Three-Dimensional Green’s
Functions in an Anisotropic
Half-Space With General
Boundary Conditions

This paper derives, for the first time, the complete set of three-dimensional Green’s func-
E. Pan1 tions (displacem(_ants, stresses, and _derivat_ives_ of displacements an_d stresses with respect
to the source point), or the generalized Mindlin solutions, in an anisotropic half-space
(z>0) with general boundary conditions on the flat surface® Applying the Mindlin’s
superposition method, the half-space Green’s function is obtained as a sum of the gener-
alized Kelvin solution (Green’s function in an anisotropic infinite space) and a Mindlin's
complementary solution. While the generalized Kelvin solution is in an explicit form, the
Mindlin's complementary part is expressed in terms of a simple line-integral ovet.[O,
By introducing a new matriX, which is a suitable combination of the eigenmatrides
and B, Green’s functions corresponding to different boundary conditions are concisely
expressed in a unified form, including the existing traction-free and rigid boundaries as
special cases. The corresponding generalized Boussinesq solutions are investigated in
details. In particular, it is proved that under the general boundary conditions studied in
this paper, the generalized Boussinesq solution is still well-defined. A physical explanation
for this solution is also offered in terms of the equivalent concept of the Green’s functions
due to a point force and an infinitesimal dislocation loop. Finally, a new numerical
example for the Green's functions in an orthotropic half-space with different boundary
conditions is presented to illustrate the effect of different boundary conditions, as well as
material anisotropy, on the half-space Green’s functiof®Ol: 10.1115/1.1532570
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Introduction engineering applications, the mixed boundary conditions, in par-
ticular the slippery condition, have been also used in various prac-
tical problems([20,21]). For example, in rock and foundation en-

interests in both theoretical and applied mechafits 3). With ﬁineering the slippery boundary condition has been used to model
increasing popularity of the integral equation method among d 'éarge-size soil deposit underiain by a hard bedrock I2).

ferent engineering fields, research on various Green’s functions’i ) >
9 g ! ﬁ%’plate theory, the roller or simple supported condition resembles

increasing. The half-space Green’s function alone has been ) slippery surface conditio§23)). The slippery condition has

plied in materials sciencg4-6]), rock engineering[7,8]), in- . ; . .
: been also used to describe the connection between an ideal fluid
verse problenf6], and contact mechani¢g9—12]). However, be . d a solid in material sciendé24)), and to model the bone

cause of complexity, most three-dimensional half-space Gre | in bi hanicd 25
functions are for the traction-free boundary condition only, includMplants in biomect an_lcé{ .])' . . . ,
Besides its applications in conventional engineering, Green's

ing the isotropic half-space solution by Mindli&3], transversely ; . : ;
isotropic half-space solution by Pan and CHad], and aniso- function method now becomes an essential tool in the numerical

tropic half-space solution by Willi§9], Barnett and Lothd4] studies of strained semiconductor quantum devices where the

Barber and Sturl&l5], Ting [2], Wu[16], and Pan and Yuaji7]. Strain-induced quantum dot growth in semiconductor nanostruc-

While the half-space Green’s functions with a rigid surface cdHres is crucial to the electronic performan¢@6-28). While

also be reduced from the corresponding bimaterial Green’s furknder two-dimensional deformation, the strain-induced elastic and

tions, no Green’s function solution exists in an anisotropic halflectric fields can be easily analyzed by the analytical solution of

space with any mixed surface boundary conditions, with the eRU ([29,30), for those in the three-dimensional space, the Green’s

ception of the transversely isotropic half-space Green’s solutié#nctions, as embedded in the Eshelby ten§6(31]), are re-

by Yu et al.[18] for the slippery boundary condition, which in-quired in the corresponding studies. ) )

cludes the isotropic solution of Dundurs and Hetem] as a In Green'’s function solutions |nV0|V|ng material anISOtrOpy, the

special case. Stroh formalism has been shown to be mathematically elegant and
While the traction-free and rigid boundary conditions on théchnically powerful([2,32,33). Under two-dimensional defor-

surface of a half-space are perhaps the most common onedmation, Ting and co-worker§2,34,39) first derived the Green's

functions in anisotropic half-plane with general boundary condi-

ICurrently at the Department of Civil Engineering, University of Akron, Akron,iONS. Two new eigenmatrices were introduced to replace the

