

C241αnα + pC2413 C242αnα + pC2423 C243αnα + pC2433 C244αnα + pC2443 C245αnα + pC2453

C151αnα + pC1513 C152αnα + pC1523 C153αnα + pC1533 C154αnα + pC1543 C155αnα + pC1553

C251αnα + pC2513 C252αnα + pC2523 C253αnα + pC2533 C254αnα + pC2543 C255αnα + pC2553




(20)
with α = 1, 2. Therefore, once all the eigenvectors am are found, the Green’s
functions in the Fourier-transformed domain are completely known, the beauty of
the Stroh formalism.

If pm, am, and bm (m = 1, 2, . . . 10) are the eigenvalues and the associated
eigenvectors, we let

ImpJ > 0, pJ+5 = p̄J , aJ+5 = āJ , bJ+5 = b̄J (J = 1, 2, 3, 4, 5)
A = [a1,a2,a3,a4,a5], B = [b1,b2,b3,b4,b5], C = [c1, c2, c3, c4, c5, c6, c7]

(21)
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where Im stands for the imaginary part and the overbar denotes the complex
conjugate. Assuming that pJ are distinct, and the eigenvectors aJ , and bJ satisfy
the following normalization relation [3,19]

bT
I aJ + aT

I bJ = δIJ (22)

with δIJ being the Kronecker delta of 5×5, then the general solutions of equation
(12) in the transformed domain can be obtained by superposing the ten eigenso-
lutions of equation (13), that is

ũ(y1, y2, x3) = iη−1Ā〈e−ip̄∗ηx3〉q̄ + iη−1A〈e−ip∗ηx3〉q′
t̃(y1, y2, x3) = B̄〈e−ip̄∗ηx3〉q̄ + B〈e−ip∗ηx3〉q′ (23)
s̃(y1, y2, x3) = C̄〈e−ip̄∗ηx3〉q̄ + C〈e−ip∗ηx3〉q′

where q̄ and q′ are arbitrary complex vectors to be determined and

〈e−ip∗ηx3〉 = diag[e−ip1ηx3 , e−ip2ηx3 , e−ip3ηx3 , e−ip4ηx3 , e−ip5ηx3 ] (24)

It is noteworthy that, besides their obvious dependence on material properties,
the matrices A, B, C, vectors q̄, q′ , and pJ are also functions of the unit vector
n.

Bimaterial Green’s functions in the transformed domain

Using the transformed continuity (or jump) and finiteness conditions for the ex-
tended displacement and traction vectors, the magneto-electro-elastic bimaterial
Green’s functions in the transformed domain can be derived similar to the purely
elastic and piezoelectric cases [5,6]. For x3 > d (in material 1):

ũ1(y1, y2, x3) = −iη−1Ā1〈e−ip̄
(1)
∗ η(x3−d)〉q̄∞1 − iη−1Ā1〈e−ip

(1)
∗ η(x3−d)〉q̄1

t̃1(y1, y2, x3) = −B̄1〈e−ip̄
(1)
∗ η(x3−d)〉q̄∞1 − B̄1〈e−ip

(1)
∗ η(x3−d)〉q̄1 (25)

s̃1(y1, y2, x3) = −C̄1〈e−ip̄
(1)
∗ η(x3−d)〉q̄∞1 − C̄1〈e−ip

(1)
∗ η(x3−d)〉q̄1

For 0 ≤ x3 < d (in material 1):

ũ1(y1, y2, x3) = iη−1Ā1〈e−ip
(1)
∗ η(x3−d)〉q̄∞1 − iη−1Ā1〈e−ip

(1)
∗ η(x3−d)〉q̄1

t̃1(y1, y2, x3) = B̄1〈e−ip
(1)
∗ η(x3−d)〉q̄∞1 − B̄1〈e−ip

(1)
∗ η(x3−d)〉q̄1 (26)

s̃1(y1, y2, x3) = C̄1〈e−ip
(1)
∗ η(x3−d)〉q̄∞1 − C̄1〈e−ip

(1)
∗ η(x3−d)〉q̄1
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For x3 < 0 (in material 2):

