
with
nd the
fect-
rfect
ified
rfect
r the
n be

and

rial
rface
rface
ly the
t and
r the
rved
ome
terest
can

truc-
E. Pan1

Structures Technology, Inc.,
543 Keisler Drive, Suite 204,

Cary, NC 27511
Mem. ASME

Three-Dimensional Green’s
Functions in Anisotropic Elastic
Bimaterials With Imperfect
Interfaces
In this paper, three-dimensional Green’s functions in anisotropic elastic bimaterials
imperfect interface conditions are derived based on the extended Stroh formalism a
Mindlin’s superposition method. Four different interface models are considered: per
bond, smooth-bond, dislocation-like, and force-like. While the first one is for a pe
interface, other three models are for imperfect ones. By introducing certain mod
eigenmatrices, it is shown that the bimaterial Green’s functions for the three impe
interface conditions have mathematically similar concise expressions as those fo
perfect-bond interface. That is, the physical-domain bimaterial Green’s functions ca
obtained as a sum of a homogeneous full-space Green’s function in an explicit form
a complementary part in terms of simple line-integrals over [0,p] suitable for standard
numerical integration. Furthermore, the corresponding two-dimensional bimate
Green’s functions have been also derived analytically for the three imperfect inte
conditions. Based on the bimaterial Green’s functions, the effects of different inte
conditions on the displacement and stress fields are discussed. It is shown that on
complementary part of the solution contributes to the difference of the displacemen
stress fields due to different interface conditions. Numerical examples are given fo
Green’s functions in the bimaterials made of two anisotropic half-spaces. It is obse
that different interface conditions can produce substantially different results for s
Green’s stress components in the vicinity of the interface, which should be of great in
to the design of interface. Finally, we remark that these bimaterial Green’s functions
be implemented into the boundary integral formulation for the analysis of layered s
tures where imperfect bond may exist.@DOI: 10.1115/1.1546243#
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Introduction
Interface modeling has been the subject of numerous studie

material science and composite structure. The importance o
searches in this topic cannot be overemphasized as it is dire
related to the prediction of the overall material properties, dela
nation, transmission of force, etc.~see, e.g.,@1–13#!. The most
ideal interface model, as is well known, is the so-called perfe
bond interface where the displacements and tractions are con
ous across the interface. However, interfaces are seldom pe
and therefore various imperfect models have been introdu
such as the three-phase and linear spring-like models~see, i.e.,
@14–16#!. Although these models are more capable of repres
ing the imperfect interface, the associated Green’s functions
very difficult to derive ~@14–17#!. Perhaps the most frequentl
studied imperfect interface model is the smooth-bond interf
where the normal components of the displacement and traction
continuous across the interface while the shear traction com
nents are zero on the interface from both sides of the bimate
~see, e.g.,@1,2,18#!. This model is much simpler than the thre
phase and linear spring-like models, and has been used to des
the connection between two materials at elevated tempera
~@17#!, and to model the bone implants in biomechanics~@19#!.

1Currently at the Department of Civil Engineering, University of Akron, Akro
OH 44325-3905. e-mail: pan2@uakron.edu
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Recently, Shuvalov and Gorkunova@18# studied the correspond
ing wave propagation in anisotropic bimaterials with smooth-bo
interface where they found certain special features associated
the smooth-bond interface. Besides various homogeneous i
face models mentioned above, Ru@20,21# has recently proposed
an inhomogeneously imperfect interface model where the in
face parameters are functions of the position variable along
interface, instead of constants along the whole interface for
homogeneous case.

While various interface-related studies have been carried
for two-dimensional deformation problems, relatively very fe
literatures are available for the corresponding three-dimensio
deformations, especially with a planar interface. An apparent
son is that most three-dimensional problems are complicated
need to be solved numerically. Since singular stress field is u
ally associated with problems involving interface, a more suita
numerical tool would be the boundary integral equation meth
~i.e., @22#!. However, successful application of the boundary in
gral equation method depends upon the variability of the rela
Green’s functions. Unfortunately, as far as the three-dimensio
bimaterial Green’s functions with imperfect interface are co
cerned, only those with the smooth-bond interface for isotro
@1,23,24#! and transversely isotropic~@25#! materials were ob-
tained previously. More recently, Yu@14# introduced a dislocation-
like model where the interface condition is similar to the line
spring-like model but with the displacement on one side of
interface being assumed to be linearly proportional to that on
other side of the interface. This dislocation-like model enjoys
least two advantages:~1! The interface shear stress predicted
this model agreed qualitatively with experimental measureme
~@15#!, a suitable description on the effect of an imperfect interfa
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on the load transfer and~2! For this model, the exact closed-form
bimaterial Green’s functions can be derived~@14,15#!.

Besides their application as kernel functions in the bound
integral equation method, the three-dimensional Green’s fu
tions, in particular, the three-dimensional bimaterial Green’s fu
tions with various interface conditions, are of special values in
numerical studies of strained semiconductor quantum dev
where the strain-induced quantum dot growth in semicondu
nanostructures is crucial to the electronic performance~@26–28#!.
While under two-dimensional deformation, the strain-induc
elastic fields can be easily analyzed using the analytical solu
~@29#!, for those in the three-dimensional bimaterial space,
Green’s functions, as embedded in the Eshelby tensor~@30,31#!,
are required in the corresponding studies. Unfortunately, for pr
lems with material anisotropy, as for the strained semicondu
quantum devices, the involved three-dimensional Green’s fu
tions are very difficult to derive.

In recent years, the Stroh formalism, originally developed
Stroh ~@32,33#! for the two-dimensional deformation problem
has been extended to certain three-dimensional Green’s fun
solutions~@34–37#!. This opens a new door to further explorin
the Stroh formalism. The most promising feature, perhaps, is
application of the extended three-dimensional Stroh formal
combined with the Mindlin’s superposition method~@38#!, as in
Pan and Yuan@37#. In doing so, the three-dimensional bimater
Green’s functions can be expressed as a sum of the Kelvin s
tion ~the full-space Green’s function! and a Mindlin’s complimen-
tary part~@37#!. While the former has an explicit expression~@39–
42#!, the latter is expressed in terms of a simple and regular
integral over@0,p#. This is perhaps the most simple and conc
approach available since a direct application of the Fourier tra
form would end up with a Green’s function expression in terms
three-dimensional Fourier integrals for the homogeneous f
space and four-dimensional Fourier integrals for the bimate
full-space~@43#!.