OH 44325-3905. e-mail: pan2@uakron.edu original eigenmatrice®\ and B, and the solution of the general
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Green’s functiongdue to a concentrated souycare of great
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corresponding three-dimensional deformation is much more com- u;=0; u,=0; uz=0 (2a)
plicated. Although in recent years, the Stroh formalism was ex-

tended to certain three-dimensional Green's function solutions t;=0; u,=0; uz=0 (20)
([2,16,17) no literature exists on generalizing the Stroh formalism

to the three-dimensional problem with general boundary condi- up=0; 12=0; us=0 ()

tions. o u;=0; u,=0; t3=0 (2d)
In this paper, the author shows that, similar to the two-

dimensional case, the Green’s function in an anisotropic half- t,=0; t,=0; t3=0 (2¢)

space with general boundary conditions can also be derived in Ui=0° t,=0° t.=0 )

terms of the extended Stroh formalism. The present study follows 175 27 3T

a recent development on three-dimensional Green’s function solu- t,=0; u,=0; t3=0 (29)

tion in anisotropic bimaterials with perfectly bonded interface

([17)). Itis found that, similar to the three-dimensional bimaterial t;=0; t,=0; uz=0 (20

case, the three-dimensional half-space Green'’s function with g
eral boundary conditions can also be expressed as a sum °f|5
generalized Kelvin Green'’s functior{the infinite-space Green’s
functions and a Mindlin’s complimentary part. While the former t=(013,023,033). 3)

has an explicit expressidfid6—39), the latter can be expressed inSimilar to the corresponding two-dimensional analy@34]),

terms of a simple line integral ové0,=]. Furthermore, a new : : ~ ; . i
matrix, namedK, which is a suitable combination of the eigen-}/ivfnymfy Equations(2a—h) by the following simple vector equa

matricesA and B, is introduced so that the Green’s functions
corresponding to different boundary conditions can be concisely l,u+1t=0 4)
expressed in a unified form, including the existing traction-free | dl 3 di | tri h | ¢
and rigid boundaries as special cases. Also studied for the fifgperel, andl, are d lagona nag_ rices whose elements are
time are the limit cases of the Green'’s functions when the sour%'(-]fl er one or zero, and satisfy conditions
and/or field points are on the surface of the half-space with gen- lyt1e=1; 1,;=0 (5)
eral boundary conditions. It is proved that even for these special . . .

th | being the unit matrix.

cases, the corresponding Green'’s function solutions, the gene}%'F . ; -
ized Boussinesq solutions in particular, are still well defined. To 't IS S€en that Equation®a) and (2€) corresponds to the rigid

; : ; d traction-free boundary conditions, respectively, with,I()
enhance our understanding, a physical explanation for these sc?r_[]- — .
tions are also offered in terms of the equivalent concept of t_e(l'o) ang.t('u ,I[)_—(O,I). On Ehg olt)her Eandt,_ thi sllppzryl sur-
Green’s functions due to a point force and an infinitesimal disl ?(Cf %08 i |0nd||s_ (;_eprisirz)e Wi Y qﬁh'o(? ) tand fL{h
cation loop. Finally, a new numerical example for the GreengV iad 0,0,1] andl,=diad 1,1,0]. We remark that instead of the

here the vectott(t,,t,,t3) is the traction on the=constant
e defined as

functions in an orthotropic half-space with different boundar |spl(¢js1_ceme_nt a?d stlres_s 2fu3n4ct|otrrl1 vzt_:toclsd() adc;pteflj Itn ﬂt]'e
conditions is presented to illustrate the effect of different bound- o-dimensional analysiff2,34)), the displacement and traction

ary conditions, as well as material anisotropy, on the haIf-spa¥ o . . .
Green’s functions. At the source levek=d where the point force is applied, the

In the following discussion, the three-dimensional C_:‘reen}isplacement and traction vectors are required to satisfy the fol-
functions due to an interior point force in an anisotropic hal lowing conditions:

space with general boundary conditions will be also called the Ul,—g-=U|,—g+
generalized Mindlin solutions. When the source point is located
on the surface of the half-space, the corresponding Green's func- t] =g~ —tl=q+ = 8(xy—d1) 8(xp— d)f (6)
tions will be then called generalized Boussinesq solutiaes the along with the radiation condition so that the solution in the half-
generalized surface Green'’s functions, see ¢415]. Also, by space vanishes as| approaches infinity.

Green’s functions, we mean the Green’s displacements, stresses,

and derivatives of displacements and stresses with respect to the

source point.

getors (,t) are used in this paper.

Stroh Formalism in the Transformed Domain

To solve the problem described in the previous section, the
Problem Description two-dimensional Fourier transforiiie., for the displacement

Consider an anisotropic half-space occupying domgir0 ~ e i
bounded by the;=0 plane. Let a point forcé=(f,,f,,f3) be Uk(y1,Y2,2;d)= U(Xy ,Xp,Z;d)eYeedxydx, — (7)
applied in the half-space at source poit(d,,d,,dz=d) with . . .
dggo and the field ?)oint be denote% leE((Xll,Xzz,ngfzg.z As IS applied to Eq(1). In Eq.(7), « takes the summation from 1 to

usual, the problem domain is artificially divided into two regions?: . . .
2>d and Oiz<d. y 9 A general solution to the Fourier transformed equatior(10f

In the two regions of the half-space, the equations of equili§a" Pe expressed &2,17)
rium in terms of displacements, in the absence of body forces U(yy,y,,z,d=ae"P7 (8)
are written as . . . .
with p anda satisfying the eigenrelation
[Q+p(R+RT)+p?T]a=0. 9)

)‘/I’he superscripf denotes matrix transpose, and

CijkiUk,;=0 1

whereC;;y is the elastic stiffness tensor of the half-space.