ũ2(y1, y2, x3) = iη−1A2〈e−ip
(2)
∗ ηx3〉q2

t̃2(y1, y2, x3) = B2〈e−ip
(2)
∗ ηx3〉q2 (27)

s̃2(y1, y2, x3) = C2〈e−ip
(2)
∗ ηx3〉q2

where again, subscripts 1 and 2 denote the quantities in materials 1 and 2, respec-
tively and

q∞1 = AT
1 f (28)

The complex vectors q̄1 and q̄2 in equations (25)-(27) are determined by

q̄1 = G1〈eip
(1)
∗ ηd〉AT

1 f

q2 = G2〈eip
(1)
∗ ηd〉AT

1 f
(29)

G1 = −Ā−1
1 (M̄1 + M2)−1(M1 −M2)A1

G2 = −A−1
1 (M̄1 + M2)−1(M1 + M̄1)A1

(30)

where Mα are the extended impedance tensors defined as

Mα = −iBαA−1
α (α = 1, 2) (31)

Equations (25)-(27) are the anisotropic magneto-electro-elastic bimaterial Green’s
displacements and stresses in the Fourier transformed domain. These Green’s func-
tions share the same important features as their purely elastic and/or piezoelectric
counterparts with details being found in [5,6].

Bimaterial Green’s functions in the physical domain

Having obtained the Green’s functions in the transformed domain, we now apply
the inverse Fourier transforms to equations (25)-(27). To handle the double infinite
integrals, the polar coordinate transform is introduced so that the infinite integral
with respect to the radial variable can be carried out exactly [5,6]. Thus, the final
bimaterial Green’s functions in the physical domain can be expressed in terms of
regular line-integrals over [0, 2π]. In the following, we will use only the extended
displacement solution in region x3 > d of material 1 to illustrate the derivation.
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Applying the Fourier inverse transform, the extended Green’s displacement in
equation (25) becomes

u1(x1, x2, x3) = − i

4π2

∫ ∫
{η−1Ā1〈e−ip̄

(1)
∗ η(x3−d)〉q̄∞1 e−i(x1y1+x2y2)}dy1dy2

− i

4π2

∫ ∫
{η−1Ā1〈e−ip̄

(1)
∗ ηx3〉q̄1e

−i(x1y1+x2y2)}dy1dy2

(32)
The first integral in equation (32) corresponds to the extended Green’s displace-
ment in the full space, which in an explicit form, will be derived in the Appendix
A. Consequently, the inverse transform needs to be carried out only for the sec-
ond regular integral, or the complementary part. The singularities involved in the
bimaterial Green’s function appear only in the full-space solution, which can be
evaluated easily because of its explicit-form expression. Denoting the full-space
Green’s function by u∞1 (x1, x2, x3) and introducing a polar coordinate transform
consistent with the one defined in equation (11), i.e.,[

y1

y2

]
= η

[
cos θ
sin θ

]
(33)

equation (32) is then reduced to [5,6]

u1(x1, x2, x3) = u∞1 (x1, x2, x3)

− i

4π2

[∫ 2π

0
dθ

∫ ∞

0
Ā1〈e−ip̄

(1)
∗ ηx3〉G1〈eip

(1)
∗ ηd〉e−iη(x1 cos θ+x2 sin θ)AT

1 dη

]
f
(34)

Since the matrices A1 and G1 are independent of the radial variable η, the integral
with respect to η can actually be performed analytically. Assuming that x3 6= 0
or d 6= 0, equation (34) can be reduced to a compact form

u1(x1, x2, x3) = u∞1 (x1, x2, x3) +
1

4π2

[∫ 2π

0
Ā1G

(1)
u AT

1 dθ

]
f (35)

where

(G(1)
u )IJ =

(G1)IJ

−p̄
(1)
I x3 + p

(1)
J d− (x1 cos θ + x2 sin θ)

(36)

Using a similar procedure, all other bimaterial Green’s function components can
be derived and they share similar structures as those in [5,6].

