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Three-Dimensional Green’s
Functions in an Anisotropic
Half-Space With General
Boundary Conditions
This paper derives, for the first time, the complete set of three-dimensional Green’s
tions (displacements, stresses, and derivatives of displacements and stresses with
to the source point), or the generalized Mindlin solutions, in an anisotropic half-sp
~z.0! with general boundary conditions on the flat surface z50. Applying the Mindlin’s
superposition method, the half-space Green’s function is obtained as a sum of the g
alized Kelvin solution (Green’s function in an anisotropic infinite space) and a Mindl
complementary solution. While the generalized Kelvin solution is in an explicit form
Mindlin’s complementary part is expressed in terms of a simple line-integral over [0p].
By introducing a new matrixK , which is a suitable combination of the eigenmatricesA
and B, Green’s functions corresponding to different boundary conditions are conci
expressed in a unified form, including the existing traction-free and rigid boundarie
special cases. The corresponding generalized Boussinesq solutions are investiga
details. In particular, it is proved that under the general boundary conditions studie
this paper, the generalized Boussinesq solution is still well-defined. A physical explan
for this solution is also offered in terms of the equivalent concept of the Green’s func
due to a point force and an infinitesimal dislocation loop. Finally, a new numer
example for the Green’s functions in an orthotropic half-space with different boun
conditions is presented to illustrate the effect of different boundary conditions, as we
material anisotropy, on the half-space Green’s functions.@DOI: 10.1115/1.1532570#
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Introduction
Green’s functions~due to a concentrated source! are of great

interests in both theoretical and applied mechanics~@1–3#!. With
increasing popularity of the integral equation method among
ferent engineering fields, research on various Green’s function
increasing. The half-space Green’s function alone has been
plied in materials science~@4–6#!, rock engineering~@7,8#!, in-
verse problem@6#, and contact mechanics~@9–12#!. However, be-
cause of complexity, most three-dimensional half-space Gre
functions are for the traction-free boundary condition only, inclu
ing the isotropic half-space solution by Mindlin@13#, transversely
isotropic half-space solution by Pan and Chou@14#, and aniso-
tropic half-space solution by Willis@9#, Barnett and Lothe@4#,
Barber and Sturla@15#, Ting @2#, Wu @16#, and Pan and Yuan@17#.
While the half-space Green’s functions with a rigid surface c
also be reduced from the corresponding bimaterial Green’s fu
tions, no Green’s function solution exists in an anisotropic ha
space with any mixed surface boundary conditions, with the
ception of the transversely isotropic half-space Green’s solu
by Yu et al. @18# for the slippery boundary condition, which in
cludes the isotropic solution of Dundurs and Hetenyi@19# as a
special case.

While the traction-free and rigid boundary conditions on t
surface of a half-space are perhaps the most common one

1Currently at the Department of Civil Engineering, University of Akron, Akro
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engineering applications, the mixed boundary conditions, in p
ticular the slippery condition, have been also used in various p
tical problems~@20,21#!. For example, in rock and foundation en
gineering, the slippery boundary condition has been used to m
a large-size soil deposit underlain by a hard bedrock base~@22#!.
In plate theory, the roller or simple supported condition resemb
the slippery surface condition~@23#!. The slippery condition has
been also used to describe the connection between an ideal
and a solid in material science~@24#!, and to model the bone
implants in biomechanics~@25#!.

Besides its applications in conventional engineering, Gree
function method now becomes an essential tool in the numer
studies of strained semiconductor quantum devices where
strain-induced quantum dot growth in semiconductor nanost
tures is crucial to the electronic performance~@26–28#!. While
under two-dimensional deformation, the strain-induced elastic
electric fields can be easily analyzed by the analytical solution
Ru ~@29,30#!, for those in the three-dimensional space, the Gree
functions, as embedded in the Eshelby tensor~@5,31#!, are re-
quired in the corresponding studies.

In Green’s function solutions involving material anisotropy, t
Stroh formalism has been shown to be mathematically elegant
technically powerful~@2,32,33#!. Under two-dimensional defor-
mation, Ting and co-workers~@2,34,35#! first derived the Green’s
functions in anisotropic half-plane with general boundary con
tions. Two new eigenmatrices were introduced to replace
original eigenmatricesA and B, and the solution of the genera
boundary value problems was expressed in terms of a new si
Stroh formalism~@2,34#!. The general boundary conditions con
sidered by Ting and co-workers~@2,34,35#! include, as special
cases, the traction-free, rigid, and slippery boundary conditio
and their solution covers at least eight different sets of bound
conditions~to be defined later!. While the two-dimensional defor-
mation in terms of the Stroh formalism is relatively easy, t
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corresponding three-dimensional deformation is much more c
plicated. Although in recent years, the Stroh formalism was
tended to certain three-dimensional Green’s function soluti
~@2,16,17#! no literature exists on generalizing the Stroh formalis
to the three-dimensional problem with general boundary con
tions.