In this paper, the following eight different sets of boundar
conditions on the surface=0 ([2,34]) will be discussed. In other Qik=CijksNjNs, Rik=CijsNjMs, Tix=Cismjms (10)
words, the half-space Green'’s functions are required to satisfy om%h
of the eight sets of boundary conditions: wi

ny,N,,N3)=(cow,sind,0 11
2Thereafter, the scalar variablzandd will be used exclusively for the third field (M2:n2:na)=( ) ()
coordinatex; and the third source coordinatl, respectively. (my,m,,m3)=(0,0,1).
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Note that a polar coordinate transform, defined below, has beéring these conditions as well as the requirement that the solution
used: should vanish a$x| approaches infinity, the half-space Green’s

function in the Fourier transformed domain can be derived as
(12) ([2,17) follows:

Y= 7 sing. For O<z<d:

It is observed that Eq(9) is the Stroh eigenrelation for the ~ =i LAle Px 72Dy g™ —j LA e iPx 72
oblique plane spanned yandm defined in Eq(11). It has been UY1y2,zd) =7 "Ae Ya"—in "ACe )

y1= 7 cosd

also showr(see i.e.[2]) that its eigenvalues are either complex or Y(yl V2.z;d)= B<efip* ”(Z,d)>qw_§<e,3* ) q (23)
purely imaginary due to the positive requirement on the strain _ ) -
energy density. (Y1,Y2,2;d)=C(e P n(zfd>>q°°_ C(e Px77%)q,

Using the Stroh eigenvalues and the corresponding eigenvg&,—r 7>d:
tors, the traction vectdron thez=constant plane and the in-plane ’

stress vectos, namely Uy1.yo,z;d) = —ip LA(e P« 72 OYg* —j 5~ 1A(e 1P« 7%)q
t=(C1zaUi1, Cozalk,1 »CaaalUk,1) (13) Ty1,Y2,2;d)= —B(e P« 72 O\g* —B(e P+ 7)q  (24)
$=(011,012,02) qy1.Y,z:d) = — Ce~1Ps 12-dyg» — C(e~ 1P 7).

=(CraqUi,i »CaaaUk, » CoaqUi 1) (14)  where
can be expressed in the Fourier-transformed domaila3) 9" =ATfelVada (25)
T=—inbe P (15)  and
T=—j ncefipné (16) <e—ip* 7y = diag[e‘iplﬂz,e‘ipﬂz,e‘ipS”Z]. (26)
with The complex vectog in Egs.(23) and(24) is to be determined.
1 Motivated by the unified and elegant expression for the Green’s
b=(RT+pT)a=— —(Q+pR)a function in an anisotropic half-plane with general boundary con-
p (17) ditions ([2]), we have found that if we introduce a new matkix
c=Da defined as
The matrixD is defined by K=I,A+1B (27)

Ciiin.4+0C Cion +pC Ciian . 4+0C then the complex vectay for the eight different sets of boundary
1l P13 b1zl Phaszs baazalla Phiss conditions(2a—h) can be expressed, in a single vector equation, as
D=| C121aNatPC1213 C122:NaTPCr223 Ci22Net PCo2s3|.

—k-1 ip, 7d\ A T£alY d,
C21aNatPCo213 Coo2aNatPCo223  CopaNetPCozs ) a=K"K(e AT o ) _(28)
(18) It is also observed that the new matix like A andB, is inde-
endent of the radial variablg, an important feature to be used
ater. Equation28) is a very surprising result and will be the key
factor when deriving the physical-domain Green'’s functions.

If p;, &, andb; (j=1,2,...6) are the eigenvalues and the ass
ciated eigenvectors, we let

Imp;>0, pj+3=5j, a,-+3=§j, b 3=bj, Cj+3=€j Substituting Eq_.(28) into Egs. (23) and (24) _gives the h_alf-
] space Green’s displacements and stresses in the Fourier trans-
(J=1273 (19) formed domain, which possess the following important features:
A=[a;,a,,83], B=[Dby,b,,bs3], C=[c;,C;,C3] 1. As discussed by Pan and Yuptv], the first terms in Eqs.

{gg) and (24) are the Fourier transformed-domain Green'’s func-
tions for a homogeneous and anisotropic full space. Inverse of
these Green’s functions, i.e., the physical-domain solution, has
been obtained by Tewaf6], Ting and Leg37], Sales and Gray
[38], and Tonon et al[39] in an explicit form. Therefore, the
biTaj+a1-Tbj:5ij (20) inverse Fourier transform needs to be carried out only for the

. . second terms of the solution, which resemble the complementary
with &;; being the Kronecker delta. art of the Mindlin solution([13]).