It is very interesting that these physical-domain Green’s functions possess all
the important characteristics as observed and discussed in [5,6] for the purely elas-
tic and/or piezoelectric materials. Furthermore, noticing the following relations of
the involved functions

PJ(θ + π) = −P̄J(θ), G1(θ + π) = −Ḡ1(θ), G2(θ + π) = Ḡ2(θ)

A(θ + π) = γĀ(θ), B(θ + π) = −γB̄(θ), C(θ + π) = −γC̄(θ), γ = ±√−1
(37)
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the regular integral over [0, 2π] can actually be reduced to the interval of [0, π].
That is ∫ 2π

0
g(θ)d(θ) = 2

∫ π

0
g(θ)d(θ) (38)

where g(θ) stands for the integrands in equation (35) and other similar expres-
sions. Therefore, the regular line integral is actually over the interval [0, π], a
simplification not stated in the author’s previous papers [5,6].

Numerical validations and results

The Green’s functions derived above are evaluated numerically for three domain
cases: a full space, a half space, and two half spaces welded together (i.e. the bi-
material case). For the full space, half space, and material 1 of the bimaterial case
(i.e., z > 0), material property #1 in Appendix B is used. This is a fully coupled
magneto-electro-elastic material with the elastic and piezoelectric properties being
those of the piezoelectric material BaTiO3 and the piezomagnetic coefficients qijk

being taken from the magnetostrictive CoFe2O4 [9]. For material 2 of the bimate-
rial case (z < 0), the elastic and piezoelectric properties are taken from Tiersten
[25] as studied in Pan and Yuan [6] (where C66 in equation (52a) of [6] should be
.2901×1011N/m2, instead of .6881×1011N/m2). Again, the piezomagnetic coeffi-
cients qijk are taken from the magnetostrictive CoFe2O4. The compound and fully
coupled magneto-electro- elastic material properties are listed in material property
#2 of Appendix B. We point out that the magnetic permeability of CoFe2O4 was
not used since this material system does not possess a positive internal energy,
a special material case, to which the Stroh formalism cannot be applied directly.
For the full-space and half-space domain cases, we have also studied three uncou-
pled material cases by setting the appropriate coefficients to zero: uncoupled E
(eijk = 0), uncoupled M (qijk = 0), and uncoupled E&M (eijk = 0 and qijk = 0),
with the last one corresponding to the purely elastic material case. For simplicity,
the source is at (0, 0, 1m) and field point at (1m, 1m, 0).

First, a homogeneous full-space is considered, which corresponds to the special
case of the bimaterial domain with identical material properties in both materials
1& 2. For this example, the extended Green’s displacement tensor is symmetric,
and its components can be obtained using either the full-space Green’s function
formulation derived in Appendix A or the bimaterial Green’s function formulation
derived in the previous sections. The upper diagonal elements of the extended
Green’s displacement tenor is listed in Table 1 for the fully coupled, uncoupled E,
uncoupled M , and uncoupled E&M cases. While these values are calculated using
the bimaterial Green’s functions, use of the full-space Green’s function formulation
predicts exactly the same results, a mutual validation for both formulations. In
Table 1, the units for the elastic displacement, electric and magnetic potentials
are, respectively, in m, V , and C/s, and the symbol G(I, J) ≡ GIJ ≡ GIJ (also
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G(J,K) Fully coupled Uncoupled E Uncoupled M Uncoupled E& M