In this paper, we further extend the three-dimensional St
formalism and Mindlin’s superposition method to the study of t
three-dimensional Green’s functions in anisotropic elastic bim
rials with imperfect interface. Four different interface mode
namely perfect-bond, smooth-bond, dislocation-like, and for
like, are considered. While the first model is for a perfect interfa
for which the corresponding bimaterial Green’s functions w
derived by Pan and Yuan@37#, other three models are for impe
fect interfaces for which the corresponding bimaterial Gree
functions are derived in this paper. Furthermore, the dislocat
like model has been generalized by introducing an interf
spring-like matrix, instead of only two parameters, and the for
like model is a complete new one resembling the recently p
posed traction-jump model~@16,44,45#! with its potential applica-
tion yet to be found. We will show that even for the thre
imperfect interface models, the bimaterial Green’s functions
still enjoy the same simple and concise structure as that for
perfect interface model. This is actually achieved by carefu
introducing certain modified eigenmatrices corresponding to
imperfect interface conditions. We also remark that while the g
eralized Mindlin’s problem in an anisotropic elastic half-spa
with general boundary conditions has been recently solved by
author ~@46#!, the corresponding two-dimensional bimater
Green’s functions with the three imperfect interface models
derived analytically in the Appendix of this paper.

A typical numerical example on the Green’s stress distribut
is given for a bimaterial full-space made of two orthotropic ha
spaces with the four different interface models. It is demonstra
clearly that by varying the interface parameters in the dislocat
like and force-like models, various load transfer states can
simulated. It is observed that, for most Green’s stresses, the
different interface models affect only their local distribution b
haviors in the vicinity of the interface, and that among the th
imperfect interface models, the smooth-bond model shows
Journal of Applied Mechanics
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greatest variation as compared to the perfect-bond results. T
features should be of great interest to the composite struc
analysis, in particular, to the interface design. Since the bimate
Green’s functions for the four interface conditions can be obtai
very efficiently and accurately, they can also be implemented
a boundary integral formulation to investigate the deformati
stress, and fracture problems in anisotropic and layered struct
with imperfect interfaces.

Problem Description
Consider an anisotropic elastic bimaterial full-space wherex3

.0 andx3,0 are occupied, respectively, by materials 1 and
with interface atx350 plane. Without loss of generality, we as
sume that a point forcef5( f 1 , f 2 , f 3) is applied in material 1 at
source pointd[(d1 ,d2 ,d3[d.0), with the field point being de-
noted byx[(x1 ,x2 ,x3[z)2. Following Pan and Yuan@36#, the
problem domain is now artificially divided into three region
z.d ~in material 1!, 0<z,d ~in material 1!, and z,0 ~in
material 2!.

Since each region is now free of the body force, the equation
equilibrium in terms of the elastic displacementsuk can thus be
written as

Ci jkl uk,l j 50 (1)

where Ci jkl is the elastic stiffness tensor of the correspond
region. As a convention, summation is taken for the repea
index from 1 to 3, and an index following the subscript comm
denotes the partial differentiation with respect to the fie
coordinate.

Equation~1! needs to be solved for each region with suitab
continuity conditions along the interface and at the source le
In this paper, four different interface models are considered, w
one being perfect and three being imperfect.

Model 1. The displacement and traction vectors are contin
ous across the interface, i.e.,

uj
~1!uz5015uj

~2!uz502, t j
~1!uz5015t j

~2!uz502; j 51,2,3
(2a)

where the superscripts~1! and ~2! are used exclusively to denot
the quantities in materials 1 and 2, respectively. It is seen that
this model, the two half-spaces are perfectly bonded together,
such an interface is also called perfect-bond~or ideal, welded!
interface~see, e.g.,@1,17,24#!. We further mention that the aniso
tropic bimaterial Green’s functions with this interface conditio
have been derived recently by Pan and Yuan@37# and are included
here for the purpose of comparison to the bimaterial Green’s fu
tions with imperfect interface conditions.

Model 2. The displacement and traction vectors are requi
to satisfy the following conditions across the interface:

u3
~1!uz5015u3

~2!uz502, t3
~1!uz5015t3

~2!uz502
(2b)

ta
~1!uz5015ta

~2!uz50250, a51,2.

This is perhaps one of the most frequently studied imperfect
terface models and is called smooth-bond~or frictionless, slip-
ping, or sliding! interface~@1,17,24,25#!.

Model 3. Across the interface, the traction vector is contin
ous and the displacement vector is discontinuous:

ui
~1!uz5015ki j

u uj
~2!uz502, t i

~1!uz5015t i
~2!uz502; i 51,2,3

(2c)

where the constant matrixku5@ki j
u # describes the bonding cond

tion along the interface. Yu~@14#! recently proposed this imperfec
interface model for the isotropic bimaterial full-space with t

2Thereafter, the scalar variablesz andd will be used exclusively for the third field
coordinatex3 and third source coordinated3 , respectively.
MARCH 2003, Vol. 70 Õ 181
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constant matrixku being diagonal. This new model is calle
dislocation-like because of its similarity to the Somigliana’s d
location ~@31#!. Yu @14# proved that for this new interface mode
the three-dimensional isotropic bimaterial Green’s function p
sesses the same simple structure as that for the perfect-
model, and that the load transfer at the interface predicted w
this model is quantitatively comparable to the experimental m
surement. Furthermore, two special cases can be reduced
this model:~a! If ki j

u is an identity matrix, implying vanishing o
the displacement jumps at the interface, the dislocation-like mo
is then reduced to Model 1, i.e., the perfect-bond interface and~b!
if ki j

u is a zero matrix, then the bimaterial problem is reduced
two separate half-space problems. With a point force being
plied in material 1, the half-space problem for material 1 can
first solved subject to a rigid surface boundary condition~i.e., the
surface displacements are zero!. Then, the solution in the half
space of material 2 can be solved using the traction surface
dition of Eq. ~2c!. Therefore, with the element values of the m
trix ki j

u varying from 0~for rigid-bond! to 1 ~for perfect-bond!, the
dislocation-like model can actually simulate various intermedi
interface conditions between these two extreme cases. Ano
interesting feature associated with this model is that when
matrix ki j

u is diagonal, the first two elements on the diagonal
related to the interface conditions in the tangential directions
the third one to the condition in the normal direction of the int
face. In the following analysis, we assume that the matrixki j

u is
diagonal with values in the interval~0,1! and that its inverse
exists.

