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Abstract

In this paper, we derive, for the first time, the complete set of three-dimensional interfacial elastostatic

Green�s functions in anisotropic bimaterials, including displacements, stresses, and their derivatives with

respect to the source coordinates. We make use of the extended Stroh formalism and the Mindlin�s su-

perposition method, and express these Green�s functions in terms of one-dimensional finite-part integrals

with variable h over ½0; p�. Denoting by r the distance between the field and source points on the interfacial
planes, we show that the interfacial displacements, stresses and derivatives of displacements, and derivatives

of stresses are proportional, respectively, to 1=r, 1=r2, and 1=r3, while their finite-part integrals are, re-

spectively, in the orders of 1= cos h, 1= cos2 h, and 1= cos3 h. Because of the special dependence upon the

distance r, the interfacial Green�s functions on the whole interfacial plane are completely determined by

their values on the unit circle on the interfacial plane. An efficient and accurate method is also proposed for

the evaluation of the involved finite-part integrals, and some typical numerical examples are given to show

the general features of the interfacial Green�s functions. In particular, it is remarked that some of them are

discontinuous across the interface. These interfacial Green�s functions are essential to various integral-
equation methods in solving inclusion and interfacial crack problems in anisotropic bimaterials. Further-

more, they are also required in the study of strained quantum dot semiconductor devices should the Green�s
function method be applied.
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1. Introduction

It is well known that Green�s function is a key factor in various numerical methods based on the
integral-equation formulation. When two materials are involved, the corresponding Green�s
function is called bimaterial Green�s function. It is remarked that the bimaterial Green�s function
has certain distinct features as compared to the Green�s functions in a homogeneous domain. In
particular, depending upon the relative location of the source and field points, a total of four types
of Green�s functions are required in a bimaterial system [1,2], corresponding to the four different
combinations of the domains of the source and field points. When both the source and field points
are located on the interface of a bimaterial space, the corresponding Green�s functions are spe-
cifically called interfacial Green�s functions. However, even for this reduced case, all the four types
of the Green�s functions are still required (i.e., corresponding to the four interfacial planes). In
other words, the relative location of the source and field points (i.e., the material domain) must be
specifically defined even though some of the interfacial Green�s functions are independent of the
relative location of the source and field points. Interfacial Green�s functions have particular ap-
plications in problems involving, for example, interlaminar stresses [3,4], surface responses in
materials science [5,6] and earthquake/rock engineering [7–9], interfacial crack and contact [10–
13], and inverse evaluation of materials properties using experimental approaches [6]. More re-
cently, the Green�s function method has been directly applied to the study of the strained quantum
dot semiconductor devices [14]. Since a semiconductor device is commonly appeared as an an-
isotropic heterostructure (i.e., a layered structure) [15,16], the interfacial Green�s function solution
in anisotropic bimaterials is required should the Green�s function method be employed.

In two-dimensional (2D) and generalized plane strain or plane stress deformations, interfacial
Green�s functions in generally anisotropic bimaterials can be deduced directly from the cor-
responding bimaterial Green�s functions for which an exact closed-form solution exists [17].
Furthermore, Pan and Amadei [18] recently used the 2D interfacial Green�s functions in their
single-domain boundary integral-equation formulation for the analysis of 2D interfacial cracks.

In contrast to the 2D case, the corresponding 3D bimaterial Green�s functions are much more
complicated. To the best of the authors� knowledge, only for the case of isotropic material and of
transversely isotropic material with symmetry plane parallel to the interface, have the 3D bi-
material Green�s functions been developed in exact closed forms. Again, for these special cases,
the interfacial Green�s functions can be deduced directly from the bimaterial Green�s functions
by simply letting the source and field points approach the interface from either side of the in-
terface.

For 3D generally anisotropic bimaterials, Ting [17] derived the interfacial displacements and
tractions by applying the extended Stroh�s formalism and 2D Fourier transforms. Since the source
point is fixed on the interface z ¼ 0, the resulting Green�s functions in Ting [17] are independent of
the third source coordinate (i.e., the coordinate in the z-direction). Consequently, the derivatives
of these Green�s displacements and tractions with respect to the source coordinate cannot be
obtained.

More recently, Pan and Yuan [19] obtained the bimaterial Green�s functions in 3D anisotropic
bimaterials. By utilizing the Fourier inverse transform in the polar coordinate and combining with
Mindlin�s superposition method, they derived the physical-domain bimaterial Green�s functions as
a sum of a full-space Green�s function in explicit form and a complementary part in terms of a
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regular line integral over ½0; p�. For the source point in material 1, the bimaterial and interfacial
Green�s displacements and stresses were derived by Pan and Yuan [19].

The purpose of this paper is to derive the complete set of the interfacial Green�s functions in
anisotropic bimaterials, including displacements, stresses, and their derivatives with respect to the
source coordinates. For this goal, we first apply the inverse Fourier transforms to the bimaterial
Green�s functions in the Fourier transformed domain [17,19]. Derivatives of the resulting integ-
rands are then taken with respect to the source coordinates. After taking the derivatives, both the
source and field points are approached the interface (from their defined regions), and the corre-
sponding interfacial solutions are derived. To handle the Fourier inverse transforms, the polar
coordinate system is used [19]. In this system, integrals with respect to the infinite radial coor-
dinate can be carried out analytically, by making use of some of the generalized integral ex-
pressions for the Dirac�s delta function. In doing so, the final complete interfacial Green�s
functions in the physical domain can be expressed as 1D finite-part integrals over ½0; p�.