11 .77141370D-12 .78081031D-12 .78459933D-12 .79088298D-12
12 .12027080D-12 .12111470D-12 .12594492D-12 .12594685D-12
13 -.12945921D-12 -.14565674D-12 -.11570894D-12 -.13140542D-12
14 -.10347228D-03 0 -.81376035D-04 0
15 .42667071D-05 .35719554D-05 0 0
22 .77141370D-12 .78081031D-12 .78459933D-12 .79088298D-12
23 -.12945921D-12 -.14565674D-12 -.11570894D-12 -.13140542D-12
24 -.10347228D-03 0 -.81376035D-04 0
25 .42667071D-05 .35719554D-05 0 0
33 .48476833D-12 .55954057D-12 .65390573D-12 .81010088D-12
34 .50073977D-03 0 .69481903D-03 0
35 .24195755D-04 .28451440D-04 0 0
44 -.34041791D+07 -.39412178D+07 -.31760803D+07 -.39412178D+07
45 .29749049D+05 0 0 0
55 -.41918948D+04 -.39092089D+04 -.71176254D+04 -.71176254D+04

Table 1. Extended full-space Green’s displacements (GJK) for fully coupled,
uncoupled E, uncoupled M, and uncoupled E& M cases.

G(J,K) 1 2 3 4 5

1 .75107886D-12 .10584332D-12 -.14132043D-12 -.16744449D-03 .26381771D-05
2 .11722656D-12 .77694302D-12 -.16891521D-12 -.17971243D-03 .16147431D-05
3 -.15147253D-12 -.14640169D-12 .54109984D-12 .41179985D-03 .26361567D-04
4 .82068510D-04 .88103967D-04 .54025937D-03 -.69423456D+07 .33367301D+05
5 .55855031D-05 .33664248D-05 .26679164D-04 .39145681D+05 -.38576408D+04

Table 2. Extended Green’s displacements (GJK) for fully coupled bimaterial case.

in Table 2 and Figures 2 & 4) denotes the Green’s displacement in the I-direction
caused by a point force in the J-direction.

Table 1 shows that, in general, the magneto-electro-elastic properties have an
apparent influence upon all the Green’s displacement components. As an illus-
tration, Figure 2 displays the variation of some of the Green’s displacement com-
ponents with different coupling cases (cases 1, 2, 3, and 4 represent, respectively,
the fully coupled, uncoupled E, uncoupled M , and uncoupled E&M cases). To
plot them in the same figure, the Green’s components G11, G33, G44, and G55
have been normalized, respectively, by the factor 10−12, 10−12, −107, and −104.
As can be clearly observed from this figure, the displacements G33 and G55 vary
dramatically for different cases, with the maximum difference reaches as high as
45%, a remarkable result that should be of great interest to the smart material
analysis and design.
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Figure 2.
Variation of normalized full-space Green’s displacements versus different coupling cases. Cases
1, 2, 3, and 4 denote, respectively, fully coupled, uncoupled E, uncoupled M, and uncoupled E
& M cases.

The magneto-electro-elastic coupling can also have a great effect upon the
Green’s stresses. For example, Figure 3 shows the variation of the stress compo-
nent σ11 with different cases. The symbols S11, S12, and S13 denote the stress
component σ11 due to a point force in the 1-, 2-, and 3-directions, respectively.
Similar to Figure 2 for the displacements, these stress values are normalized, re-
spectively, by the factor −10−2, −10−2, and 10−2. We observed from this figure
that while S11 and S12 vary only slightly with the four cases, the maximum differ-
ence for S13 reaches as high as 30%, a magnitude that cannot be ignored during
the design procedure.