In this paper, the author shows that, similar to the tw
dimensional case, the Green’s function in an anisotropic h
space with general boundary conditions can also be derive
terms of the extended Stroh formalism. The present study follo
a recent development on three-dimensional Green’s function s
tion in anisotropic bimaterials with perfectly bonded interfa
~@17#!. It is found that, similar to the three-dimensional bimater
case, the three-dimensional half-space Green’s function with g
eral boundary conditions can also be expressed as a sum o
generalized Kelvin Green’s functions~the infinite-space Green’s
functions! and a Mindlin’s complimentary part. While the forme
has an explicit expression~@36–39#!, the latter can be expressed
terms of a simple line integral over@0,p#. Furthermore, a new
matrix, namedK , which is a suitable combination of the eige
matricesA and B, is introduced so that the Green’s function
corresponding to different boundary conditions can be concis
expressed in a unified form, including the existing traction-fr
and rigid boundaries as special cases. Also studied for the
time are the limit cases of the Green’s functions when the sou
and/or field points are on the surface of the half-space with g
eral boundary conditions. It is proved that even for these spe
cases, the corresponding Green’s function solutions, the gen
ized Boussinesq solutions in particular, are still well defined.
enhance our understanding, a physical explanation for these
tions are also offered in terms of the equivalent concept of
Green’s functions due to a point force and an infinitesimal dis
cation loop. Finally, a new numerical example for the Gree
functions in an orthotropic half-space with different bounda
conditions is presented to illustrate the effect of different bou
ary conditions, as well as material anisotropy, on the half-sp
Green’s functions.

In the following discussion, the three-dimensional Gree
functions due to an interior point force in an anisotropic ha
space with general boundary conditions will be also called
generalized Mindlin solutions. When the source point is loca
on the surface of the half-space, the corresponding Green’s f
tions will be then called generalized Boussinesq solutions~i.e., the
generalized surface Green’s functions, see e.g.,@4,15#. Also, by
Green’s functions, we mean the Green’s displacements, stre
and derivatives of displacements and stresses with respect t
source point.

Problem Description
Consider an anisotropic half-space occupying domainx3.0

bounded by thex350 plane. Let a point forcef5( f 1 , f 2 , f 3) be
applied in the half-space at source pointd[(d1 ,d2 ,d3[d) with
d3.0 and the field point be denoted byx[(x1 ,x2 ,x3[z).2 As
usual, the problem domain is artificially divided into two region
z.d and 0<z,d.

In the two regions of the half-space, the equations of equi
rium in terms of displacementsuk in the absence of body force
are written as

Ci jkl uk,l j 50 (1)

whereCi jkl is the elastic stiffness tensor of the half-space.
In this paper, the following eight different sets of bounda

conditions on the surfacez50 ~@2,34#! will be discussed. In other
words, the half-space Green’s functions are required to satisfy
of the eight sets of boundary conditions:

2Thereafter, the scalar variablesz andd will be used exclusively for the third field
coordinatex3 and the third source coordinated3, respectively.
102 Õ Vol. 70, JANUARY 2003
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u150; u250; u350 (2a)

t150; u250; u350 (2b)

u150; t250; u350 (2c)

u150; u250; t350 (2d)

t150; t250; t350 (2e)

u150; t250; t350 (2f)

t150; u250; t350 (2g)

t150; t250; u350 (2h)

where the vectort(t1 ,t2 ,t3) is the traction on thez5constant
plane defined as

t5~s13,s23,s33!. (3)

Similar to the corresponding two-dimensional analysis~@2,34#!,
we unify Equations~2a–h! by the following simple vector equa
tion:

Iuu1I tt50 (4)

where Iu and I t are 333 diagonal matrices whose elements a
either one or zero, and satisfy conditions

Iu1I t5I ; IuI t50 (5)

with I being the unit matrix.
It is seen that Equations~2a! and ~2e! corresponds to the rigid

and traction-free boundary conditions, respectively, with (Iu ,I t)
5(I ,0) and (Iu ,I t)5(0,I ). On the other hand, the slippery su
face condition is represented by Equation~2h! and Iu
5diag@0,0,1# and I t5diag@1,1,0#. We remark that instead of the
displacement and stress function vectors (u,f) adopted in the
two-dimensional analysis~@2,34#!, the displacement and tractio
vectors (u,t) are used in this paper.

At the source levelz5d where the point force is applied, th
displacement and traction vectors are required to satisfy the
lowing conditions:

uuz5d25uuz5d1

tuz5d22tuz5d15d~x12d1!d~x22d2!f (6)

along with the radiation condition so that the solution in the ha
space vanishes asuxu approaches infinity.

Stroh Formalism in the Transformed Domain
To solve the problem described in the previous section,

two-dimensional Fourier transform~i.e., for the displacement!

ũk~y1 ,y2 ,z;d!5E E uk~x1 ,x2 ,z;d!eiyaxadx1dx2 (7)

is applied to Eq.~1!. In Eq. ~7!, a takes the summation from 1 to
2.

A general solution to the Fourier transformed equation of~1!
can be expressed as~@2,17#!