Denoting by r the distance between the field and source points on the interfacial plane, we
have showed that the present interfacial displacements, stresses and derivatives of displacements,
and derivatives of stresses are proportional, respectively, to 1=r, 1=r2, and 1=r3, with their finite-
part integrals being, respectively, on the orders of 1= cos h, 1= cos2 h, and 1= cos3 h. Owing to the
special dependence upon the distance r, the interfacial Green�s functions in any one of the four
entire interfacial planes (i.e., the combinations of z ¼ �0 and d ¼ �0 defined later) are
completely determined by their values on the unit circle on the corresponding interfacial
plane.

To evaluate the involved finite-part integral, an efficient and accurate numerical method is also
proposed. Numerical examples are presented to illustrate the variation of some of the interfacial
Green�s functions along the unit circles on the interface planes (with the field point on the circle
and source point at the center of the circle). These examples also clearly demonstrate the dis-
continuity features of some of the Green�s functions across the interface.

2. Problem description and bimaterial Greens functions in Fourier transformed domain

Interfacial Green�s function is a limit case of the corresponding bimaterial Green�s function.
Thus, to obtain the 3D interfacial Green�s function, one can start with the corresponding bi-
material Green�s function. However, taking the limit involves complicated mathematical opera-
tions, including integrals of generalized functions such as the Dirac�s delta function. So far, no
exact closed-from solution of such a 3D interfacial Green�s function has been reported in the
literature except for transversely isotropic and/or isotropic bimaterials.

We consider an anisotropic bimaterial full space where x3 > 0 and x3 < 0 are occupied by
generally distinct materials 1 and 2, respectively. The interface is coincident with the plane x3 ¼ 0.
The bimaterial system is loaded by a concentrated force f ¼ ðf1; f2; f3ÞT at d ¼ ðd1; d2; d3 � dÞ (the
source point) in either one of the materials (Fig. 1), with the superscript T denoting the transpose.
When the concentrated force f is applied, the equations of equilibrium are

rij;j ¼ �fidðx� dÞ; x 2 material 1

rij;j ¼ 0; x 2 material 2
ð1a;bÞ

E. Pan, B. Yang / Appl. Math. Modelling 27 (2003) 307–326 309



for the source point d in material 1, and

rij;j ¼ 0; x 2 material 1

rij;j ¼ �fidðx� dÞ; x 2 material 2
ð2a;bÞ

for the source point d in material 2.
To derive the f -induced bimaterial Green�s function at a field point x ¼ ðx1; x2; x3 � zÞ, the

problem domain is divided artificially into three regions. For the source point in material 1, i.e.,
d3 > 0, these three regions are: x3 > d3 (in material 1), 06 x3 < d3 (in material 1), and x3 < 0 (in
material 2). A similar division can be done for the source point in material 2, i.e., for d3 < 0. We
also note that the scalar variables z and d will be used exclusively for the third field coordinate x3
and third source coordinate d3, respectively.

The bimaterial Green�s functions are therefore required to satisfy the equations of equilibrium
(1) and (2), the continuity condition of displacement and traction across the interface (z ¼ 0),
continuity condition of displacement and jump condition of traction across the point source level
(z ¼ d), and the radiation condition as jxj approaches infinity [17,19]. To find the physical-domain
bimaterial Green�s functions, we first solve them in the Fourier transforms, as briefly presented
below.

Fig. 1. A bimaterial system with source point in material 1 (a) and material 2 (b), respectively.
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Defining the two-dimensional Fourier transforms for the horizontal field variables (x1; x2)
as

euukðy1; y2; zÞ ¼
Z þ1

�1

Z þ1

�1
ukðx1; x2; zÞeiyaxa dx1 dx2 ð3Þ

where the repeated Greek subscript a takes the conventional summation from 1 to 2, and i, except
for being used as an index, denotes the unit of imaginary number,

pð�1Þ. In the following de-
velopment, the polar coordinate expression for ya, defined as

y1 ¼ g cos h; y2 ¼ g sin h ð4Þ

will be also used.
Following Ting [17] and Pan and Yuan [19], the Fourier-domain general solutions of the

displacement, traction (i.e., the out-of-plane stress on the z ¼ constant plane), and in-plane stress
vectors in a homogeneous and anisotropic space can be derived as

euuðy1; y2; zÞ ¼ ae�ipgz

~ttðy1; y2; zÞ ¼ �igbe�ipgz

~ssðy1; y2; zÞ ¼ �igce�ipgz

ð5Þ

where the parameter p (also called eigenvalue), and vectors a, b (also called eigenvectors), and c
are functions of the anisotropic material properties of the solid and the polar angle h defined in (4)
[17,19], and ~tt and ~ss are the Fourier transforms of the traction and in-plane stress vectors defined
by

t � ðr13;r23; r33ÞT

s � ðr11;r12; r22ÞT
ð6a;bÞ

The eigenvectors aj, and bj are required to satisfy the following normalization relation [17,19].

bTi aj þ aTi bj ¼ dij ð7Þ
where the subscript j attached to the vectors a and b indicates the association of the eigenvectors
to the corresponding eigenvalue pj, and dij is the Kronecker delta.