Having studied the Green’s functions in a full space, we now consider the corre-
sponding half space. Since the source is at (0, 0, 1m) and field point at (1m, 1m, 0),
the Green’s functions represent the surface displacements and stresses caused by
a point force interior to the half space. In Figures 4 and 5, the same Green’s com-
ponents studied for the full-space case are plotted using the same normalization
factors. It is of particular interest to compare Figure 4 to Figure 2 and Figure
5 to Figure 3. First, for the uncoupled E, uncoupled M, and uncoupled E& M
cases, the electric and magnetic potentials (i.e., G44 and G55) on the surface of the
half space are exactly twice of those in the corresponding full space, a well-known
result from the potential theory. Secondly, except for G33, all other diagonal dis-
placement components (i.e., G11=G22, G44, and G55) on the surface of the half
space are also about twice of those in the corresponding full space, irrespective
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Figure 3.
Variation of normalized full-space Green’s stresses versus different coupling cases. Cases 1, 2,
3, and 4 denote, respectively, fully coupled, uncoupled E, uncoupled M, and uncoupled E & M
cases.

of the material coupling cases. The third observation comes from the comparison
of Figure 5 to Figure 3 where the effect of the traction-free boundary condition
on the in-plane stresses is very prominent, resulting in a great variation of these
stresses with different coupling cases. For instance, for the full-space case, only
S13 has a maximum variation of 30% for different coupling cases; for the half-space
case, however, all of their variations (S11, S12, S13) are over 30% (Figure 5). In
particular, the magnitude difference of S13 (i.e. σ11 due to the z-direction point
force) reaches 45%, revealing that the effect of a free surface on the Green’s func-
tions can be equally important as the material coupling does. As a third and final
example, we discuss the Green’s displacements in fully coupled magneto-electro-
elastic bimaterials. Again, as for the full-space and half-space cases, the source is
at (0, 0, 1m) in material 1 and the field point at (1m, 1m, 0) on the interface. For
materials 1 (z > 0) and 2 (z < 0), the material properties #1 and #2 of Appendix
B are used, respectively. We briefly remark that, while material property #1 is
transversely isotropic, material property #2 is generally anisotropic. Table 2 lists
the bimaterial Green’s displacements at the interface, with the same units as those
in Table 1. Clearly, unlike the full-space Green’s displacement tensor, the bima-
terial (as well as half-space) Green’s tensor is no longer symmetric. The effect of
material differences on the Green’s displacements can be recognized by comparing
the bimaterial displacements to the second column in Table 1. Since the bimaterial
Green’s functions (especially when the source and field points are both close to
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Figure 4.
Variation of normalized half-space Green’s displacements versus different coupling cases. Cases
1, 2, 3, and 4 denote, respectively, fully coupled, uncoupled E, uncoupled M, and uncoupled E
& M cases.

the interface) are complicated functions of the magneto-electro-elastic coupling,
analysis for them needs to be carried out case by case, this will be addressed in
the near future.

Conclusions

In this paper, three-dimensional Green’s functions in anisotropic magneto-electro-
elastic full space, half space, and bimaterials are derived. While for the full space
case, the Green’s functions are obtained in an explicit form using the Radon trans-
form, the Stroh formalism, and the Cauchy residue theorem, those in the half space
and bimaterials are expressed as a sum of the full-space Green’s function and a
Mindlin-type complementary part, with the latter being evaluated in terms of a
regular line integral over [0, π]. In seeking the full space and the complemen-
tary part solutions, the extended Stroh formalism have been used, which further
shows that the Stroh formalism is very elegant and powerful. Introduction of the
Mindlin’s superposition method (full-space solution plus a complementary part) is
to handle the singularities of the bimaterial Green’s functions so that the involved
singularities appear only in the full-space Green’s function that can be evalu-
ated accurately using its explicit form expression (without numerical integral!).
Since the complementary part of the bimaterial Green’s functions is a regular line-
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Figure 5.
Variation of normalized half-space Green’s stresses versus different coupling cases. Cases 1, 2,
3, and 4 denote, respectively, fully coupled, uncoupled E, uncoupled M, and uncoupled E & M
cases.

integral, it can be easily carried out by the regular numerical Gauss quadrature.
While the derivatives of the complementary part of the Green’s functions with
respect to either the source or field point can be carried out exactly under the
line integral, those of the full-space Green’s functions are evaluated using a very
simply, yet accurate difference formulae. Some important features related to the
full-space, half-space, and bimaterial Green’s functions have been discussed.