ũ~y1 ,yz ,z;d5ae2 iphz (8)

with p anda satisfying the eigenrelation

@Q1p~R1RT!1p2T#a50. (9)

The superscriptT denotes matrix transpose, and

Qik5Ci jksnjns , Rik5Ci jksnjms , Tik5Ci jksmjms (10)

with

~n1 ,n2 ,n3![~cosu,sinu,0! (11)

~m1 ,m2 ,m3![~0,0,1!.
Transactions of the ASME



e

o

v

s

o

g

i
l

tion
’s
as

n’s
n-

y
, as

d
y

rans-
s:

c-
of

has

the
tary

ry
n
ne

sult

he
ved

o-

ns-
to

e

Note that a polar coordinate transform, defined below, has b
used:

y15h cosu
(12)

y25h sinu.

It is observed that Eq.~9! is the Stroh eigenrelation for th
oblique plane spanned byn andm defined in Eq.~11!. It has been
also shown~see i.e.,@2#! that its eigenvalues are either complex
purely imaginary due to the positive requirement on the str
energy density.

Using the Stroh eigenvalues and the corresponding eigen
tors, the traction vectort on thez5constant plane and the in-plan
stress vectors, namely

t5~C13kluk,l ,C23kluk,l ,C33kluk,l ! (13)

s[~s11,s12,s22!

5~C11kluk,l ,C12kluk,l ,C22kluk,l ! (14)

can be expressed in the Fourier-transformed domain as~@17#!

t̃52 ihbe2 iphz (15)

s̃52 ihce2 iphz (16)

with

b5~RT1pT!a52
1

p
~Q1pR!a

(17)
c5Da.

The matrixD is defined by

D5FC111ana1pC1113 C112ana1pC1123 C113ana1pC1133

C121ana1pC1213 C122ana1pC1223 C123ana1pC1233

C221ana1pC2213 C222ana1pC2223 C223ana1pC2233

G .

(18)

If pj , aj , andbj ( j 51,2,...6) are the eigenvalues and the as
ciated eigenvectors, we let

Impj.0, pj 135 p̄ j , aj 135āj , bj 135b̄j , cj 135 c̄j

~ j 51,2,3!
(19)

A5@a1 ,a2 ,a3#, B5@b1 ,b2 ,b3#, C5@c1 ,c2 ,c3#

where Im stands for the imaginary part and the overbar den
the complex conjugate. It is further assumed thatpj are distinct
and the eigenvectorsaj , andbj satisfy the following normaliza-
tion relation:

bi
Taj1ai

Tbj5d i j (20)

with d i j being the Kronecker delta.
It is worthwhile mentioning that should repeated eigenvalu

occur, i.e., for transversely isotropic or isotropic materials, a sli
perturbation on the material stiffness tensor would make th
distinct with negligible error~@40#!. Therefore, the unified and
simple solution presented in this paper can be applied to mate
with any material symmetry.

Half-Space Green’s Functions in the Fourier Trans-
formed Domain

For the anisotropic half-space, the general boundary condit
~4! on the surfacez50 and the condition~6! at the source leve
z5d, become, in the Fourier transformed domain, as

Iuũ1I t t̃50 (21)

and

ũuz5d25ũuz5d1
(22)

t̃uz5d22 t̃uz5d15feiyada.
Journal of Applied Mechanics
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Using these conditions as well as the requirement that the solu
should vanish asuxu approaches infinity, the half-space Green
function in the Fourier transformed domain can be derived
~@2,17#! follows:

For 0<z,d:

ũ~y1 ,y2 ,z;d!5 ih21A^e2 ip
*

h~z2d!&q`2 ih21Ā^e2 i p̄
*

hz&q

t̃~y1 ,y2 ,z;d!5B^e2 ip
*

h~z2d!&q`2B̄^e2 p̄
*

hz&q (23)

s̃~y1 ,y2 ,z;d!5C^e2 ip
*

h~z2d!&q`2C̄^e2 i p̄
*

hz&q.

For z.d:

ũ~y1 ,y2 ,z;d!52 ih21Ā^e2 ip
*

h~z2d!&q̄`2 ih21Ā^e2 i p̄
*

hz&q

t̃~y1 ,y2 ,z;d!52B̄^e2 ip
*

h~z2d!&q̄`2B̄^e2 i p̄
*

hz&q (24)

s̃~y1 ,y2 ,z;d!52C̄^e2 ip
*

h~z2d!&q̄`2C̄^e2 i p̄
*

hz&q.

where

q`5ATfeiyada (25)

and

^e2 ip* hz&5diag@e2 ip1hz,e2 ip2hz,e2 ip3hz#. (26)

The complex vectorq in Eqs.~23! and ~24! is to be determined.
Motivated by the unified and elegant expression for the Gree

function in an anisotropic half-plane with general boundary co
ditions ~@2#!, we have found that if we introduce a new matrixK
defined as

K5IuA1I tB (27)

then the complex vectorq for the eight different sets of boundar
conditions~2a–h! can be expressed, in a single vector equation

q5K̄21K ^eip
*

hd&ATfeiyada. (28)

It is also observed that the new matrixK , like A andB, is inde-
pendent of the radial variableh, an important feature to be use
later. Equation~28! is a very surprising result and will be the ke
factor when deriving the physical-domain Green’s functions.