It is worthwhile mentioning that should repeated elgenvalué)szl These unified Fourier transformed-domain solutioigs.

occur, i.e., for transversely isotropic or isotropic materials, aslighés) and (24)) include the eight different sets of the boundary
perturbation on the material stiffness tensor would make the nditions(2a-h). Thus, to solve for the Green’s function in an

distinct with negligible error([40]). Therefore, the unified and apisotropic half-space with different boundary conditions, one

simple solution presented in this paper can be applied to materignﬁy needs to assign the matrik defined by Eq.(28) with the

with any material symmetry. corresponding boundary conditions, a remarkably simple result
Half-Space Green’s Functions in the Fourier Trans- parallel to its two-dimensional counterpf®]).

formed Domain 3. In deriving the Fourier transformed-domain solution, the
matrix K has been assumed to be nonsingular. This can be proved
Of¥flowing a procedure similar to the corresponding two-
dimensional analysif 2]).

where Im stands for the imaginary part and the overbar deno
the complex conjugate. It is further assumed thatre distinct
and the eigenvectorg;, andb; satisfy the following normaliza-
tion relation:

For the anisotropic half-space, the general boundary conditi
(4) on the surface=0 and the conditior{6) at the source level
z=d, become, in the Fourier transformed domain, as

I, U+1i=0 (21)
and Generalized Mindlin Solution

Having obtained the Green’s functions in the Fourier trans-
~ - . (22) formed domain, we now apply the inverse Fourier transform to
t),—g- —t|,—q+ =feVala, Egs. (23) and (24). To handle the double infinite integrals, the

’l‘-j|z:d’:’l‘j|z:d4r
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polar coordinate transforr(il2) is introduced so that the infinite In Egs.(33a) and (33b), T*(x;d) and S”(x;d) are the full-space
integral with respect to the radial variablgcan be carried out Green’s stress tenso(39]), and
exactly. Thus, the final half-space Green’s function in the physical

domain, i.e., the generalized Mindlin solution, can be expressed as (Gy) (E’lK)ij
a sum of a Kelvin's part in an explicit form and a Mindlin’s 2iT o 75 0.d= Zd)co+ (xa—d)singTv2
complementary part in terms of a line integral oy8r2sx]. The {=piztpd=[(xa=dy) (Xo=dp)sindl} (34)

integral for the latter can actually be further reduced to an integral

over [0,7]. In what follows, we will use only the displacement Derivatives of the Green’s displacements and stre@sesor$
solution to illustrate the derivation and list the final results fowith respect to the source poind{,d,,d3) are found to be
other Green'’s functions. Assumption will be also made that the

source point is interior to the half-space. The limit case, namely, au(x;d) du*(x;d) 1 WXG ATq -
the corresponding Boussinesq soluti@rhen the source poirtt is ad; - ad; 22 0 2(9)) 4 (35)
on the surfacewill be discussed later.
Applying the inverse Fourier transform, the Green’s displace- =di & coY. coY
ment in Eq.(24) becomes {g1) = diagl cost, cosy, cos]
i _ (g,) =diag[sind,sing,sind] (36)
U(Xy,Xp,2;d) = — _2f f{rflA<e"p* (=) .
4 (gs)=diag[p;.p,.ps]
g e Xeda)Ye
X e e Seeydysdy, aToed) T (cd) 1 [7— ]
__f f{ —1A<e—ip*7;z> J ] 0
471_2 7
) 3(x;d)  9S”(x;d) 1 [(—
X ge %« daValdy,dy,. (29) = = | CG3(g;)ATd6d  (370)
1z ad; ad;  2m? ), T
The first integral in Eq(29) corresponds to the full-space Green'’s _
displacement that is already available in an explicit faf36— (K‘lK)ij
39)). Consequently, the inverse transform needs to be carried out (Gs)jj I Een 00— [(Xa— d1)COSH+ (Xp—dp)SInd]}°"
only for the second integral, or the complementary part. Denoting (38)

the full-space Green'’s function tensor by’(x;d) with its row

and column indices corresponding to the displacement componenEquations(31), (33), (35), and (37) are thecompleteGreen’s
and point-force direction, respectively, and introducing the poldunctions in an anisotropic half-space with general boundary con-
coordinate transform(12), the half-space Green'’s displacementlitions, or the generalized Mindlin solutions. It is emphasized that

tensor can be rewritten as these Green'’s functions are presented in a unified and very simple
. 5 form so that the eight different sets of the boundary conditions
. I ” = 5 (2a—h) are all included. To find the Green'’s functions for a given
d) — A ip, 7z
Uixid)=U"(xd) 471-2J0 dGJ’O Ale ) set of boundary conditions, one only needs to assign the corre-

_ spondingK matrix. For example, foK =B, the present half-space
X KK (P« 1)@ 7l(x1 = d1)cosi+ (xp=dp)SFIA T 5 Green'’s displacements and stresses will then reduce to the existing
solution ([2,4,16,17) for the traction-free boundary condition
(30)  case. since the present solution includes all the eight different sets