Model 4. In contrast with Model 3, here across the interfac
the displacement vector is continuous while the traction vecto
discontinuous:

ui
~1!uz5015ui

~2!uz502, t i
~1!uz5015ki j

t t j
~2!uz502; i 51,2,3.

(2d)

Similarly, the constant matrixkt5@ki j
t # describes the bonding

condition along the interface. This new model, being named
force-like model, describes a traction jump at the interface.
remark that this force-like model resembles the traction-ju
model proposed recently by Benveniste@16#, Benveniste and
Chen @44#, and Hashin@45# and that it includes two previou
models as its special cases:~a! If ki j

t is an identity matrix, imply-
ing vanishing of the traction jumps at the interface, the force-l
model is then reduced to Model 1, i.e., the perfect-bond interfa
and ~b! if ki j

t is a zero matrix, then the bimaterial problem
reduced to two separate half-space problems. With a point fo
being applied in material 1, the half-space problem for materia
can be first solved subject to a traction-free surface boundary
dition. Then, the solution in the half-space of material 2 can
derived using the displacement surface condition of Eq.~2d!.
Consequently, with the element values of the matrixki j

t varying
from 0 ~traction-free! to 1 ~perfect-bond!, the force-like model can
actually be used to simulate the load transfer along various in
mediate interfaces between these two extreme cases. Further
similar to Model 3, if the matrixki j

t is diagonal, then the first two
elements on the diagonal are related to the interface condition
the tangential directions and the third one to the condition in
normal direction of the interface. Again, we assume that the
verse of the matrixki j

t exists.
Besides the interface conditions atz50, one will also need the

condition at the source level in order to solve the bimate
Green’s functions. It is found that, at the source levelz5d where
the point force is applied, the displacement and traction vec
are required to satisfy the following conditions:

u~1!uz5d25u~1!uz5d1
(3)

t~1!uz5d22t~1!uz5d15d~x12d1!d~x22d2!f

where the displacement and traction vectorsu andt are defined as
182 Õ Vol. 70, MARCH 2003
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u5~u1 ,u2 ,u3!
(4)

t[~s13,s23,s33![~ t1 ,t2 ,t3!.

Finally, the Green’s function solutions are required to vanish asuxu
approaches infinity.

Bimaterial Green’s Functions in the Transformed
Domain

To solve the problem described in the previous section,
two-dimensional Fourier transform, i.e., for the displacement,

ũk~y1 ,y2 ,z;d!5E E uk~x1 ,x2 ,z;d!eiyaxadx1dx2 (5)

is applied to Eq.~1! for the three regions. In Eq.~5!, a takes the
summation from 1 to 2. We point out that, when carrying out t
double Fourier inverse transforms later on, a polar coordinate
tem that relates the Fourier variables (y1 ,y2) as

y15h cosu; y25h sinu (6)

will be used,@37#.
Applying the two-dimensional Fourier transform to the con

nuity conditions~2a–d! at the interfacez50 and the condition~3!
at the source levelz5d, the general solution in the transforme
domain that satisfies the source level condition can be expre
in terms of the Stroh eigenvalues and the corresponding eigen
trices as~@34,37#!:

For z.d ~in material 1!:

ũ~1!~y1 ,y2 ,z;d!52 ih21Ā~1!^e2 i p̄
*
~1!h~z2d!&q̄`2 ih21Ā~1!

3^e2 i p̄
*
~1!hz&q̄~1!

t̃~1!~y1 ,y2 ,z;d!52B̄~1!^e2 i p̄
*
~1!h~z2d!&q̄`2B̄~1!^e2 i p̄

*
~1!hz&q̄~1!

(7)

s̃~1!~y1 ,y2 ,z;d!52C̄~1!^e2 i p̄
*
~1!h~z2d!&q̄`2C̄~1!^e2 i p̄

*
~1!hz&q̄~1!.

For 0<z,d ~in material 1!:

ũ~1!~y1 ,y2 ,z;d!5 ih21A~1!^e2 ip
*
~1!h~z2d!&q`2 ih21Ā~1!

3^e2 i p̄
*
~1!hz&q̄~1!

t̃~1!~y1 ,y2 ,z;d!5B~1!^e2 ip
*
~1!h~z2d!&q`2B̄~1!^e2 i p̄

*
~1!hz&q̄~1!

(8)

s̃~1!~y1 ,y2 ,z;d!5C~1!^e2 ip
*
~1!h~z2d!&q`2C̄~1!^e2 i p̄

*
~1!hz&q̄~1!.

For z,0 ~in material 2!:

ũ~2!~y1 ,y2 ,z;d!5 ih21A~2!^e2 ip
*
~2!hz&q~2!

t̃~2!~y1 ,y2 ,z;d!5B~2!^e2 ip
*
~2!hz&q~2! (9)

s̃~2!~y1 ,y2 ,z;d!5C~2!^e2 ip
*
~2!hz&q~2!

where

^e2 ip
*

hz&5diag@e2 ip1hz,e2 ip2hz,e2 ip3hz# (10)

and

q`5~A~1!!Tfeiyada, q̄`5~Ā~1!!Tfeiyada. (11)

In Eqs. ~7!–~9!, pj ( j 51,2,3), andA, B, and C are the Stroh
eigenvalues and the corresponding eigenmatrices, and their
pressions, being functions of the elastic stiffness tensor and
Fourier angular variableu, can be found in Pan and Yuan@37#.
Also in Eqs.~7!–~9!, h is the Fourier radial variable defined b
Eq. ~6!, ands̃ the Fourier transform of the in-plane stress vectos
defined by

s[~s11,s12,s22!. (12)
Transactions of the ASME
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One important feature associated with the extended th
dimensional Stroh formalism is that the Stroh eigenvaluespj and
the corresponding eigenmatricesA, B, andC in Eqs.~7!–~9! are
all independent of the Fourier radial variableh! This is actually
the key in success of carrying out exactly the infinite integral w
respect to the Fourier radial variableh, reducing the bimateria
Green’s function to an expression in terms of a simple line in
gral of u over a finite interval@0,p# ~@37#!. Furthermore, as will be
shown next, similar concise expression can also be obtained
for the three imperfect interface models, upon introducing cer
modified eigenmatrics associated with the imperfect interf
conditions.