Substituting Eq.~28! into Eqs. ~23! and ~24! gives the half-
space Green’s displacements and stresses in the Fourier t
formed domain, which possess the following important feature

1. As discussed by Pan and Yuan@17#, the first terms in Eqs.
~23! and ~24! are the Fourier transformed-domain Green’s fun
tions for a homogeneous and anisotropic full space. Inverse
these Green’s functions, i.e., the physical-domain solution,
been obtained by Tewary@36#, Ting and Lee@37#, Sales and Gray
@38#, and Tonon et al.@39# in an explicit form. Therefore, the
inverse Fourier transform needs to be carried out only for
second terms of the solution, which resemble the complemen
part of the Mindlin solution~@13#!.

2. These unified Fourier transformed-domain solutions~Eqs.
~23! and ~24!! include the eight different sets of the bounda
conditions~2a–h!. Thus, to solve for the Green’s function in a
anisotropic half-space with different boundary conditions, o
only needs to assign the matrixK defined by Eq.~28! with the
corresponding boundary conditions, a remarkably simple re
parallel to its two-dimensional counterpart~@2#!.

3. In deriving the Fourier transformed-domain solution, t
matrix K has been assumed to be nonsingular. This can be pro
following a procedure similar to the corresponding tw
dimensional analysis~@2#!.

Generalized Mindlin Solution
Having obtained the Green’s functions in the Fourier tra

formed domain, we now apply the inverse Fourier transform
Eqs. ~23! and ~24!. To handle the double infinite integrals, th
JANUARY 2003, Vol. 70 Õ 103
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polar coordinate transform~12! is introduced so that the infinite
integral with respect to the radial variableh can be carried out
exactly. Thus, the final half-space Green’s function in the phys
domain, i.e., the generalized Mindlin solution, can be expresse
a sum of a Kelvin’s part in an explicit form and a Mindlin’
complementary part in terms of a line integral over@0,2p#. The
integral for the latter can actually be further reduced to an inte
over @0,p#. In what follows, we will use only the displacemen
solution to illustrate the derivation and list the final results
other Green’s functions. Assumption will be also made that
source pointd is interior to the half-space. The limit case, name
the corresponding Boussinesq solution~when the source pointd is
on the surface! will be discussed later.

Applying the inverse Fourier transform, the Green’s displa
ment in Eq.~24! becomes

u~x1 ,x2 ,z;d!52
i

4p2E E $h21Ā^e2 i p̄
*

h~z2d!&

3q̄`e2 i ~xa2da!ya%dy1dy2

2
i

4p2E E $h21Ā^e2 i p̄
*

hz&

3qe2 i ~xa2da!ya%dy1dy2 . (29)

The first integral in Eq.~29! corresponds to the full-space Green
displacement that is already available in an explicit form~@36–
39#!. Consequently, the inverse transform needs to be carried
only for the second integral, or the complementary part. Deno
the full-space Green’s function tensor byU`(x;d) with its row
and column indices corresponding to the displacement compo
and point-force direction, respectively, and introducing the po
coordinate transform~12!, the half-space Green’s displaceme
tensor can be rewritten as

U~x;d!5U`~x;d!2
i

4p2E
0

2p

duE
0

`

Ā^e2 i p̄
*

hz&

3K̄21K ^eip
*

hd&e2 ih@~x12d1!cosu1~x22d2!sinu#ATdh.

(30)

Since the matricesA ~alsoB andC! andK̄21K are independent o
the radial variableh, integral with respect toh can therefore be
performed analytically, resulting in the following compact form

U~x;d!5U`~x;d!1
1

2p2E
0

p

ĀG1ATdu (31)

where3

~G1! i j 5
~K̄21K ! i j

2 p̄iz1pjd2@~x12d1!cosu1~x22d2!sinu#
. (32)

It is noticed that the integral interval in Eq.~31! has been reduced
from @0,2p# to @0,p# based upon certain properties of the int
grand as a function ofu ~@41#!, plus a new relation for the matrix
K̄21K , i.e., K̄21K (u1p)52K21K̄ (u). Similar properties have
also been used to derive the Green’s stresses, derivative
Green’s displacements and stresses.

Following a similar procedure, the half-space Green’s str
tensors can be derived and the results are listed as

T~x;d!5T`~x;d!1
1

2p2E
0

p

B̄G2ATdu (33a)

S~x;d!5S`~x;d!1
1

2p2E
0

p

C̄G2ATdu. (33b)

3Thereafter, the indicesi and j take the range from 1 to 3.
104 Õ Vol. 70, JANUARY 2003
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In Eqs.~33a! and ~33b!, T`(x;d) andS`(x;d) are the full-space
Green’s stress tensors~@39#!, and

~G2! i j 5
~K̄21K ! i j

$2 p̄iz1pjd2@~x12d1!cosu1~x22d2!sinu#%2 .

(34)

Derivatives of the Green’s displacements and stresses~tensors!
with respect to the source point (d1 ,d2 ,d3) are found to be

]U~x;d!

]dj
5

]U`~x;d!