Since the matriced (alsoB andC) andK K are independent of Of the boundary conditions, it is therefore particularly convenient
the radial variabley, integral with respect ta; can therefore be When investigating the effect of different boundary conditions on

performed analytically, resulting in the following compact form: the problem solution based on the Green's function method.
Considering the complexity of the problem and yet the simplic-

. 1 (m— ity of the final physical-domain Green’s function expressions for
U(x;d)=U"(x;d) + 52| AGIA de (31)  all the eight sets of the boundary conditions, it is seen that, by
0 resorting to the Mindlin's superposition approach, the extended
wheré (three-dimensional Stroh formalism is indeed a very powerful
_ and elegant method. A direct application of the Fourier transform
(K‘lK)ij method, without employing the Stroh formalism, would require
—piz+p;d—[(x,—dy)cOSH+ (x,—dy)sind] (32) three-dimensional Fourier inverse integrals for the infinite Green’s
function, and four-dimensional Fourier inverse integrals for the
It is noticed that the integral interval in E(81) has been reduced complementary par{42]).
from [0,27] to [0,7r] based upon certain properties of the inte- Besides their concise expressions, the present half-space
grand as a function of ([41]), plus a new relation for the matrix Green’s functionggeneralized Mindlin solutionsalso possess the
K™K, i.e., K"K (#+m)=—K IK(#). Similar properties have following important features:
also been used to derive the Green’s stresses, derivatives o{
Green'’s displacements and stresses.
Following a similar procedure, the half-space Green’s stre
tensors can be derived and the results are listed as

(Goij=

. Similar to the bimaterial Green’s functions with perfectly
Bgnded interface[17]), the half-space Green’s displacements,
Stresses and derivatives of displacements, and derivatives of
stresses are inversely proportional to, respectively, a linear, qua-

1 (7— dratic, and cubic combination of the field and source coordinates.
T(x;d)=T*(x;d)+ Ff BG,ATdé (33a) This feature resembles the behavior of the full-space Green’s dis-
™ Jo placements(«1/r), stresses and derivatives of displacements
1 [ («1/r?), and derivatives of stresses{/r®), with r being the
S(x;d)=S"(x;d) + _zf CG,ATd#. (3%) distance between the source and field points.
27 Jo 2. Different to either the bimaterial Green'’s functions with per-

fectly bonded interface or the half-space Green’s functions with
3Thereafter, the indiceisand] take the range from 1 to 3. traction-free boundary condition®e) where the source poird
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can directly approach the interface or the surface for all the thr&@e second terms in these equations are proportional to one of the
point-force directions, the half-space Green’s functions with oth&; matrices defined by Eq$32), (34), and(38), which are again
seven sets of boundary conditions need special attention whegular and well defined. Therefore, in conclusion, the generalized
approaching the surface, a very interesting feature to be discusBedissinesq solutions with general boundary conditions are still
in the next section. well defined and regulaiif z#0).

3. Since the source point is not on the surface of the half-spaceTo enhance our understanding, we now offer a physical expla-
(i.e., d#0), the integrals in Egs(31), (33), (35, and(37) for nation to the generalized Boussinesq solutions in terms of the
performing the complementary part of the half-space Greereguivalent concept of the Green’s functions due to a point force
functions are regular and thus can be easily carried out by a stand an infinitesimal dislocation loop. Using the Betti’s reciprocity,
dard numerical integral method such as the Gauss quadratureit can be showri[44—48) that the following important equivalent

between the Green’s function of a unit point force and that of a
unit infinitesimal dislocation loop holdén a dimensionless forin

Generalized Boussinesq Solution

In the previous section, we derived the generalized Mindlin
solution in an anisotropic half-space with general boundary con-
ditions (2a—h). While the field pointx can be anywhere in the half while the right-hand side of Eq39) denotes the Green'’s stress
space, the source poiit is assumed to be interior to the half-componenti k) at the field pointx due to a point force in thith
space(i.e.,d#0). We recall that in the Mindlin solutioff13]) to  direction atd, the left-hand side denotes the displacement in the
an isotropic half-space with traction-free boundary conditiongh direction at the field point due to an infinitesimal dislocation
both field and source pointx andd) can be arbitrary, and the Joop, with index {,k) for the dislocation direction and the normal
corresponding Boussinesq solutiffor a point force in any direc- of the dislocation plane, at the source poinTherefore, the stress
tion on the surface; sef43]) can be directly reduced from Mind- field due to a point force can be equivalently considered as a
lin solution by taking the source point to the surface., d=0).  displacement field due to an infinitesimal dislocation loop. The
Furthermore, the special half-space surface Green's functipiiter is well defined with an apparent physical meaning: The dis-
where the field and source points are both on the suffaeez=0 placement response on the surface of the half-sgdsmced=0)
andd=0), can also be obtained either from Mindlin solution withdue to an interior infinitesimal dislocation loop at the source point
z=0 andd=0 for from Boussinesq solution witk=0. Actually, x (sincez+0). A very interesting consequence of Eg9) is that if
this feature also holds for the Mindlin solution in a transverselihe boundary condition is rigi€2a), then the stress field within
isotropic ([14]) and general anisotropic half-spa¢@,4,15-17).  the whole half-space, due to a point force in any direction on the
It is important at this point to emphasize that this feature is basgdrface, is zero! Furthermore, our numerical tests have shown that
upon the condition that the surface of the half-space is tractiofor such a case, the displacement field is indeed zero. The only
free(i.e., Eq.(2)). Then, it is natural to ask the question: Can onfonzero components are the derivatives of the displacement and
safely take the source point to the surfdte., d=0) in the gen-  stress with respect to the third source coordimatéhile whether
eralized Mindlin solution to obtain the corresponding generalizest not this special Boussinesq solutiowith rigid boundary con-
Boussinesq solution? The answer is yes! dition) has any application is unknown to the author, it is worth