Expressing the general solutions in each of the three regions as a combination of solutions
similar to (5), and making use of the continuity conditions at the interface, continuity/jump
conditions at the source level, and the condition that the solutions should vanish as jxj approaches
infinity, the bimaterial Green�s functions in the transformed domain can then be derived [17,
19].

For source point in material 1 (i.e., d > 0), the three-region solutions are:
For z > d (in material 1):

euu1ðy1; y2; z; dÞ ¼ �ig�1A1he�i�ppð1Þ� gðz�dÞi�qq11 � ig�1A1he�i�ppð1Þ� gzi�qq11
~tt1ðy1; y2; z; dÞ ¼ �B1he�i�ppð1Þ� gðz�dÞi�qq11 � B1he�i�ppð1Þ� gzi�qq11
~ss1ðy1; y2; z; dÞ ¼ �C1he�i�ppð1Þ� gðz�dÞi�qq11 � C1he�i�ppð1Þ� gzi�qq11

ð8Þ

E. Pan, B. Yang / Appl. Math. Modelling 27 (2003) 307–326 311



For 06 z < d (in material 1):

euu1ðy1; y2; z; dÞ ¼ ig�1A1he�ipð1Þ� gðz�dÞiq11 � ig�1A1he�i�ppð1Þ� gzi�qq11
~tt1ðy1; y2; z; dÞ ¼ B1he�ipð1Þ� gðz�dÞiq11 � B1he�i�ppð1Þ� gzi�qq11
~ss1ðy1; y2; z; dÞ ¼ C1he�ipð1Þ� gðz�dÞiq11 � C1he�i�ppð1Þ� gzi�qq11

ð9Þ

For z < 0 (in material 2):euu2ðy1; y2; z; dÞ ¼ ig�1A2he�ipð2Þ� gziq21
~tt2ðy1; y2; z; dÞ ¼ B2he�ipð2Þ� gziq21
~ss2ðy1; y2; z; dÞ ¼ C2he�ipð2Þ� gziq21

ð10Þ

Similarly, for the source point in material 2 (i.e., d < 0), the three-region solutions are:
For z > 0 (in material 1):

euu1ðy1; y2; z; dÞ ¼ �ig�1A1he�i�ppð1Þ� gzi�qq12
~tt1ðy1; y2; z; dÞ ¼ �B1he�i�ppð1Þ� gzi�qq12
~ss1ðy1; y2; z; dÞ ¼ �C1he�i�ppð1Þ� gzi�qq12

ð11Þ

For d < z6 0 (in material 2):

euu2ðy1; y2; z; dÞ ¼ �ig�1A2he�i�ppð2Þ� gðz�dÞi�qq12 þ ig�1A2he�ipð2Þ� gziq22
~tt2ðy1; y2; z; dÞ ¼ �B2he�i�ppð2Þ� gðz�dÞi�qq12 þ B2he�ipð2Þ� gziq22
~ss2ðy1; y2; z; dÞ ¼ �C2he�i�ppð2Þ� gðz�dÞi�qq12 þ C2he�ipð2Þ� gziq22

ð12Þ

For z < d (in material 2):

euu2ðy1; y2; z; dÞ ¼ ig�1A2he�ipð2Þ� gðz�dÞiq12 þ ig�1A2he�ipð2Þ� gziq22
~tt2ðy1; y2; z; dÞ ¼ B2he�ipð2Þ� gðz�dÞiq12 þ B2he�ipð2Þ� gziq22
~ss2ðy1; y2; z; dÞ ¼ C2he�ipð2Þ� gðz�dÞiq12 þ C2he�ipð2Þ� gziq22

ð13Þ

In (8)–(13), the dependence of the Green�s functions upon the source point is indicated by the
source point vector d. Also in these expressions, the subscripts 1 and 2, and (1) and (2) denote the
quantities in materials 1 and 2, respectively, and

q1j ¼ AT
j f eiyada ; �qq1j ¼ A

T

j f eiyada ; j ¼ 1; 2 ð14a;bÞ

he�ip�gzi ¼ diag½e�ip1gz; e�ip2gz; e�ip3gz� ð15Þ
Furthermore, the complex vectors �qq11 and q21 in (8)–(10) are given by

�qq11 ¼ G
ð1Þ
1 heip

ð1Þ
� gdiAT

1 f eiyada

q21 ¼ G
ð1Þ
2 heip

ð1Þ
� gdiAT

1 f eiyada

ð16Þ
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and �qq12 and q22 in (11)–(13) by