]dj
2

1

2p2E
0

p

ĀG2^gj&A
Tdu (35)

^g1&5diag@cosu,cosu,cosu#

^g2&5diag@sinu,sinu,sinu# (36)

^g3&5diag@p1 ,p2 ,p3#

]T~x;d!

]dj
5

]T`~x;d!

]dj
2

1

2p2E
0

p

B̄G3^gj&A
Tdu (37a)

]S~x;d!

]dj
5

]S`~x;d!

]dj
2

1

2p2E
0

p

C̄G3^gj&A
Tdu (37b)

~G3! i j 5
~K̄21K ! i j

$2 p̄iz1pjd2@~x12d1!cosu1~x22d2!sinu#%3 .

(38)

Equations~31!, ~33!, ~35!, and ~37! are thecompleteGreen’s
functions in an anisotropic half-space with general boundary c
ditions, or the generalized Mindlin solutions. It is emphasized t
these Green’s functions are presented in a unified and very sim
form so that the eight different sets of the boundary conditio
~2a–h! are all included. To find the Green’s functions for a give
set of boundary conditions, one only needs to assign the co
spondingK matrix. For example, forK5B, the present half-space
Green’s displacements and stresses will then reduce to the exi
solution ~@2,4,16,17#! for the traction-free boundary conditio
case. Since the present solution includes all the eight different
of the boundary conditions, it is therefore particularly convenie
when investigating the effect of different boundary conditions
the problem solution based on the Green’s function method.

Considering the complexity of the problem and yet the simp
ity of the final physical-domain Green’s function expressions
all the eight sets of the boundary conditions, it is seen that,
resorting to the Mindlin’s superposition approach, the extend
~three-dimensional! Stroh formalism is indeed a very powerfu
and elegant method. A direct application of the Fourier transfo
method, without employing the Stroh formalism, would requ
three-dimensional Fourier inverse integrals for the infinite Gree
function, and four-dimensional Fourier inverse integrals for t
complementary part~@42#!.

Besides their concise expressions, the present half-sp
Green’s functions~generalized Mindlin solutions! also possess the
following important features:

1. Similar to the bimaterial Green’s functions with perfect
bonded interface~@17#!, the half-space Green’s displacemen
stresses and derivatives of displacements, and derivative
stresses are inversely proportional to, respectively, a linear, q
dratic, and cubic combination of the field and source coordina
This feature resembles the behavior of the full-space Green’s
placements~}1/r!, stresses and derivatives of displaceme
(}1/r 2), and derivatives of stresses (}1/r 3), with r being the
distance between the source and field points.

2. Different to either the bimaterial Green’s functions with pe
fectly bonded interface or the half-space Green’s functions w
traction-free boundary conditions~2e! where the source pointd
Transactions of the ASME
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can directly approach the interface or the surface for all the th
point-force directions, the half-space Green’s functions with ot
seven sets of boundary conditions need special attention w
approaching the surface, a very interesting feature to be discu
in the next section.

3. Since the source point is not on the surface of the half-sp
~i.e., dÞ0), the integrals in Eqs.~31!, ~33!, ~35!, and ~37! for
performing the complementary part of the half-space Gree
functions are regular and thus can be easily carried out by a s
dard numerical integral method such as the Gauss quadratur

Generalized Boussinesq Solution
In the previous section, we derived the generalized Mind

solution in an anisotropic half-space with general boundary c
ditions~2a–h!. While the field pointx can be anywhere in the ha
space, the source pointd is assumed to be interior to the hal
space~i.e., dÞ0). We recall that in the Mindlin solution~@13#! to
an isotropic half-space with traction-free boundary conditio
both field and source points~x and d! can be arbitrary, and the
corresponding Boussinesq solution~for a point force in any direc-
tion on the surface; see,@43#! can be directly reduced from Mind
lin solution by taking the source point to the surface~i.e., d50!.
Furthermore, the special half-space surface Green’s func
where the field and source points are both on the surface~i.e.,z50
andd50!, can also be obtained either from Mindlin solution wi
z50 andd50 for from Boussinesq solution withz50. Actually,
this feature also holds for the Mindlin solution in a transvers
isotropic ~@14#! and general anisotropic half-space~@2,4,15–17#!.
It is important at this point to emphasize that this feature is ba
upon the condition that the surface of the half-space is tract
free~i.e., Eq.~2e!!. Then, it is natural to ask the question: Can o
safely take the source point to the surface~i.e., d50! in the gen-
eralized Mindlin solution to obtain the corresponding generaliz
Boussinesq solution? The answer is yes!

First, it is observed that if thei-th component of the traction
vector is zero~i.e., t i50) on the surface, with boundary cond
tions in other two directions being properly given, then the cor
sponding generalized Boussinesq solution exists for a sur
point force acting in theith direction. Furthermore, this solutio
can be directly obtained from the generalized Mindlin solution
letting d50. We point out that the field point is assumed to
interior to the half-space~i.e.,zÞ0!, leaving the case ofd50 and
z50 being treated separately in the next section. It is very in
esting that Boussinesq~see@43#! derived solutions in an isotropic
half-space subjected to two general types of boundary condit
to which the present boundary condition sets~2d! and ~2h! have
direct connection. Therefore, for example, for the boundary c
dition set ~2d!, the generalized Boussinesq solution to a norm
point force ~i.e., in the x3-direction! on the surface with fixed
tangential displacements~i.e., u150 andu250) is well-defined
and can be directly reduced from the generalized Mindlin solut
by takingd50.