First, it is observed that if théth component of the traction mentioning that these numerically obtained features on the dis-
vector is zero(i.e., t;=0) on the surface, with boundary condi-placements, stresses, and derivatives of displacements and stresses
tions in other two directions being properly given, then the corrgre consistent with those in the corresponding two-dimensional
sponding generalized Boussinesq solution exists for a surfaggf-plane([2]) where analytical solutions exist.
point force acting in theth direction. Furthermore, this solution  vet, another limit case is when the field and source points are
can be directly obtained from the generalized Mindlin solution bigoth on the Surfacé_e.’zzdzo)' The corresponding response is
letting d=0. We point out that the field point is assumed to bg special case of the surface Green function, and it is discussed
interior to the half-spacé.e.,z#0), leaving the case afl=0 and gnd presented in the following section.
z=0 being treated separately in the next section. It is very inter-
esting that Boussinedgee[43]) derived solutions in an isotropic
half-space subjected to two general types of boundary conditions )
to which the present boundary condition sé2d) and (2h) have Special Surface Green’s Function
direct connection. Therefore, for example, for the boundary con-wnen poth the field and source points are on the surfeee
dition set(2d), the generalized Boussinesq solution to a normgl_ y— ) the half-space Green’s functions are redugeam ei-
point force (i.e., in the xs-direction on the surface with fixed ther the generalized Mindlin or Boussinesq solutidosa particu-
tangential displacementge., u; =0 andu,=0) is well-defined |5 class of Green's functions called special surface Green's func-
and can be directly reduced from the generalized Mindlin solutigyns. Similar to the generalized Mindlin or Boussinesq solutions,
by takingd=0. _ these special surface Green’s functions can be expressed as a sum

_Now, let us examine the case where itfe component of the of the generalized Kelvin solution in an explicit form and a Mind-
displacement vector is zel@e., u;=0) on the surface, which is |iy's complementary part. For the complementary part, however,
also subjected to a surface point force in tttedirection at the - the jnvolved one-dimensional integral becomes singular and exists
origin. Since the displacement component0 is described on nly in the sense of finite-part principle val(e7—49). Assum-
the whole ‘surface while a concentrated traction componeRy that the field and source coordinates on the surfaceqrey)
ti(=—4(x)) is also given at the surface point=(0,0,0), the and (d,,d,), respectively, and expressing their relative position in
resulting boundary condition is over imposedkat(0,0,0! How-  terms™ of the polar coordinate as;—d,=r cosdy; X,—ds
ever, if we release the displacement conditiona{0,0,0 for Ui, —r sing,, then these special surface Green's functions are obtained
due to the fact that this is a concentrated force=at0,0,0, then  45([50))
the boundary value problem will be well defined. Actually, from a
mathematical point of view, i.e., from Eq631)—(38), it can be S
proved that wherd=0, these Boussinesq solutions are still well . - 1 |1 ("AKTKAT
defined and regular as long 2% 0. It is noted that the first terms Uid)=U"(xd) - 5— » Cod 6— 65) do
in Egs. (31), (33), (35), and (37) are the infinite-space Green’s
functions that are regular and become singular if and only if the -
field and source points are coincident to each offer, x=d). +i[AK1KAT],,_(,O+,,,2] (40)

u™(d;x) = afl(x;d) (39)

w
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Fig. 1 Variation of in-plane stress component o, along the line x=y on the surface z=0, caused by
the point force f =(0,0,1) and d =(0,0,1). Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions  (2a-h).