To determine the complex vectorsq̄(1) andq(2) in Eqs.~7!–~9!,
one of the interface models should be applied, and they are
cussed below one by one.

Model 1. For the perfect bond, we found~@37#!

A~1!^eip
*
~1!hd&q`2Ā~1!q̄~1!5A~2!q~2! (13a)

B~1!^eip
*
~1!hd&q`2B̄~1!q̄~1!5B~2!q~2!. (13b)

Model 2. For the smooth bond, the interface conditions f
the complex vectorsq̄(1) andq(2) are

S B11
~1! B12

~1! B13
~1!

B21
~1! B22

~1! B23
~1!

B31
~1! B32

~1! B33
~1!
D ^eip

*
~1!hd&q`2S B̄11

~1! B̄12
~1! B̄13

~1!

B̄21
~1! B̄22

~1! B̄23
~1!

B̄31
~1! B̄32

~1! B̄33
~1!
D q̄~1!

5S 2B11
~2! 2B12

~2! 2B13
~2!

2B21
~2! 2B22

~2! 2B23
~2!

B31
~2! B32

~2! B33
~2!

D q~2! (14a)

~A31
~1! A32

~1! A33
~1!!^eip

*
~1!hd&q`2~Ā31

~1! Ā32
~1! Ā33

~1!!q̄~1!

5~A31
~2! A32

~2! A33
~2!!q~2! (14b)

~B31
~1! B32

~1! B33
~1!!^eip

*
~1!hd&q`2~B̄31

~1! B̄32
~1! B̄33

~1!!q̄~1!

5~B31
~2! B32

~2! B33
~2!!q~2! (14c)

S B11
~1! B12

~1! B13
~1!

B21
~1! B22

~1! B23
~1!D ^eip

*
~1!hd&q`2S B̄11

~1! B̄12
~1! B̄13

~1!

B̄21
~1! B̄22

~1! B̄23
~1!D q̄~1!50

(14d)

S B11
~2! B12

~2! B13
~2!

B21
~2! B22

~2! B23
~2!D q̄~2!50. (14e)

It is observed that solving directly these equations for the comp
vectorsq̄(1) andq(2) is very complicated. However, by performin
certain simple additions and subtractions, these equations ca
grouped equivalently into two matrix equations:

S B11
~1! B12

~1! B13
~1!

B21
~1! B22

~1! B23
~1!

A31
~1! A32

~1! A33
~1!
D ^eip

*
~1!hd&q`2S B̄11

~1! B̄12
~1! B̄13

~1!

B̄21
~1! B̄22

~1! B̄23
~1!

Ā31
~1! Ā32

~1! Ā33
~1!
D q̄~1!

5S B11
~2! B12

~2! B13
~2!

B21
~2! B22

~2! B23
~2!

A31
~2! A32

~2! A33
~2!
D q~2! (15a)
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S B11
~1! B12

~1! B13
~1!

B21
~1! B22

~1! B23
~1!

B31
~1! B32

~1! B33
~1!
D ^eip

*
~1!hd&q`2S B̄11

~1! B̄12
~1! B̄13

~1!

B̄21
~1! B̄22

~1! B̄23
~1!

B̄31
~1! B̄32

~1! B̄33
~1!
D q̄~1!

5S 2B11
~2! 2B12

~2! 2B13
~2!

2B21
~2! 2B22

~2! 2B23
~2!

B31
~2! B32

~2! B33
~2!

D q~2!. (15b)

It is very interesting that these two equations have a sim
structure as that for the bimaterial Model 1 with perfectly bond
interface conditions~13a! and ~13b!. Therefore, the solution for
the complex vectorsq̄(1) andq(2) can be found following the same
procedure as for the perfect-bond interface. We further remark
this analogue method also works for other well-posed homo
neous interface conditions, as long as the displacement and
tion vectors do not coupled in the same interface equation. If
displacement and traction components are mixed together in
interface condition, e.g., the spring-like model with interface d
placement jump proportional to the interface traction, the infin
integral overh cannot be carried out exactly even for the tw
dimensional isotropic bimaterial plane case~@17#!.

Model 3. For the dislocation-like model, we have

A~1!^eip
*
~1!hd&q`2Ā~1!q̄~1!5KuA~2!q~2! (16a)

B~1!^eip
*
~1!hd&q`2B̄~1!q̄~1!5B~2!q~2!. (16b)

Model 4. For the force-like model, we have

A~1!^eip
*
~1!hd&q`2Ā~1!q̄~1!5A~2!q~2! (17a)

B~1!^eip
*
~1!hd&q`2B̄~1!q̄~1!5K tB~2!q~2!. (17b)

Since all the equations forq̄(1) andq(2) have similar structures
the solutions for them can therefore be expressed uniformly a

q̄~1!5G1^e
ip

*
~1!hd&q`

(18)

q~2!5G2^e
ip

*
~1!hd&q`.

In this equation, the matricesG1 and G2 for the four different
models are found to be

G152~ Ā̂~1!!21~ M̄̂ ~1!1M̂ ~2!!21~M̂ ~1!2M̂ ~2!!Â~1!

(19)

G25~Â~2!!21~ M̄̂ ~1!1M̂ ~2!!21~M̂ ~1!1M̄̂ ~1!!Â~1!

whereM̂ (a) are the modified impedance tensors defined by

M̂ ~a!52 i B̂~a!~Â~a!!21 ~a51,2! (20)

with the modified eigenmatricesÂ(a) andB̂(a) being given below
for the four different interface models.

Model 1. For the perfect bond~@37#!,

Â~a!5A~a!, B̂~a!5B~a!; ~a51,2!. (21)

Model 2. For the smooth bond,

Â~a!5S B11
~a! B12

~a! B13
~a!

B21
~a! B22

~a! B23
~a!

A31
~a! A32

~a! A33
~a!
D ; ~a51,2! (22a)

B̂~1!5B~1!; B̂~2!5S 2B11
~2! 2B12

~2! 2B13
~2!

2B21
~2! 2B22

~2! 2B23
~2!

B31
~2! B32

~2! B33
~2!

D . (22b)
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Model 3. For the dislocation-like model,

Â~1!5A~1!; Â~2!5KuA~2!

(23)

B̂~a!5B~a!; ~a51,2!.

Model 4. For the force-like model,

Â~a!5A~a!; ~a51,2!
(24)

B̂~1!5B~1!; B̂~2!5K tB~2!.