Numerical examples are also presented for full-space, half-space, and bimate-
rial domains with fully coupled, and uncoupled anisotropic magneto-electro-elastic
material properties. For the given material properties, the piezoelectric and piezo-
magnetic effect on the Green’s displacements was observed and discussed. For the
given source and field points and material properties, we have noticed that the
coupling effect of magnetoelectricity on the elastic Green’s displacements can be
as high as 40%. This remarkable phenomenon has never been reported before.

While the Green’s functions derived in this paper can have direct applications
to some micromechanics-related problems (opening, inclusion, eigenstrain, etc.) in
the smart material and composite material designs, relatively complicated struc-
ture problems can be solved using the boundary integral equation method with
the current solutions being served as the integral kernels. A primary study of the
fracture mechanics problems in 2D anisotropic piezoelectric media using a new
pair of BEM formulations has been reported [4].
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Appendix A

In this Appendix, we derive, for the first time, the explicit Green’s functions
(extended displacements and stresses) in an anisotropic magneto-electro-elastic
full-space. We first derive the integral expression in terms of the Radon transform
and the generalized Stroh formalism. This integral will then be carried out by
the Cauchy residue theorem. We mention that the method proposed in [20] can
also be followed and extended to derive the three-dimensional, anisotropic, and
magneto-electro-elastic Green’s displacements.

Integral expressions for the Green’s functions
Let δ(x) = δ(x1, x2, x3) be the Dirac delta function centered at the origin of a
space-fixed Cartesian coordinates (O;x1, x2, x3) and δJP the fifth-rank Kronecker
delta. The extended Green’s displacements (a 5× 5 tensor GKP (x)) are the fun-
damental solutions of equation (1) caused by an extended point force. Mathemat-
ically, this Green’s tensor is defined by the partial differential equations:

CiJKlGKP,li(x) = −δJP δ(x) (A1)

While the first index, K, of the Green’s tensor denotes the component of the
extended displacement, the second, P , denotes the direction of the extended point
force. Since this Green’s tensor is generally full for an anisotropic magneto-electro-
elastic solid, the elastic, electric, and magnetic fields are thus coupled together.
That is, a body force will induce an electric or magnetic potential and an electric
or magnetic charge will generate an elastic displacement.

To derive the Green’s tensor, we resort to the following plane representation of
the Dirac delta function [26,27]

δ(x) = − 1
8π2

∆
∫
Ω

δ(n · x)
|n|2 dΩ(n) (A2)

where n is a vector variable with components (n1, n2, n3) in the space-fixed coor-
dinates (O;x1, x2, x3), Ω(n) is a closed surface enclosing the origin; The integral
is taken over all planes defined by n · x = 0; The dot ’·’ denotes the dot product,
and ∆ is the 3D Laplacian operator.

We now introduce a 5× 5 matrix

ΓJK(n) = CiJKqninq (A3)
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and denote its inverse by Γ−1
JK(n). Integrating Γ−1

JK(n)δ(n · x) with respect to n,
taking its second derivatives with respect to xi, and multiplying the result by the
extended stiffness matrix CiJKq, we then arrive at the following important identity
[27]:

CiJKq
∂2

∂xi∂xq

∫
Ω

Γ−1
JK(n)δ(n · x)dΩ(n) = δJP ∆

∫
Ω

δ(n · x)
|n|2 dΩ(n) (A4)

Making use of the plane representation (A2), this equation can be rewritten as

CiJKq
∂2

∂xi∂xq

∫
Ω

Γ−1
JK(n)δ(n · x)dΩ(n) = −8π2δJP δ(x) (A5)

Comparing equation (A5) to (A1), we finally obtain the following integral ex-
pression for the extended Green’s displacement tensor

GJK(x) =
1

8π2

∫
Ω

Γ−1
JK(n)δ(n · x)dΩ(n) (A6)

or,

GJK(x) =
1

8π2

∫
Ω

AJK(n)
D(n)

δ(n · x)dΩ(n) (A7)

where AJK(n) and D(n) are, respectively, the adjoint matrix and determinant
of ΓJK(n). This integral expression of the Green’s function is quite general and
contains previous results in anisotropic elastic and piezoelectric spaces as its special
cases.