Mxd)  aUrcd) 1 (1 ”A?’lK(gJ-)ATde P 7 CK KAT ,
ad;  ad 2mr2 ) 7w, cof(6— 6p) Sxd)=S"0xd)+ 5720 7 o COS(0— by)
d[AK ~2K(g;)AT d[CK KAT
[ OI<gj> ] ) L . ] )
o 0=0y+ w2 o 0= 04+ w2
S Sd) _ ST (xd) 1 {2fﬂchlK<gj>ATde
1 1 (7BK “KA = 3
Py T e < ad; ad 2mr3| 7w ), cos(6—6;)
T(xd)=T*(x;d) + 27Tr2{7-rf0 c02(0—0y) i i B
o | dF[CK1K(gj)AT]
_d[BKIKAT a2
L (42)
4 0= 0+ /2 o
+[CK'K(g;)AT] ) (45)
w 1 T 0= 0o+ /2
aT(x;d)  aT*(x;d) 1 2 ("BK™K(gj)A
= + 34— de Several features regarding to the special surface Green’s func-
ad, ad; 2mr3| 7w, cos(0—6,) . ; 1 ,
] J tions with general boundary conditions are observed:

[d?2BK K (g;)AT]
+.[d20

+[BK ~K(g))AT]

(43)
0= 0+ ml2
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1. Similar to the interfacial Green’s functions in anisotropic
bimaterial with perfectly bonded interfa¢gs0]), the surface dis-
placements, stresses and derivatives of displacements, and deriva-
tives of stresses are inversely proportional, respectively, to?,
andr?, wherer is the distance between the field and source points
on the surface Z=d=0), a generalized consequence of self-
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Fig. 2 Variation of in-plane stress component o, along the line x=y on the surface z=0, caused by
the point force f =(0,0,1) at d=(0,0,1). Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions  (2a—h).

similarity [9,15]. For the special surface Green'’s function compaerial Green'’s functions of Pan and Yua7] for a perfectly
nent which is inversely proportional 1q r?, andr?, the corre- bonded interface by letting the elastic teng@yy, in the z<0
sponding finite-part integral has singular order of diécosd), half-space being much stiffer than that in the concerned half-space
two (1/cod6), and three (1/cd¥), respectively; therefore, the regionz>0. Although the isotropi€[19]) and transversely isotro-
special surface Green’s functions are completely determined Big ([18]) half-space Green’s solutions were studied before for the
the values on a unit circle on the surfaced=0 (with field point ~ Slippery surface boundary conditio(2h), no numerical result is

on the unit circle and source point at the center of the girdlee ~ available. Nevertheless, the present generalized Mindlin solutions
finite-part integrals can be carried out accurately and efficientiiave been self-checked for the boundary conditi@ag and(2e),
using an adaptive scheme proposed recently by Pan and Y: for two of the mixed boundary conditions, namely conditions
[50]. (2d) and(2h), to be discussed below.

2. For the traction-free boundary conditiofi2e), the corre- Boussinesdsee[43]) derived the solution in an isotropic half-
sponding special surface Green's function was discussed prespace when its boundary is subjected to two general types of
ously by Willis[9], Barnett and Loth§4], Barber and Sturl§l5], boundary conditions: namely, the normal tractigand tangential
Ting [2], Wu [16], and Pan and YuafL7]. Even for this case, the displacementsu, andu,), and normal displacement, and tan-
complete special surface Green'’s functions are not available in @@ntial tractions t, andty). If, for the former, we assume a unit

literature until very recently[50]). normal point force at the original and let the tangential displace-
3. All the special surface Green’s functions corresponding foents be zerdi.e., u,=u,=0), then the dilatation at any field
the boundary condition€a—d) and (2f-h) are new. point x=(x,y,z) of the half-space caused by this normal point

force is found to be

Numerical Examples

For an anisotropic half space with general boundary conditions A=uy;;=
(2a—h), no previous solution is available except for the traction- ’
free (2e) and rigid (2a) cases. While for the former, the Green’s
displacements and stresses were studied previously by Barrett aigtre\ and u are the two Lame constants.

Lothe[4], Tine[2], Wu [16], and Pan and Yuall7], the Green’s  Similarly, for the latter, if we assume a unit point force in the
functions for the latter can be numerically reduced from the bima-direction at the original, traction-free in thg-direction ¢,

—Z
2m(N+2u) C+y?+2%)%?

(46)
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Table 1 Reduced and normalized stiffness matrix Cj in the  cases if\=—0.026251. This result not only has validated some of

half-space the present Green’s functions, but also has shown that even the
10352019 0523837 0523837 .0 0 0 isotropic case can be easily handled by the present Stroh formal-
1153771 .0405268 .0 .0 .0 ism using a slightly perturbed elastic prope(ft#0]). For instance,
1153771 (-)%33333 ~8 -8 to use the present Stroh formalism for the isotropic material, an
' 0333333 .0 orthotropic material was assumed with one of the three Poisson’s
.0333333  ratios being perturbed te=0.2999 while the other two being kept

at v=0.3.

Next, the effect of different boundary conditions as well as
material anisotropy, on the surface stress field is studied for an
=0), and zero-displacement in tizedirection (,=0), then the orthotropic half-space. The stiffness matfix its reduced and
dilatation at any field point=(x,y,z) of the half-space caused by normalized form from Pan and Yan§50] is given in Table 1. For

this tangential point force is obtained as this example, the source is fixedds (0,0, while the field point
—X varies on the surface of the half-spacexas(x,x,0), with xe
A=u;; = I 2 (B2 (47)  [—1,1]. While Figs. 1 and 2 show the variation of the normal

stresseso,, and o, caused by a unit point force in the
z-direction, Figs. 3 and 4 show the variation of these normal
stresses €y, andoy,) due to a unit point force in the-direction.