Equations~7!–~9! are the bimaterial Green’s displacements a
stresses in the Fourier transformed domain. For the four diffe
interface models, the complex vectorsq̄(1) and q(2) in Eqs. ~7!–
~9! have been derived in a unified form. With the exception of
perfect-bond interface, the bimaterial Green’s functions for
three imperfect interface models are new. Similar to the perf
bond bimaterial Green’s functions~@37#!, there are several impor
tant features pertained to these Green’s functions. While a det
discussion can be found in Pan and Yuan@37#, we restate only one
of the features closely related to the present work and add t
new observations associated with the imperfect interf
conditions:

1. As has been observed by Pan and Yuan@37#, for the solu-
tions in material 1 (z.0), the first term in Eqs.~7! and~8! is the
Fourier-domain Green’s function for the anisotropic full-spa
The inverse of this Green’s function, i.e., the physical-dom
solution, has been developed by Tewary@39#, Ting and Lee@40#,
Sales and Gray@41#, and Tonon et al.@42# in an explicit form.
Therefore, the Fourier inverse transform needs to be carried
only for the second term of the solutions, which is similar to t
complementary part of the Mindlin solution,@38#.

2. The modified eigenmatrices are introduced only for the p
pose of determining the complex vectorsq̄(1) and q(2). The ma-
tricesA, B, andC in Eqs.~7!–~9! and later in the final expression
for the physical-domain Green’s functions~Eqs. ~25!, ~27!, ~28!!
are the original ones and should not be altered.

3. The methodology is not restricted to the four interface m
els presented in this paper. The complex vectorsq̄(1) and q̄(2) in
Eqs. ~7!–~9! for other imperfect interface models can be deriv
similarly by introducing the corresponding modified eigenma
ces. The only requirement is that the displacement and trac
components are uncoupled in the interface conditions.

4. Under the assumption of two-dimensional deformation,
corresponding anisotropic bimaterial Green’s functions in
physical domain with the three imperfect interface models can
derived analytically. This is given in the Appendix of this pape

Bimaterial Green’s Functions in the Physical Domain
Having obtained the bimaterial Green’s function in the tra

formed domain, we now apply the inverse Fourier transform
Eqs. ~7!–~9!. To handle the double infinite integrals, the pol
coordinate transform~6! is applied. In doing so, the infinite inte
gral with respect to the radial variableh can be carried out ex
actly. Thus, the final bimaterial Green’s function in the physi
domain is expressed in terms of a regular line-integral over@0,2p#
in the source-free half-space, and as a sum of the homogen
full-space Green’s function and a regular line-integral over@0,2p#
in the point-force loaded half-space. Furthermore, the line inte
over @0,2p# can be reduced to@0,p# using certain properties of th
Stroh eigenvalues and the corresponding modified eigenvec
~@46,47#!. The procedure is very similar to the perfect-bond int
face~@37#! and one needs only to replace the matricesG1 andG2
with those corresponding to the given interface conditions. Lis
below are the final physical-domain bimaterial Green’s functio
for the four different interface models.
184 Õ Vol. 70, MARCH 2003
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Assuming thatzÞ0 or dÞ0, the 333 Green’s displacemen
tensor in material 1, with the first index for the displaceme
component and the second for the point-force direction, is fou
to be

U~1!~x;d!5U`~x;d!1
1

2p2 F E
0

p

Ā~1!Gu
~1!~A~1!!TduG (25)

~Gu
~1!! i j 5

~G1! i j

2 p̄i
~1!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#
.

(26)

In Eq. ~25!, U`(x;d) denotes the homogeneous full-space Gree
displacement tensor with elastic properties of material 1 for wh
an explicit expression is available~@39–42#!. In Eq. ~26!, the in-
dicesi and j take the range from 1 to 3.

Similarly, the bimaterial Green’s stresses~traction and in-plane
stress! in material 1 and the Green’s displacements and stresse
material 2 can be derived as

T~1!~x;d!5T`~x;d!1
1

2p2 F E
0

p

B̄~1!Gt
~1!~A~1!!TduG

(27)

S~1!~x;d!5S`~x;d!1
1

2p2 F E
0

p

C̄~1!Gt
~1!~A~1!!TduG

U~2!~x;d!52
1

2p2 F E
0

p

A~2!Gu
~2!~A~1!!TduG

T~2!~x;d!52
1

2p2 F E
0

p

B~2!Gt
~2!~A~1!!TduG (28)

S~2!~x;d!52
1

2p2 F E
0

p

C~2!Gt
~2!~A~1!!TduG .

In Eq. ~27!, T`(x;d) and S`(x;d) denote the explicit Green’s
stresses in the homogeneous full-space with the elastic prope
of material 1~@42#! and

~Gt
~1!! i j 5

~G1! i j

$2 p̄i
~1!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#%2

(29)

~Gu
~2!! i j 5

~G2! i j

2pi
~2!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu!]
(30)

~Gt
~2!! i j 5

~G2! i j

$2pi
~2!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#%2 .

(31)

Therefore, in material 1, the bimaterial Green’s function is e
pressed as a sum of the explicit full-space Green’s function an
complementary part in terms of a line integral over@0,p#; In ma-
terial 2, the bimaterial Green’s function is expressed in terms o
line integral over@0,p# only. Although the bimaterial Green’s
function problem is complicated in nature, the final solution
very concise, indicating that the modified three-dimensional St
formalism is truly mathematically elegant and numerically po
erful ~@34,35#!, especially when used jointly with the Mindlin’s
superposition method. Indeed, a direct application of the Fou
transform would require a three-dimensional integral for the fu
space Green’s function and four-dimensional integral for the h
space Green’s function~@43#!. Furthermore, with regard to thes
physical-domain bimaterial Green’s functions~Eqs.~25!, ~27!, and
~28!!, the following important observations can be made, w
some of them being similar to those made in Pan and Yuan@37#:

1. For the complementary part of the solution in material 1 a
the solution in material 2, the dependence of the solutions on
Transactions of the ASME
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field point x and source pointd appears only through matrice
Gu

(1) , Gt
(1) , Gu

(2) , andGt
(2) defined in Eqs.~26! and ~29!–~31!.

Therefore, the derivatives of the bimaterial Green’s functions w
respect to either the field or source point can be exactly carried
under the integral sign. These derivatives are required in
boundary integral formulation for the internal stress and fract
analyses in bimaterial solids~@48#!.