�qq12 ¼ G
ð2Þ
1 hei�pp

ð2Þ
� gdiAT

2 f eiyada

q22 ¼ G
ð2Þ
2 hei�pp

ð2Þ
� gdiAT

2 f eiyada

ð17Þ

In (16) and (17), the four G matrices are defined as

G
ð1Þ
1 ¼ A

�1

1 ðM1 þM2Þ�1ðM2 �M1ÞA1

G
ð1Þ
2 ¼ A�1

2 ðM1 þM2Þ�1ðM1 þM1ÞA1

ð18Þ

G
ð2Þ
1 ¼ A

�1

1 ðM1 þM2Þ�1ðM2 þM2ÞA2

G
ð2Þ
2 ¼ A�1

2 ðM1 þM2Þ�1ðM1 �M2ÞA2

ð19Þ

where Ma is the impedance tensor defined as

Ma ¼ �iBaA
�1
a ða ¼ 1; 2Þ ð20Þ

with a ¼ 1 and 2 denoting quantities in materials 1 and 2 respectively, and the matrices A, B, and
C in (8)–(20) being defined as

A ¼ ½a1; a2; a3�; B ¼ ½b1; b2; b3�; C ¼ ½c1; c2; c3� ð21Þ
In addition, in (8)–(13), (18) and (19), the superscript �)1� denotes the matrix inverse and the over
bar the complex conjugate.

3. Interfacial Greens functions in physical domain

To derive the physical-domain interfacial Green�s functions, we first apply the inverse Fourier
transforms to the Fourier-domain solutions (8)–(13), and then take the derivatives of the solutions
with respect to the source coordinates (d1; d2; d3 � d). After taking the derivatives, the source and
field points can both approach the interface (from their defined regions). Similar to the procedure
of deriving the bimaterial Green�s functions, the polar coordinate transform defined by (4) can be
introduced so that the infinite integral with respect to the radial variable can be carried out an-
alytically. Consequently, the final interfacial Green�s functions in the physical domain can be
expressed in terms of 1D finite-part integrals over ½0; p�.

As an illustration, we derive the physical-domain interfacial Green�s displacement and its de-
rivatives with respect to the source coordinates in region z > d of material 1 due to a point force
vector f in material 1. All other Green�s functions can be derived similarly.

Applying the Fourier inverse transform, the bimaterial Green�s displacement in the physical
domain, for both the field point x ¼ ðx1; x2; zÞ and source point d ¼ ðd1; d2; dÞ in material 1, can be
expressed as

u1ðx; dÞ ¼ � i

4p2

Z þ1

�1

Z þ1

�1
g�1A1he�i�ppð1Þ� gðz�dÞi�qq11 e�iðxa�daÞya

n o
dy1 dy2

� i
4p2

Z þ1

�1

Z þ1

�1
g�1A1he�i�ppð1Þ� gzi�qq11e�iðxa�daÞya

n o
dy1 dy2 ð22Þ
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The first integral in this equation corresponds to the full-space Green�s displacement that is
available in an explicit form [20,21]. Consequently, the inverse transform needs to be carried
out only for the second regular integral, or the complementary part. Denoting the full-space
Green�s function by u11 ðx1; x2; zÞ and making use of the polar coordinate transform (4), (22) then
becomes

u1ðx; dÞ ¼ u11 ðx; dÞ �
i

2p2

Z p

0

dh
Z 1

0

A1he�i�ppð1Þ� gziG ð1Þ
1 heip

ð1Þ
� gdie�ig½ðx1�d1Þ cos hþðx2�d2Þ sin h�AT

1 dg

� �
f

ð23Þ
where the periodicity of the involved integrands has been utilized to reduce the angular integral
from ½0; 2p� to ½0;p� [22].

Now, taking the derivative of the Green�s displacement with respect to the source coordinates
(d1; d2; d3 � d), we obtain 3

ou1ðx; dÞ
odj

¼ ou11 ðx; dÞ
odj

þ 1

2p2

Z p

0

dh
Z 1

0

gA1he�i�ppð1Þ� gziG ð1Þ
1 gð1Þj

D E
heip

ð1Þ
� gdie�ig½ðx1�d1Þ cos hþðx2�d2Þ sin h�AT

1 dg

� �
f

ð24Þ
where

gð1Þ1

D E
¼ diag½cos h; cos h; cos h�

gð1Þ2

D E
¼ diag½sin h; sin h; sin h�

gð1Þ3

D E
¼ diag½pð1Þ1 ; pð1Þ2 ; pð1Þ3 �

ð25Þ

for the source point in material 1. For the source point in material 2, we have

gð2Þ1

D E
¼ diag½cos h; cos h; cos h�

gð2Þ2

D E
¼ diag½sin h; sin h; sin h�

gð2Þ3

D E
¼ diag½�ppð2Þ1 ; �ppð2Þ2 ; �ppð2Þ3 �

ð26Þ

Let the field level z and source level d approach the interface from above, (23) and (24) then can
be simplified as

u1ðx; dÞ ðz;dÞ¼ð0þ;0þÞ

			 ¼ u11 ðx; dÞ ðz;dÞ¼ð0þ;0þÞ

			
� i

2p2

Z p

0

dh
Z 1

0

A1G
ð1Þ
1 e�ig½ðx1�d1Þ cos hþðx2�d2Þ sin h�AT

1 dg

� �
f ð27Þ

3 Thereafter, the Latin index j takes range from 1 to 3, and the Greek index a from 1 to 2.
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ou1ðx; dÞ
odj ðz;dÞ¼ð0þ;0þÞ