It is seen that while Boussinesq soluti@t6) corresponds to the
present Green’s function with boundary conditi¢u), solution

(47) corresponds to that with the boundary conditi@h). For the ; ; .
former, the point force is in the-direction and for the latter it is in In these figures, results for the eight different sets of boundary

the x-direction. conditions (2a—h) are labeled as BC 1 and BC 8, respectively.

In the numerical testing, a Young’s modulEs-2.6 and Pois- These numerical results are believed to be new and possess the
son’s ratior=0.3 were assumed for the isotropic half-space. Fdellowing interesting features:
the field point at X,y,z)=(1/3,143,1/43), both Egs.(46) and . . .
(47) give Fihe sam(é ydilz)altagioh va\lqu\—)0.026252, v(vhil>e that 1. For the given mat.erla[orthotropllc), .the surface normal
predicted by the present Green’s function solutions for the tRi/€SSE¥xx anday, are either symmetri¢rigs. 1 and 2or anti-

0.02 T | T | I l I I I [ I | I I f I I | I
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20.02 | E— T T | l 1 I | | | I I l ! l 1 | |
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
x (=Y)

Fig. 3 Variation of in-plane stress component o, along the line x=y on the surface z=0, caused by
the point force f =(1,0,0) at d=(0,0,1). Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions  (2a-h).
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Fig. 4 Variation of in-plane stress component o, along the line x=y on the surface z=0, caused by
the point force f =(1,0,0) at d=(0,0,1). Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions  (2a-h).

symmetric(Figs. 3 and #4 a general feature also associated witpoint force in an anisotropic half-space with general boundary
the Mindlin solution in an isotropic half-space with traction-freeconditions, also called the generalized Mindlin solutions, are de-
boundary conditions. rived for the first time. Applying the Mindlin’s superposition
2. The effect of material anisotropy on the surface normahethod, the half-space Green's function is obtained as a sum of
stresses can be clearly see by comparing Fig. 1 to Fig. 2. For B¢ generalized Kelvin solutioGreen’s function in an aniso-
1 and BC 5, both normal stresseg, and o, should be the same tropic infinite space and a Mindlin’s complementary solution.
if the material is isotropic. However, the magnitudes are mugjyhile the generalized Kelvin solution is in an explicit form, the
different in the orthotropic half space far,, and oy, under Mindlin's complementary part is expressed in terms of a simple
boundary condition BC 1 or BC 5. line-integral over[0,7]. To handle the eight different sets of
3. ltis of particular interest to order the normal stressgs  poundary conditions, a new matri& a combination of the eigen-
andoy, at the surface point=0, i.e., the symmetric poinfrom  mairicesA andB, has been introduced so that the Green’s func-
the largest tensiomaximum to the largest compressidmini-  iqns corresponding to the eight different sets of boundary condi-
. S . Yions can be expressed in a unified form, including the existing
While for those in Fig. 1, the descent order is BC 1, BC 3, BC 4,5 tion free and rigid boundaries as the special cases.
?CB% E%gf%gf%gf%%%c é—‘;(,:fgr ;m%sg(ljnSFlﬁlisz’ogsirsg The corresponding generalizeq Boussinesq solu(mnmqurce
tﬁat the‘ boundary cc;nditioﬁ case’ BC(E’Id (2d)) is iﬁ neutral for oint on the surfac)ean_d the s_pe(:lal surface Green's functn()iur_s
which the normal stresses,, and o, aloﬁg the linex=y on the .bOth th_e source a_lnd f'EI.d points on the surjéuave been studied
surface are zero. While BC 1 and BC 3 predict a tensile and BC't?odeEja”S' In pda_lr_tlcular, ';.hzs. beﬁ_n proved thhat underl_thedggneral
BC 5-8 a compressive value for the normal stregs, BC 1 and . undary conditions studied in this paper, the generalized Bouss-
BC 2 predict a tensile and BC 3, BC 5-8 a compressive value foresd solution is still Wel!-deflned, along with a physmgl explqna—
the normal stress-... tion in terms of the equivalent concept of the Green’s functions
vy due to a point force and an infinitesimal dislocation loop.
A typical numerical example has been also presented for the
Green’s functions in an orthotropic half-space with the eight dif-
In this paper, the complete set of three-dimensional Greeri&rent sets of boundary conditions. The new numerical result il-
functions (displacements, stresses, and derivatives of displadestrates clearly the effect of the boundary conditions, as well as
ments and stresses with respect to the source poidit® to a material anisotropy, on the half-space Green’s stresses. It is be-

Conclusions
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lieved that the present Comp|ete Green’s function solutions shoul@4l S_hilkrot,_ L. E., and Srolovit_z, D J., 1998, “Ela_lstic Analysis of Finit_e Stiffness
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