Now, let us examine the case where theith component of the
displacement vector is zero~i.e., ui50) on the surface, which is
also subjected to a surface point force in theith direction at the
origin. Since the displacement componentui50 is described on
the whole surface while a concentrated traction compon
t i(52d(x)) is also given at the surface pointx5(0,0,0), the
resulting boundary condition is over imposed atx5~0,0,0!! How-
ever, if we release the displacement condition atx5~0,0,0! for ui ,
due to the fact that this is a concentrated force atx5~0,0,0!, then
the boundary value problem will be well defined. Actually, from
mathematical point of view, i.e., from Eqs.~31!–~38!, it can be
proved that whend50, these Boussinesq solutions are still w
defined and regular as long aszÞ0. It is noted that the first terms
in Eqs. ~31!, ~33!, ~35!, and ~37! are the infinite-space Green
functions that are regular and become singular if and only if
field and source points are coincident to each other~i.e., x5d!.
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The second terms in these equations are proportional to one o
Gi matrices defined by Eqs.~32!, ~34!, and~38!, which are again
regular and well defined. Therefore, in conclusion, the generali
Boussinesq solutions with general boundary conditions are
well defined and regular~if zÞ0!.

To enhance our understanding, we now offer a physical ex
nation to the generalized Boussinesq solutions in terms of
equivalent concept of the Green’s functions due to a point fo
and an infinitesimal dislocation loop. Using the Betti’s reciproci
it can be shown~@44–46#! that the following important equivalen
between the Green’s function of a unit point force and that o
unit infinitesimal dislocation loop holds~in a dimensionless form!:

uj
uik~d;x!5s ik

f j~x;d! (39)

While the right-hand side of Eq.~39! denotes the Green’s stres
component~i,k! at the field pointx due to a point force in thejth
direction atd, the left-hand side denotes the displacement in
jth direction at the field pointd due to an infinitesimal dislocation
loop, with index (i ,k) for the dislocation direction and the norma
of the dislocation plane, at the source pointx. Therefore, the stress
field due to a point force can be equivalently considered a
displacement field due to an infinitesimal dislocation loop. T
latter is well defined with an apparent physical meaning: The d
placement response on the surface of the half-spaced ~sinced50!
due to an interior infinitesimal dislocation loop at the source po
x ~sincezÞ0!. A very interesting consequence of Eq.~39! is that if
the boundary condition is rigid~2a!, then the stress field within
the whole half-space, due to a point force in any direction on
surface, is zero! Furthermore, our numerical tests have shown
for such a case, the displacement field is indeed zero. The
nonzero components are the derivatives of the displacement
stress with respect to the third source coordinated. While whether
or not this special Boussinesq solution~with rigid boundary con-
dition! has any application is unknown to the author, it is wor
mentioning that these numerically obtained features on the
placements, stresses, and derivatives of displacements and st
are consistent with those in the corresponding two-dimensio
half-plane~@2#! where analytical solutions exist.

Yet, another limit case is when the field and source points
both on the surface~i.e.,z5d50). The corresponding response
a special case of the surface Green function, and it is discu
and presented in the following section.

Special Surface Green’s Function
When both the field and source points are on the surface~i.e.,

z5d50), the half-space Green’s functions are reduced~from ei-
ther the generalized Mindlin or Boussinesq solutions! to a particu-
lar class of Green’s functions called special surface Green’s fu
tions. Similar to the generalized Mindlin or Boussinesq solutio
these special surface Green’s functions can be expressed as
of the generalized Kelvin solution in an explicit form and a Min
lin’s complementary part. For the complementary part, howev
the involved one-dimensional integral becomes singular and ex
only in the sense of finite-part principle value~@47–49#!. Assum-
ing that the field and source coordinates on the surface are (x1 ,x2)
and (d1 ,d2), respectively, and expressing their relative position
terms of the polar coordinate asx12d15r cosu0; x22d2
5r sinu0, then these special surface Green’s functions are obta
as ~@50#!

U~x;d!5U`~x;d!2
1

2pr H 1

pE0

p ĀK̄21KA T

cos~u2u0!
du

1 i @ĀK̄21KA T#u5u01p/2J (40)
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Fig. 1 Variation of in-plane stress component sxx along the line xÄy on the surface zÄ0, caused by
the point force f Ä„0,0,1… and dÄ„0,0,1…. Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions „2a–h….
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]U~x;d!

]dj
5

]U`~x;d!

]dj
2

1

2pr 2 H 1

pE0

pĀK̄21K ~gj&A
T

cos2~u2u0!
du

2 i
d@ĀK̄21K ^gj&A

T#

du
U

u5u01p/2
J (41)

T~x;d!5T`~x;d!1
1

2pr 2 H 1

pE0

p B̄K̄21KA T

cos2~u2u0!
du

2 i
d@B̄K̄21KA T

du
U

u5u01p/2
J (42)

]T~x;d!