			 ¼ ou11 ðx; dÞ
odj ðz;dÞ¼ð0þ;0þÞ

			
þ 1

2p2

Z p

0

dh
Z 1

0

A1G
ð1Þ
1 gð1Þj

D E
AT

1 ge
�ig½ðx1�d1Þ cos hþðx2�d2Þ sin h� dg

� �
f

ð28Þ
Again, the first term on the right-hand side of (27) and (28) is the infinite Green�s function that can
be calculated very accurately and efficiently using an analytical approach without numerical in-
tegration [21]. Therefore, what we need to take care of is the integral of the second term on the
right-hand side of (27) and (28). It is obvious that these integrals exist only in the sense of the
generalized function. Furthermore, these integrals are very complicated to carry out and require
integration by part for the Dirac�s delta functions expressed asZ 1

0

e�ikg dg ¼ � i

k
þ pdðkÞ ð29Þ

Z 1

0

ge�ikg dg ¼ � 1

k2
þ ip

ddðkÞ
dk

ð30Þ

Z 1

0

g2e�ikg dg ¼ 2i

k3
� p

d2dðkÞ
dk2

ð31Þ

To simplify the final expression, another polar coordinate transform (for the horizontal field and
source points), as defined below, is also used.

x1 � d1 ¼ r cos h0; x2 � d2 ¼ r sin h0 ð32Þ
Therefore, by carrying out the integrals with respect to g (including integration by part), the

interfacial Green�s displacement and its derivative with respect to the source coordinates (with
both the field and source points in material 1) can finally be derived, which are expressed in terms
of 1D finite-part integrals over ½0;p�. In the following, we only present the final expressions for all
the interfacial Green�s functions while in Appendix A the key steps involved in obtaining the
derivative of the Green�s tractions with respect to the source coordinates are briefly outlined. It is
noticed from Appendix A that the procedure of obtaining the derivatives of the Green�s tractions
is very complicated. Using the corresponding capital letter for the Green�s tensor (3� 3 matrix)
with the row or the first index for the component of the physical quantity and the column or the
second index for the point force direction, we then have

U xð1Þ; dð1Þ
 �
¼ U1 xð1Þ; dð1Þ
 �

� 1

2pr
1

p

Z p

0

A1G
ð1Þ
1 AT

1

cosðh � h0Þ
dh

(
þ i A1G

ð1Þ
1 AT

1

h i
h¼h0þp=2

)
ð33Þ

oU xð1Þ; dð1Þ
 �
odj

¼
oU1 xð1Þ; dð1Þ
 �

odj
� 1

2pr2
1

p

Z p

0

A1G
ð1Þ
1 gð1Þj

D E
AT

1

cos2ðh � h0Þ
dh

8<:
� i

d A1G
ð1Þ
1 gð1Þj

D E
AT

1

h i
dh h¼h0þp=2

			
9=; ð34Þ
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where ðxð1Þ; dð1ÞÞ indicates that the two-point interfacial Green�s functions are for the field point x
in material 1 and source point d in material 1. While the integral in (33) is Cauchy-type singular,
that in (34) is hypersingular. Numerical treatment of these integrals requires special attention [23–
25], which will be discussed in the next section. We mention that Pan and Yuan [19] derived a
similar expression for the interfacial Green�s displacement (33), which is an extension of the
surface Green�s displacement on the surface of an anisotropic half-space derived previously by
Barnett and Lothe [5], Ting [17], and Wu [26].

Following the same procedure, the corresponding stress and stress derivatives are found to be

T xð1Þ; dð1Þ
 �
¼ T1 xð1Þ; dð1Þ
 �

þ 1

2pr2
1

p

Z p

0

B1G
ð1Þ
1 AT

1

cos2ðh � h0Þ
dh � i

d B1G
ð1Þ
1 AT

1

h i
dh

						
h¼h0þp=2

8><>:
9>=>;

ð35Þ

oT xð1Þ; dð1Þ
 �
odj

¼
oT1 xð1Þ; dð1Þ
 �

odj
þ 1

2pr3
2

p

Z p

0

B1G
ð1Þ
1 gð1Þj

D E
AT

1

cos3ðh � h0Þ
dh

8><>:
þ i

d2 B1G
ð1Þ
1 gð1Þj

D E
AT

1

h i
d2h

þ B1G
ð1Þ
1 gð1Þj

D E
AT

1

h i24 35						
h¼h0þp=2

9>=>; ð36Þ

S xð1Þ; dð1Þ
 �
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þ 1
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0
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1 AT

1
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dh � i

d C1G
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1

h i
dh
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odj

¼
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odj
þ 1
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D E
AT

1
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1

h i
d2h

24 þ C1G
ð1Þ
1 gð1Þj

D E
AT

1

h i35						
h¼h0þp=2

9>=>; ð38Þ

It is observed that the derivative of stresses ((36) and (38)) involves a third-order singularity.
Although this high-order singularity was previously discussed mathematically, yet its direct
connection to a physical quantity has never been appeared in the literature. Here we have shown,
for the first time, that a third-order singular integral can be physically connected to the derivative
of the interfacial stress.
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Similarly, for the field point in material 2 and source point in material 1, we obtain 4:

U xð2Þ; dð1Þ
 �
¼ U xð1Þ; dð1Þ
 �

;
oU xð2Þ; dð1Þ
 �

odj
¼

oU xð1Þ; dð1Þ
 �
odj

T xð2Þ; dð1Þ
 �
¼ T xð1Þ; dð1Þ
 �

;
oT xð2Þ; dð1Þ
 �

odj
¼

oT xð1Þ; dð1Þ
 �
odj

ð39Þ
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¼ � 1
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1
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dh
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9>=>; ð41Þ

When the field point is in material 1 and source point in material 2, we have

U xð1Þ; dð2Þ
 �
¼ U xð1Þ; dð1Þ
 �

;
oU xð1Þ; dð2Þ
 �

oda
¼

oU xð1Þ; dð1Þ
 �
oda

T xð1Þ; dð2Þ
 �
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 �

;
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 �

oda
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 �
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 �
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h i35						
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9>=>; ð44Þ

4 If x ¼ d, i.e., the field and source points coincide with each other, the traction vector and its derivative then

experience a jump across the interface, characterized by the delta function dðx� dÞ and its derivative. This feature is

similar to that of the corresponding Green�s traction and its derivative in a homogeneous and anisotropic infinite space.
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oS xð1Þ; dð2Þ
 �
od3

¼ 1
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A

T
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9>=>; ð45Þ

Finally, when the field point is in material 2 and source point in material 2, these interfacial
Green�s functions are:

U xð2Þ; dð2Þ
 �
¼ U xð1Þ; dð2Þ
 �

;
oU xð2Þ; dð2Þ
 �

odj
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 �
odj
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9>=>; ð47Þ

Eqs. (33)–(47) are the complete interfacial Green�s functions in anisotropic bimaterials, including
the displacements, stresses, and their derivatives with respect to the source coordinates. These
Green�s functions are expressed in terms of finite-part integrals over ½0; p� with different orders of
singularities, and possess the following important features:

1. Similar to the Green�s functions in an anisotropic infinite space, the interfacial displacements,
stresses and derivatives of displacements, and derivatives of stresses are inversely proportional,
respectively, to r, r2 and r3 where r is the distance between the field and source points on the
interfacial plane (z ¼ d ¼ 0).

2. For the interfacial Green�s functions that are inversely proportional to r, r2 and r3 their corre-
sponding finite-part integral have singular orders of one (1= cos h), two (1= cos2 h), and three
(1= cos3 h), respectively.

3. Similar to the Green�s functions in an anisotropic infinite space where the Green�s functions in
the whole space are completely determined by their values on a unit sphere (with field point on
the unit sphere and source point at the center of the sphere), the interfacial Green�s functions are
completely determined by their values on the unit circles on the corresponding interfacial plane
z ¼ 0� and d ¼ 0� (with field point on the unit circle and source point at the center of the circle).
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4. Unlike the Green�s displacement tensor in an anisotropic infinite space, which is symmetric, the
interfacial Green�s displacement tensor is not symmetric.

4. Numerical scheme on the calculation of finite-part integrals

Having derived the interfacial Green�s functions and discussed their associated features, we now
investigate how to carry out the 1D finite-part integration. Here, we present an adaptive integral
scheme developed recently by the authors, with which the interfacial Green�s functions can be
evaluated accurately and efficiently.

Observation of the interfacial Green�s functions reveals that each of them can be expressed as a
sum of a finite-part integral and a constant term evaluated at h ¼ h0 þ p=2. Therefore, to calculate
the interfacial Green�s functions, we only need to apply a suitable integral scheme for the eval-
uation of the finite-part integral. Furthermore, it is observed that there are, in general, three types
(corresponding to the order n ¼ 1; 2; 3) of the finite-part integrals, represented as

Fnðh0Þ ¼
Z p

0

hnðhÞ
cosnðh � h0Þ

dh; n ¼ 1; 2; 3 ð48Þ

Introducing a new variable / ¼ h � h0 � p=2 and utilizing the properties of the involved in-
tegrands, we can change (48) into

Fnðh0Þ ¼ ð�1Þn
Z p=2

�p=2

hnðu þ h0 þ p=2Þ
sinn u

du; n ¼ 1; 2; 3 ð49Þ

It is noted that, similar finite-part integrals (for n ¼ 1 and 2) were used by Martin [27] when
solving a flat crack problem in a 3D isotropic elastic solid. Using the singularity-subtraction
method [23–25], these finite-part integrals can be regulated and expressed in the following in-
tegrable forms.