Explicit expressions for Green’s functions
The integral expression (A7) for the Green’s tensor can actually be transformed
to a 1D infinite integral and the result can then be reduced to a summation of
five residues. This is achieved by expressing the vector variable n in terms of
a new, orthogonal, and normalized system (O; e,p,q), instead of the space-fixed
Cartesian coordinates (O;x1, x2, x3). The new base (e,p,q) are chosen as the
following

e = x/r; r = |x| (A8)

Now, let v be an arbitrary unit vector different from e (v 6= e), the two unit
vectors orthogonal to e can then be selected as:

p =
e× v
|e× v| ; q = e× p (A9)

It should be emphasized that e 6= v should be normalized so that p is a unit
vector.
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In the new reference system (O; e,p,q), we let the vector variable n be ex-
pressed as

n = ξp + ζq + ηe (A10)

It is clear then that

n · x = p · xξ + q · xζ + e · xη = rη (A11)

Therefore, in terms of the reference system (O; e,p,q), equation (A7) becomes

GJK(x) =
1

8π2

∫
Ω

AJK(ξp + ζq + ηe)
D(ξp + ζq + ηe)

δ(rη)dΩ(ξ, ζ, η) (A12)

where Ω is again a closed surface enclosing the origin (ξ, ζ, η) = (0, 0, 0).
Carrying out the integration of (A12) with respect to η yields [26,27]

GJK(x) =
1

4π2r

∫ ∞

−∞

AJK(p + ζq)
D(p + ζq)

dζ (A13)

We now look at the matrix ΓJK(p + ζq) and its determinant D(p + ζq). It
turns out that the matrix ΓJK can actually be expressed by the Stroh formalism.
That is,

Γ(p + ζq) ≡ Q + ζ(R + RT ) + ζ2T (A14)

where

QIK = CjIKspjqs, RIK = CjIKspjqs, TIK = CjIKsqjqs (A15)

The determinant D(p + ζq) is a tenth-order polynomial equation of ζ and has
ten roots. For the materials studied in this paper, five of them are the conjugate
of the remainder. These roots can be found either by expanding the determinant
D(p + ζq) into the polynomial, or by finding the ten eigenvalues of the following
linear eigenequation [3]

[
N1 N2

N3 NT
1

] [
a
b

]
= ζ

[
a
b

]
(A16)

where
N1 = −T−1RT , N2 = T−1, N3 = RT−1RT −Q (A17)

and the eigenvectors a and b are the coefficients of the extended displacement and
traction vectors.

Assume that
Imζm > 0;m = 1, 2, 3, 4, 5
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and ζ∗m is the conjugate of ζm, the extended Green’s displacement can be finally
expressed explicitly as

GJK(x) = − Im
2πr

5∑
m=1

AJK(p + ζmq)

a11(ζm − ζ∗m)
5∏

k=1
k 6=m

(ζm − ζk)(ζm − ζ∗k)
(A18)

where a11 = det(T) is the coefficient of ζ10.
There are a couple of features associated with this new expression: First of

all, equation (A18) is an explicit expression. It can therefore be evaluated very
accurately and efficiently. For a given pair of field and source points, we need only
to solve a 10th-order linear eigenequations, or a 10th-order polynomial equation
numerically once in order to obtain all the components of the extended Green’s
displacement. Secondly, in obtaining equation (A18), we have assumed that all
the poles are simple. Should the poles be multiple, a slight change in the material
constants will result in single poles, with negligible errors in the computed Green’s
tensor [28]. Thirdly, since ΓJK is symmetric, so is its adjoint AJK . Therefore,
the extended Green’s displacement GJK is symmetric and one needs to calculate
only 15 out of its 25 elements. Finally, although one can choose the vector v
(6= e) arbitrarily, it should be one of the base vectors in the space-fixed Cartesian
coordinates, i.e., (1, 0, 0), or (0, 1, 0), or (0, 0, 1). The analytical expression for the
extended Green’s displacement is much simpler using such a vector v than using
any other vectors.