]dj
5

]T`~x;d!

]dj
1

1

2pr 3 H 2

pE0

pB̄K̄21K ^gj&A
T

cos3~u2u0!
du

1 i Fd2@B̄K̄21K ^gj&A
T#

d2u

1@B̄K̄21K ^gj&A
T#GU

u5u01p/2
J (43)
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S~x;d!5S`~x;d!1
1

2pr 2 H 1

pE0

p C̄K̄21KA T

cos2~u2u0!
du

2 i
d@C̄K̄21KA T#

du
U

u5u01p/2
J (44)

]S~x;d!

]dj
5

]S`~x;d!

]dj
1

1

2pr 3 H 2

pE0

pC̄K̄21K ^gj&A
T

cos3~u2u0!
du

1 i Fd2@C̄K̄21K ^gj&A
T#

d2u

1@C̄K̄21K ^gj&A
T#GU

u5u01p/2
J . (45)

Several features regarding to the special surface Green’s f
tions with general boundary conditions are observed:

1. Similar to the interfacial Green’s functions in anisotrop
bimaterial with perfectly bonded interface~@50#!, the surface dis-
placements, stresses and derivatives of displacements, and d
tives of stresses are inversely proportional, respectively, tor , r 2,
andr 3, wherer is the distance between the field and source po
on the surface (z5d50), a generalized consequence of se
Transactions of the ASME
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Fig. 2 Variation of in-plane stress component syy along the line xÄy on the surface zÄ0, caused by
the point force f Ä„0,0,1… at dÄ„0,0,1…. Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions „2a–h….
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similarity @9,15#. For the special surface Green’s function comp
nent which is inversely proportional tor , r 2, and r 3, the corre-
sponding finite-part integral has singular order of one~1/cosu!,
two (1/cos2u), and three (1/cos3u), respectively; therefore, the
special surface Green’s functions are completely determined
the values on a unit circle on the surfacez5d50 ~with field point
on the unit circle and source point at the center of the circle!. The
finite-part integrals can be carried out accurately and efficie
using an adaptive scheme proposed recently by Pan and
@50#.

2. For the traction-free boundary conditions~2e!, the corre-
sponding special surface Green’s function was discussed p
ously by Willis @9#, Barnett and Lothe@4#, Barber and Sturla@15#,
Ting @2#, Wu @16#, and Pan and Yuan@17#. Even for this case, the
complete special surface Green’s functions are not available in
literature until very recently~@50#!.

3. All the special surface Green’s functions corresponding
the boundary conditions~2a–d! and ~2f–h! are new.

Numerical Examples
For an anisotropic half space with general boundary conditi

~2a–h!, no previous solution is available except for the tractio
free ~2e! and rigid ~2a! cases. While for the former, the Green
displacements and stresses were studied previously by Barret
Lothe @4#, Tine @2#, Wu @16#, and Pan and Yuan@17#, the Green’s
functions for the latter can be numerically reduced from the bim
pplied Mechanics
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terial Green’s functions of Pan and Yuan@17# for a perfectly
bonded interface by letting the elastic tensorCi jkl in the z,0
half-space being much stiffer than that in the concerned half-sp
regionz.0. Although the isotropic~@19#! and transversely isotro
pic ~@18#! half-space Green’s solutions were studied before for
slippery surface boundary conditions~2h!, no numerical result is
available. Nevertheless, the present generalized Mindlin solut
have been self-checked for the boundary conditions~2a! and~2e!,
and for two of the mixed boundary conditions, namely conditio
~2d! and ~2h!, to be discussed below.

Boussinesq~see@43#! derived the solution in an isotropic half
space when its boundary is subjected to two general type
boundary conditions: namely, the normal tractiontz and tangential
displacements (ux anduy), and normal displacementuz and tan-
gential tractions (tx and ty). If, for the former, we assume a un
normal point force at the original and let the tangential displa
ments be zero~i.e., ux5uy50), then the dilatation at any field
point x5(x,y,z) of the half-space caused by this normal po
force is found to be

D5ui ,i5
2z

2p~l12m!~x21y21z2!3/2 (46)

wherel andm are the two Lame constants.
Similarly, for the latter, if we assume a unit point force in th

x-direction at the original, traction-free in they-direction (ty
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50), and zero-displacement in thez-direction (uz50), then the
dilatation at any field pointx5(x,y,z) of the half-space caused b
this tangential point force is obtained as

D5ui ,i 5
2x

2p~l12m!~x21y21z2!3/2. (47)

It is seen that while Boussinesq solution~46! corresponds to the
present Green’s function with boundary condition~2d!, solution
~47! corresponds to that with the boundary condition~2h!. For the
former, the point force is in thez-direction and for the latter it is in
the x-direction.