F1ðh0Þ ¼ �
Z p=2

�p=2

h1ðu þ h0 þ p=2Þ � h1ðh0 þ p=2Þ
sinu

du

F2ðh0Þ ¼
Z p=2

�p=2

h2ðu þ h0 þ p=2Þ � h2ðh0 þ p=2Þ
sin2 u

(
� h02ðh0 þ p=2Þ

sinu

)
du

F3ðh0Þ ¼ �
Z p=2

�p=2

h3ðu þ h0 þ p=2Þ � h3ðh0 þ p=2Þ
sin3 u

(
� h03ðh0 þ p=2Þ

sin2 u
� h003ðh0 þ p=2Þ

2 sinu

)
du

ð50a;b; cÞ

Where the primes 0 and 00 denote the first and second derivatives of the associated functions. Also,
in deriving (50a–c), the following finite-part integral results, which can be verified numerically
using the definition for the finite-part integral [23–25], have been used:Z p=2

�p=2

1

sinn u
du ¼ 0; n ¼ 1; 2; 3 ð51Þ
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Since the integrals in (50a–c) are all regular, they can be easily calculated by any numerical
quadrature. Here, the adaptive integral scheme with quadratic interpolation in each subinterval
[28] is used to calculate these integrals accurately.

5. Numerical examples

Each of the interfacial Green�s functions derived in this paper has been tested for different
material pairs. These include the transversely isotropic and isotropic bimaterials, anisotropic
infinite space (materials 1 and 2 have the same elastic constants), and anisotropic half-space (one
of the material domains has zero elastic constants). In the following, one of the material pairs is
selected for illustration.

Material 1 (z > 0 domain) is orthotropic with E1 ¼ 206:84 GPa, E2 ¼ E3 ¼ 20:684 GPa,
G13 ¼ G23 ¼ G12 ¼ 6:895 GPa, and m13 ¼ m23 ¼ m12 ¼ 0:336 [29]. When converted to the stiffness
matrix Cij and normalized with respect to E1 we obtained the stiffness matrix Cij given in Table 1.
A fully popular stiffness matrix is used for material 2 (z < 0 domain) and its elements are listed in
Table 2. This stiffness matrix was obtained by rotating the symmetric plane of a transversely
isotropic material with respect to its material coordinates [21].

With the material properties given in Tables 1 and 2 and the adaptive numerical integration
scheme, we have calculated the interfacial Green�s functions (33)–(47) for the field points on the
unit circle and source point at the center of the circle (i.e., r ¼ 1). We mention that no specific unit
is given for the interfacial Green�s functions presented below.

Figs. 2 and 3 show the variation of the interfacial displacements, tractions, and their derivatives
on the unit circle. The derivative is taken with respect to the source coordinate in the x-direction
(i.e., with respect to d1). In the legend of these figures, the first and second subscripts are the
component of displacement or traction, and the direction of the point force, respectively. The
definition of the traction components is given by (6a), that is

Table 1

Stiffness matrix Cij in material 1 (z > 0 domain)

1.0352019 0.0523837 0.0523837 0.0 0.0 0.0

– 0.1153771 0.0405268 0.0 0.0 0.0

– – 0.1153771 0.0 0.0 0.0

– – – 0.0333333 0.0 0.0

– – – – 0.0333333 0.0

– – – – – 0.0333333

Table 2

Stiffness matrix Cij in material 2 (z < 0 domain)

1.45 0.99 0.96 )0.02 )0.31177 )0.15588
– 1.85 0.96 )0.22 )0.10392 )0.19052
– – 1.28 )0.16 )0.27713 0.0

– – – 0.32 0.0 )0.10392
– – – – 0.32 )0.02
– – – – – 0.35
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ðTx; Ty; TzÞ � ðr13; r23;r33Þ ð52Þ
We remark that these interfacial Green�s functions (displacements and tractions) and their

derivatives with respect to the horizontal source coordinate are the same on both sides of the
interface (for z ¼ 0� and d ¼ 0�). In other words, they are continuous across the interface.
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Fig. 2. Interfacial displacements and their derivatives with respect to the source coordinate in the x-direction (i.e., with

respect to d1).
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Fig. 3. Interfacial tractions and their derivatives with respect to the source coordinate in the x-direction (i.e., with

respect to d1).
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Depicted in Figs. 4 and 5 are the variation of the in-plane stresses and their derivatives on the
unit circle (for d ¼ 0�). Again, the derivative is taken with respect to the source coordinate in the
x-direction (i.e., with respect to d1). Similar to Fig. 3, the second subscript in the legend denotes
the direction of the point force, and the first subscript is for the component of the in-plane stress
vector defined by (6b), that is

ðSx; Sy ; SzÞ � ðr11; r12; r22Þ ð53Þ
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Fig. 4. Interfacial in-plane stresses above (z ¼ 0þ) and below (z ¼ 0�) the interface.
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Fig. 5. Derivatives of the interfacial in-plane stresses above (z ¼ 0þ) and below (z ¼ 0�) the interface, with respect to

the source coordinate in the x-direction (i.e., with respect to d1).
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It is obvious that the in-plane stresses just above (z ¼ 0þ) and below (z ¼ 0�) the interface are
completely different and therefore the vertical component (z) of the field point needs to be clearly
distinguished when discussing the interfacial in-plane stresses.