2. The integrals in Eqs.~25!, ~27!, and ~28! are regular ifz
Þ0 or dÞ0, and thus can be easily carried out by any stand
numerical integral method such as the Gauss quadrature. Actu
Pan and Yang@49# have recently applied an adaptive integrati
version in order to calculate the perfect-bond bimaterial Gree
function.

3. If zÞ0 and d50, the bimaterial Green’s function is sti
mathematically regular although some of its components may
have a direct and apparent physical meaning~@1#!. However, the
author~@46#! has recently given an indirect physical explanati
using an equivalent relation between the Green’s function due
point force and that due to a point dislocation~or infinitesimal
dislocation loop!.

4. When the field and source points are both on the interf
~i.e., z5d50), the bimaterial Green’s function is then reduced
the interfacial Green’s function. For this special case, the
integral involved in the Green’s function expression becomes
gular and the resulting finite-part integral needs to be handled
special approaches. A detailed study for the perfect-bond inter
can be found in Pan and Yang~@49#! and a similar approach can b
followed for the imperfect interface models.

Effects of Interface Conditions
The effect of different interface conditions on the displacem

and stress fields was studied by Dundurs and Hetenyi@1#, Mura
@31#, and Yu@14# for the isotropic bimaterial full-space. Howeve
a systematic discussion on this issue has not been carried ou
not to mention the complexity due to the general anisotro
Based on the extended three-dimensional Stroh formalism
Mindlin’s superposition method, we have found that the effect
different interface conditions on the displacement and stress fi
can be studied with a unified formalism.

When studying the difference of the elastic fields due to diff
ent imperfect interface conditions relative to those with t
perfect-bond interface~i.e., Model 1!, it is noted that the full-
space Green’s function has no influence at all to this differenc
is the complementary part of the bimaterial solution that cont
utes to it! We also notice that it is the matrixG1 or G2 that totally
controls such a difference. This is actually no surprising sin
when deriving the bimaterial solution, it is the complementa
part that takes care of the different interface conditions, and
the matrixG1 or G2 that directly accomplishes the task! Ther
fore, the difference of the displacement and stress fields du
imperfect and perfect interface conditions is directly proportio
to the difference of the integral involving the matrixG1 or G2 .

In the study presented below, we restrict ourselves to the c
where the source pointd is within the material 1 (d.0) but the
field point x can be anywhere in the bimaterials. Again, the d
ference is relative to the bimaterial Green’s function solution c
responding to the perfect-bond interface~i.e., Model 1!. We also
mention that results for the derivatives of the displacements
stresses will not be given but can be obtained trivially.

For the field point in material 1~i.e., z.0), we found

U~1!~x;d!um2U~1!~x;d!u15
1

2p2 F E
0

p

Ā~1!DGu
~1!~A~1!!TduG

(32)

T~1!~x;d!um2T~1!~x;d!u15
1

2p2 F E
0

p

B̄~1!DGt
~1!~A~1!!TduG

(33)
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S~1!~x;d!um2S~1!~x;d!u15
1

2p2 F E
0

p

C̄~1!DGt
~1!~A~1!!TduG

where

~DGu
~1!! i j 5

~G1um2G1u1! i j

2 p̄i
~1!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#
(34)

~DGt
~1!! i j 5

~G1um2G1u1! i j

$2 p̄i
~1!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#%2 .

(35)

In Eqs.~32!–~35!, the displacement and stress fields with a ve
cal line followed by subscript 1 are the bimaterial Green’s fun
tions corresponding to the perfect-bond interface~i.e., Model 1!,
and those by subscriptm ~52, 3, and 4! correspond to the three
imperfect interface models.

Similarly, for the field point in material 2~i.e., z,0), we
obtained

U~2!~x;d!um2U~2!~x;d!u152
1

2p2 F E
0

p

A~2!DGu
~2!~A~1!!TduG

T~2!~x;d!um2T~2!~x;d!u152
1

2p2 F E
0

p

B~2!DGt
~2!~A~1!!TduG

(36)

S~2!~x;d!um2S~2!~x;d!u152
1

2p2 F E
0

p

C~2!DGt
~2!~A~1!!TduG

where

~DGu
~2!! i j 5

~G2um2G2u1! i j

2pi
~2!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu!]
(37)

~DGt
~2!! i j 5

~G2um2G2u1! i j

$2pi
~2!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#%2 .

(38)

Numerical Examples
Having derived the bimaterial Green’s functions for the fo

different interface models, and discussed the effect of differ
imperfect interface conditions on the displacement and st
fields, we now present numerical examples for these bimate
Green’s functions. We first mention that the present bimate
Green’s functions have been checked with previously availa
solutions~@1,37#! for some special cases in isotropic and anis
tropic bimaterials.

In the present examples, materials 1 and 2 are both orthotro
Material 1 is the NASA fabric, a composite material made
stacking layers of a carbon warp-knit fabric that was stitched w
Kevlar-29 thread prior to introducing 3501-6 epoxy resin~@37#!.
Material 2 is a graphite/epoxy composite with strong material
isotropy~@37#!. In using these two materials, their principal mat
rial axes (E1 andE2), originally coincide with thex-y–axes, have
been rotated 45 deg counterclockwise with respect to thex-axis.
Thus the stiffness tensorCi jkl of both materials in the structura
coordinates (x,y,z) is monoclinic with symmetry plane atz50.
This bimaterial full-space actually corresponds to the case II
Pan and Yuan~@37#!, and the elastic stiffness in the reduced a
dimensionless form for materials 1 and 2 are given, respectiv
in Tables 1 and 2.

Some dimensionless Green’s stress components in such a b
terial full-space are presented in Figs. 1 to 5. In these figures,
point force of a unit magnitude is applied at (0,0,d51). The
stresses are plotted at field points (x,y,z)5(1,1,z) with z varying
from 23 to 3.
MARCH 2003, Vol. 70 Õ 185
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First, the effect of the interface matriceski j
u andki j

t ~in Models
3 and 4! upon the bimaterial Green’s stresses is studied. For s
plicity, these interface matrices are assumed to have the s
diagonal structure, i.e.,

Ku5K t5diag@k,k,1# (39)
wherek varies from 0 and 1. Therefore, for Model 3, the norm
displacement component is assumed to be continuous while
tangential components are not. Similarly, for Model 4, the norm
traction component is assumed to be continuous but the s
components are not.