We have just derived an explicit expression for the extended Green’s displace-
ment. In the application of the boundary integral equation and other related
methods, one also needs the extended Green’s stress, which can be obtained by
taking the derivative of the extended Green’s displacement. However, an explicit
expression for the derivative of the Green’s displacement is too complicated to be
implemented efficiently. Here, the numerical method recently proposed by Pan
and Tonon [27] is used to evaluate these derivatives. It is based on the simple in-
terpretation of the Lagrange polynomials, and yet it turns out to be very efficient
and accurate.

Following Pan and Tonon [27], for instance, the derivatives of the Green’s tensor
GPK with respect to the coordinates at x = (x1, x2, x3) are evaluated by

∂GPK

∂x1
≈ 1

2h
[GPK(x1 + h, x2, x3)−GPK(x1 − h, x2, x3)] (A19)

∂GPK

∂x2
≈ 1

2h
[GPK(x1, x2 + h, x3)−GPK(x1, x2 − h, x3)] (A20)

∂GPK

∂x3
≈ 1

2h
[GPK(x1, x2, x3 + h)−GPK(x1, x2, x3 − h)] (A21)
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where the interval h is chosen as [27]

h = r · 10−6

with r being the distance between the field and source points.

Appendix B

B1). Material property # 1 (for full space, half space, and material 1 of the
bimaterial case)

1. Elastic constants

[C] =




166 77 78 0 0 0
166 78 0 0 0

162 0 0 0
43 0 0

symm. 43 0
44.5


 (109N/m2

2. Piezoelectric constants

[e] =


 0 0 0 0 11.6 0

0 0 0 11.6 0 0
−4.4 −4.4 18.6 0 0 0


 (C/m2)

3. Dielectric permeability coefficients

[ε] =


 11.2 0 0

0 11.2 0
0 0 12.6


 (10−9C/Vm)

4. Piezomagnetic constants

[q] =


 0 0 0 0 550 0

0 0 0 550 0 0
580.3 580.3 699.7 0 0 0


 (N/Am)

5. Magnetoelectric coefficients d(i,j)=0 (for i,j=1,3) (in Ns/VC)
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6. Magnetic permeability coefficients

[µ] =


 5 0 0

0 5 0
0 0 10


 (10−6Ns2/C2)

B2). Material property # 2 (for material 2 of the bimaterial case)
1. Elastic constants

[C] =




86.74 −8.25 27.15 −3.66 0 0
129.77 −7.42 5.7 0 0

102.83 9.92 0 0
38.81 0 0

symm. 68.81 2.53
29.01


 (109N/m2)

2. Piezoelectric constants

[e] =


 .171 −.152 −.0187 .067 0 0

0 0 0 0 .108 −.095
0 0 0 0 −.0761 .067


 (C/m2)

3. Dielectric permeability coefficients

[ε] =


 39.21 0 0

0 39.82 .86
0 .86 40.42


 (10−12C/Vm)

4. Piezomagnetic constants

[q] =


 0 0 0 0 550 0

0 0 0 550 0 0
580.3 580.3 699.7 0 0 0


 (N/Am)

5. Magnetoelectric coefficients d(i,j)=0 (for i,j=1,3) (in Ns/VC)
6. Magnetic permeability coefficients

[µ] =


 5 0 0

0 5 0
0 0 10


 (10−6Ns2/C2)
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