Finally, Figs. 6 and 7 show the variation of the derivatives of the in-plane stresses on the unit
circle. The derivative is now taken with respect to the source coordinate in the z-direction (i.e.,
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Fig. 6. Derivatives of the interfacial in-plane stresses with respect to the source coordinate in the z-direction above the

interface (d ¼ 0þ) with z ¼ 0þ for results above the interface, and z ¼ 0� for these below the interface.
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Fig. 7. Derivatives of the interfacial in-plane stresses with respect to the source coordinate in the z-direction below the

interface (d ¼ 0�) with z ¼ 0þ for results above the interface, and z ¼ 0� for these below the interface.
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with respect to d3 � d). While in Fig. 6, the derivatives are carried out for the source point just
above the interface (d ¼ 0þ), in Fig. 7, they are for the source point just below the interface
(d ¼ 0�). These two figures illustrate the dependence of the derivatives of the interfacial Green�s
functions in general, and of the in-plane stresses in particular, upon the third source coordinate d
as related to the interface.

6. Conclusions

In this paper, we have derived, for the first time, the complete three-dimensional interfacial
Green�s functions in anisotropic bimaterials, which include the displacements, stresses, and their
derivatives with respect to the source coordinates. They are expressed in terms of 1D finite-part
integrals over ½0; p� with the regular part of their integrands consisting of the extended Stroh
eigenvalues and eigenvectors. Four important features associated with these interfacial Green�s
functions have been observed:

1. The interfacial displacements, stresses and derivatives of displacements, and derivatives of
stresses are inversely proportional, respectively, to r, r2 and r3 where r is the distance between
the field and source points on the interfacial plane (z ¼ d ¼ 0).

2. For the interfacial Green�s functions that are inversely proportional to r, r2 and r3 their corre-
sponding finite-part integrals have singular orders of one (1= cos h), two (1= cos2 h), and three
(1= cos3 h), respectively.

3. The interfacial Green�s functions are completely determined by their values on the unit circles
on the corresponding interfacial planes z ¼ 0� and d ¼ 0� (with the field point on the unit cir-
cle and the source point at the center of the circle).

4. The interfacial Green�s displacement tensor is not symmetric.

We further point out that although the third-order singularity (1= cos3 h ) was previously dis-
cussed mathematically, no physical quantity has ever been associated to it. In this paper, we have
shown that in the derivation of the derivative of the interfacial Green�s stresses in anisotropic
bimaterials, the third-order singularity (1= cos3 h ) is involved.

To evaluate the involved 1D finite-part integrals, an efficient and accurate numerical method
has also been proposed. Numerical examples are presented, illustrating the variation of some of
the interfacial Green�s functions along the unit circles on the corresponding interface planes.
These examples clearly demonstrate the discontinuity features of some of the Green�s functions
across the interface.
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Appendix A. Derivative of the interfacial traction with respect to the source coordinates

First, we take the derivative of the bimaterial traction (when both the source and field points
are in material 1, i.e., z > 0 and d > 0) and then take the limit to find

ot1ðx; dÞ
odj

				
ðz;dÞ¼ð0þ;0þÞ

¼ ot11 ðx; dÞ
odj

				
ðz;dÞ¼ð0þ;0þÞ

� i

4p2

Z p

0

dh
Z 1

0

B1G
ð1Þ
1 hgð1Þj iAT

1 g
2e�ig½ðx1�d1Þ cos hþðx2�d2Þ sin h� dg

� �
f

ðA:1Þ
where hgð1Þj i are the three diagonal matrices defined by Eq. (25), and the first term on the right-
hand side has been replaced by the infinite-space Green�s function [21]. Since an explicit expres-
sion for the infinite-space Green�s function is available [21], we only need to study the second term
on the right-hand side of (A.1). Therefore, the infinite-space Green�s function will be omitted in
the following discussion for brevity.

Now, we make use of the polar coordinate transform (32) to arrive at the following expression

ot1ðx; dÞ
odj

				
ðz;dÞ¼ð0þ;0þÞ

¼ � i

4p2

Z p

0

dhB1G
ð1Þ
1 hgð1Þj iAT

1

Z 1

0

g2e�igr cosðh�h0Þdg

� �
f ðA:2Þ

where we have also used the fact that all the matrices are independent of g. To carry out the
integral with respect to g, one needs to use (31), which in the present case, isZ 1

0

g2e�igr cosðh�h0Þ dg ¼ 2i

r3 cos3ðh � h0Þ
� pd00½r cosðh � h0Þ� ðA:3Þ

Therefore, Eq. (A.2) becomes

ot1ðx; dÞ
odj

				
ðz;dÞ¼ð0þ;0þÞ

¼ � i

4p2

Z p

0

B1G
ð1Þ
1 hgð1Þj iAT

1 dh
2i

r3 cos3ðh � h0Þ

��
� pd00½r cosðh � h0Þ�

��
f

ðA:4Þ
In order to finally find the derivative of the interfacial traction with respect to the source co-

ordinates, one needs to find the contribution from the delta function. It can be shown that for a
function hðhÞ 2 C2 the following relation holds,Z p

0

hðhÞd00½r cosðh � h0Þ�dh ¼ 1

r3
½h00ðhÞ þ hðhÞ�

				
h¼h0þp=2

ðA:5Þ

Making use of this relation, we finally find the derivative of the interfacial traction with respect to
the source coordinates, as given by Eq. (36).
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