Shown in Figs. 1~a! and 1~b! are the variations of the dimen
sionless Green’s stress componentsxx due to a point force applied
in thez-direction for Models 3 and 4, respectively. For both mo
els, the interface parameterk in Eq. ~39! takes the values of 1, 0.5
0.1, 0.01, and 0.0001. Whilek51 corresponds to the perfect-bon
interface~i.e., Model 1!, otherk values are for the imperfect bon
with k50.0001 simulating the tangential zero-displacement a
shear traction-free interfaces, respectively, for the dislocation-
and force-like models~the result fork50.0001 is nearly identica
to that fork50.000001). It is observed from Figs. 1~a! and 1~b!
that this Green’s stress component is discontinuous across th
terface for both models. Furthermore, it is found that for t
dislocation-like model~Fig. 1~a!!, the amount of discontinuity is
the largest for the perfect-bond interface and decreases in ge
with decreasingk, reaching a final value when the tangential d
placements are zero~i.e., k50). For the force-like model~Fig.
1~b!!, however, the amount of discontinuity is the smallest for
perfect-bond interface and increases with decreasingk, reaching a
final value when the shear tractions are zero~i.e., k50). There-
fore, by varying thek value in the dislocation-like and force-lik
models, various load transfer situations across the interface ca
simulated.

We now compare the stress distributions for the four models
Figs. 2 to 5, cases 1, 2, 3, and 4 correspond to the perfect-b
smooth-bond, dislocation-like, and force-like models, resp
tively. For models 3 and 4, the interface matriceski j

u andki j
t are

given by Eq.~39! with k being fixed at 0.5.
The variations of the Green’s stressessxx and sxy due to a

point force in thex and z-directions are shown in Figs. 2 and
with all of them being discontinuous across the interface. It
observed that the magnitudes of the Green’s stress compon
due to the point force inx-direction are much larger than thos
due to the point force inz-direction ~about four-five times!. It is
also clear that, locally, i.e., in the vicinity of the interface, diffe
ent interface models can have a great influence on the stress
tribution. Among the four models, the smooth interface mod
i.e., model 2, shows the largest influence on the stress field

Table 1 Elastic stiffness Cij in material 1

.83514624D1 .33934624D1 .57053231D0 .0 .0 .17804512
.83514624D1 .57053231D0 .0 .0 .17804512D

.15949776D1 .0 .0 .65283587D-
.605 .035 .0

.605 .0
.34414318D1
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Fig. 1 Variation of the bimaterial Green’s stress sxx with field
point „1,1,z«†À3,3‡… due to a point force at d Ä„0,0,1… in the
z-direction for different interface parameter k of dislocation-
like model „a… and force-like model „b…
D1
1

Table 2 Elastic stiffness Cij in material 2

.71726275D1 .54524875D1 .62233525D0 .0 .0 .51191753
.71726275D1 .62233525D0 .0 .0 .51191753D

.16217043D1 .0 .0 .11350357D0
.64977 2.03046 .0

.64977 .0
.54251991D1
Transactions of the ASME
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the interface. Furthermore, such an influence can be extended
relatively far distance away from the interface, as compared to
perfect-bond model~Figs. 2~b! and 3~b!!.

Shown in Figs. 4~a! and 4~b! are the variation of the shea
stresssxz due to the point force inx andz-directions, respectively
For this shear stress component, its magnitudes due to the
force in x and z-directions are roughly the same. Similar to th
behavior of the stressessxx andsxy , the most affected region by
the different interface models is found in the vicinity of the inte
face. Again, the smooth-bond model causes the greatest vari

Fig. 2 Variation of the bimaterial Green’s stress sxx with field
point „1,1,z«†À3,3‡… due to a point force at d Ä„0,0,1… in the
x -direction „a… and z-direction „b…. Cases 1, 2, 3, and 4 corre-
spond to models 1, 2, 3, and 4, respectively.
Journal of Applied Mechanics
to a
the

r

oint
e

r-
tion

relative to the perfect-bond model. We also mention that acr
the interface, whilesxz is continuous for models 1–3, it is discon
tinuous for model 4 as assumed in the model.

Finally, shown in Figs. 5~a! and 5~b! are the variations of the
vertical stressszz due to the point force inx and z-directions,
respectively. For this case, the magnitude of the stress due to
point force inz-direction is about three times larger than that d
to the point force inx-direction. An interesting feature is tha
while different interface models have nearly no effect on t
stress component, the smooth-bond model, however, has a s

Fig. 3 Variation of the bimaterial Green’s stress sxy with field
point „1,1,z«†À3,3‡… due to a point force at d Ä„0,0,1… in the
x -direction „a… and z-direction „b…. Cases 1, 2, 3, and 4 corre-
spond to models 1, 2, 3, and 4, respectively.
MARCH 2003, Vol. 70 Õ 187
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influence on this stress component when the point force is
z-direction. Furthermore, such an influence seems to extend
larger region away from the interface.

Conclusions
We have derived the three-dimensional Green’s functions

anisotropic bimaterials for four different interface models, name
perfect-bond, smooth-bond, dislocation-like, and force-like. Wh
the first model is for the perfect interface for which the cor
sponding bimaterial Green’s functions were derived by Pan
Yuan @37#, other three models are for the imperfect interface

Fig. 4 Variation of the bimaterial Green’s stress sxz with field
point „1,1,z«†À3,3‡… due to a point force at d Ä„0,0,1… in the
x -direction „a… and z-direction „b…. Cases 1, 2, 3, and 4 corre-
spond to models 1, 2, 3, and 4, respectively.
188 Õ Vol. 70, MARCH 2003
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which the corresponding bimaterial Green’s functions are deri
for the first timein this paper. A remarkable result is that for the
imperfect interface models, the bimaterial Green’s functions en
the same simple and concise structure as that for the prefec
terface model. For the case of two-dimensional deformation,
corresponding bimaterial Green’s functions are also derived a
lytically for the three imperfect interface models. We further me
tion that the methodology of deriving the bimaterial Green’s fun
tions with imperfect interface conditions is quite general. On
assumption that the interface displacement and traction vector
uncoupled in the interface conditions, one needs only to const
the eigenmatrices for the given interface model in order to de

Fig. 5 Variation of the bimaterial Green’s stress szz with field
point „1,1,z«†À3,3‡… due to a point force at d Ä„0,0,1… in the
x -direction „a… and z-direction „b…. Cases 1, 2, 3, and 4 corre-
spond to models 1, 2, 3, and 4, respectively.
Transactions of the ASME
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the corresponding Green’s functions. Therefore, the bimate
Green’s function corresponding to a more general interface m
that combines the dislocation-like and force-like models toget
can be easily derived. However, it is also worthwhile to emphas
that should the interface displacement and traction vectors
coupled together, one will be unable to carry out the infinite in
gral overh exactly. Consequently, the bimaterial Green’s functi
corresponding to such an interface condition would be very co
plicated even for the two-dimensional isotropic bimater
case~@17#!.