In the numerical testing, a Young’s modulusE52.6 and Pois-
son’s ration50.3 were assumed for the isotropic half-space. F
the field point at (x,y,z)5~1/A3,1/A3,1/A3!, both Eqs.~46! and
~47! give the same dilatation valueD520.026254, while that
predicted by the present Green’s function solutions for the

Table 1 Reduced and normalized stiffness matrix Cij in the
half-space

1.0352019 .0523837 .0523837 .0 .0 .0
.1153771 .0405268 .0 .0 .0

.1153771 .0 .0 .0
.0333333 .0 .0

.0333333 .0
.0333333
108 Õ Vol. 70, JANUARY 2003
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cases isD520.026251. This result not only has validated some
the present Green’s functions, but also has shown that even
isotropic case can be easily handled by the present Stroh for
ism using a slightly perturbed elastic property~@40#!. For instance,
to use the present Stroh formalism for the isotropic material,
orthotropic material was assumed with one of the three Poiss
ratios being perturbed ton50.2999 while the other two being kep
at n50.3.

Next, the effect of different boundary conditions as well
material anisotropy, on the surface stress field is studied for
orthotropic half-space. The stiffness matrix~in its reduced and
normalized form! from Pan and Yang@50# is given in Table 1. For
this example, the source is fixed atd5~0,0,1! while the field point
varies on the surface of the half-space asx5(x,x,0), with xP
@21,1#. While Figs. 1 and 2 show the variation of the norm
stressessxx and syy caused by a unit point force in th
z-direction, Figs. 3 and 4 show the variation of these norm
stresses (sxx andsyy) due to a unit point force in thex-direction.
In these figures, results for the eight different sets of bound
conditions ~2a–h! are labeled as BC 1 and BC 8, respective
These numerical results are believed to be new and posses
following interesting features:

1. For the given material~orthotropic!, the surface normal
stressessxx andsyy are either symmetric~Figs. 1 and 2! or anti-
Fig. 3 Variation of in-plane stress component sxx along the line xÄy on the surface zÄ0, caused by
the point force f Ä„1,0,0… at dÄ„0,0,1…. Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions „2a–h….
Transactions of the ASME
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Fig. 4 Variation of in-plane stress component syy along the line xÄy on the surface zÄ0, caused by
the point force f Ä„1,0,0… at dÄ„0,0,1…. Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions „2a–h….
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symmetric~Figs. 3 and 4!, a general feature also associated w
the Mindlin solution in an isotropic half-space with traction-fre
boundary conditions.

2. The effect of material anisotropy on the surface norm
stresses can be clearly see by comparing Fig. 1 to Fig. 2. For
1 and BC 5, both normal stressessxx andsyy should be the same
if the material is isotropic. However, the magnitudes are mu
different in the orthotropic half space forsxx and syy under
boundary condition BC 1 or BC 5.

3. It is of particular interest to order the normal stressessxx
andsyy at the surface pointx50, i.e., the symmetric point! from
the largest tension~maximum! to the largest compression~mini-
mum! according to the different sets of boundary condition
While for those in Fig. 1, the descent order is BC 1, BC 3, BC
BC 2, BC 8, BC 6, BC 7, and BC 5, for those in Fig. 2, it is B
1, BC 2, BC 4, BC 7, BC 3, BC 8, BC 6, and BC 5. It is observ
that the boundary condition case BC 4~Eq. ~2d!! is in neutral for
which the normal stressessxx andsyy along the linex5y on the
surface are zero. While BC 1 and BC 3 predict a tensile and BC
BC 5–8 a compressive value for the normal stresssxx , BC 1 and
BC 2 predict a tensile and BC 3, BC 5–8 a compressive value
the normal stresssyy .

Conclusions
In this paper, the complete set of three-dimensional Gree

functions ~displacements, stresses, and derivatives of displa
ments and stresses with respect to the source points!, due to a
pplied Mechanics
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for
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point force in an anisotropic half-space with general bound
conditions, also called the generalized Mindlin solutions, are
rived for the first time. Applying the Mindlin’s superpositio
method, the half-space Green’s function is obtained as a sum
the generalized Kelvin solution~Green’s function in an aniso
tropic infinite space! and a Mindlin’s complementary solution
While the generalized Kelvin solution is in an explicit form, th
Mindlin’s complementary part is expressed in terms of a sim
line-integral over @0,p#. To handle the eight different sets o
boundary conditions, a new matrixK , a combination of the eigen
matricesA andB, has been introduced so that the Green’s fun
tions corresponding to the eight different sets of boundary con
tions can be expressed in a unified form, including the exist
traction-free and rigid boundaries as the special cases.

The corresponding generalized Boussinesq solutions~for source
point on the surface! and the special surface Green’s functions~for
both the source and field points on the surface! have been studied
in details. In particular, it has been proved that under the gen
boundary conditions studied in this paper, the generalized Bo
inesq solution is still well-defined, along with a physical explan
tion in terms of the equivalent concept of the Green’s functio
due to a point force and an infinitesimal dislocation loop.

A typical numerical example has been also presented for
Green’s functions in an orthotropic half-space with the eight d
ferent sets of boundary conditions. The new numerical resul
lustrates clearly the effect of the boundary conditions, as wel
material anisotropy, on the half-space Green’s stresses. It is
JANUARY 2003, Vol. 70 Õ 109
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lieved that the present complete Green’s function solutions sh
be of interest to various boundary/contact designs and of par
lar value to various mechanical engineering and quantum de
analyses based upon the integral equation method using Gr
function.
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