Numerical examples have been also carried out to study
dependence of the bimaterial Green’s stresses on the inte
matriceski j

u andki j
t and the effect of different interface models o

the stress fields. It is observed that by varying the element va
of the interface matriceski j

u and ki j
t in models 3 and 4, various

load transfers across the interface can be simulated. It is
shown that, among the three imperfect interface models wit
middle interface value for the parameterk(50.5), the smooth-
bond model shows the greatest influence on the bimaterial Gre
stresses as compared to those for the perfect-bond interface.
these bimaterial Green’s functions can be obtained very efficie
and accurately, they can be easily implemented into a boun
integral formulism~@22#! to investigate the deformation, stres
and fracture problems in anisotropic and layered structures
imperfect interfaces.

Appendix

Two-Dimensional Bimaterial Green’s Functions With
Imperfect Interfaces. Similar to the three-dimensional bimate
rial problem presented in the main text, we consider an an
tropic full-space made of two anisotropic half-spaces with int
face atz50. Here, however, we assume that the deformation
independent of they-coordinate~i.e., the generalized plane-stra
deformation in the (x,z) plane!. We further let a line forcef and a
line dislocation with Burgers vectorb be applied at (x,z)
5(0,d) with d.0 in material 1.

It is known that the general bimaterial Green’s functions~dis-
placements and stress functions! can be expressed as~@34,48#!

u~1!5
1

p
Im$A~1!^ ln~z

*
~1!2p

*
~1!d!&q`%

1
1

p
Im (

j 51

3

$A~1!^ ln~z
*
~1!2 p̄ j

~1!d!&qj
~1!%

(A1)

f~1!5
1

p
Im$B~1!^ ln~z

*
~1!2p

*
~1!d!&q`%

1
1

p
Im (

j 51

3

$B~1!^ ln~z
*
~1!2 p̄ j

~1!d!&qj
~1!%

for z.0 ~material 1!, and

u~2!5
1

p
Im (

j 51

3

$A~2!^ ln~z
*
~2!2pj

~1!d!&qj
~2!%

(A2)

f~2!5
1

p
Im (

j 51

3

$B~2!^ ln~z
*
~2!2pj

~1!d!&qj
~2!%

for z,0 ~material 2!. In Eqs. ~A1! and ~A2!, Im stands for the
imaginary part, and the superscripts~1! and ~2! denote, as in the
text, the quantities in the material domain.pj

(a) andA(a) andB(a)

are the eigenvalues and the eigenmatrices similar to those giv
the main text but depending upon the elastic stiffness coeffic
only. Also in Eqs.~A1! and ~A2!,
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^ ln~z
*
~1!2p

*
~1!d!&5diag@ ln~z1

~1!2p1
~1!d!, ln~z2

~1!2p2
~1!d!, ln~z3

~1!

2p3
~1!d!#

^ ln~z
*
~1!2 p̄ j

~1!d!&5diag@ ln~z1
~1!2 p̄ j

~1!d!, ln~z2
~1!2 p̄ j

~1!d!, ln~z3
~1!

2 p̄ j
~1!d!# (A3)

^ ln~z
*
~2!2pj

~1!d!&5diag@ ln~z1
~2!2pj

~1!d!, ln~z2
~2!2pj

~1!d!, ln~z3
~2!

2pj
~1!d!#

with the complex variablezj
(a) being defined as

zj
~a!5x1pj

~a!z. (A4)

It is seen that the first term in Eq.~A1! corresponds to the full-
plane Green’s functions~with material properties of material 1!
with

q`5~A~1!!Tf1~B~1!!Tb. (A5)

The second term in Eq.~A1! and the solution in material 2~Eq.
~A2!! are the complementary parts of the solution with the co
plex constant vectorsqj

(a) ~a51,2; j 51,2,3) to be determined
For a perfect-bond interface atz50, these constants are require
to satisfy the following conditions~@34#! ~for j 51,2,3):

A~1!qj
~1!1Ā~2!q̄j

~2!5Ā~1!I j q̄
`

(A6)
B~1!qj

~1!1B̄~2!q̄j
~2!5B̄~1!I j q̄

`

with

I15diag@1,0,0#

I25diag@0,1,0# (A7)

I35diag@0,0,1#.

Equation~A6! has a similar structure as Eq.~13a,b!. Therefore, the
solution for the involved complex constants are found to
~@34,48#!

qj
~1!5~A~1!!21~M ~1!1M̄ ~2!!21~M̄ ~2!2M̄ ~1!!Ā~1!I j q̄

`

(A8)
qj

~2!5~A~2!!21~M̄ ~1!1M ~2!!21~M ~1!1M̄ ~1!!A~1!I jq
`

whereM (a) are the impedance tensors~defined as Eq.~20!! with
the eigenmatricesA andB dependent upon the material properti
only.

Following the same procedure, the complex constants invol
in the bimaterial Green’s solutions~A1! and ~A2! for the three
imperfect interface models can also be determined. Similar to
~A8!, they are obtained as

qj
~1!5~Â~1!!21~M̂ ~1!1M̄̂ ~2!!21)~ M̄̂ ~2!2M̄̂ ~1!!Ā̂~1!I j q̄

`

(A9)

qj
~2!5~Â~2!!21~ M̄̂ ~1!1M̂ ~2!!21~M̂ ~1!1M̄̂ ~1!!Â~1!I jq

`

whereM̃ (a) (a51,2) are the modified impedance tensors defin
by Eq. ~20!, and the modified eigenmatricesÂ(a) and B̂(a) (a
51,2) by Eqs.~22!, ~23!, and ~24! for the three imperfect inter-
face models. The difference between the two-dimensional
three-dimensional expressions for the modified impedance ten
and eigenmatrices is that for the two-dimensional deformati
they are functions of the elastic stiffness tensor only~u50!; for
the three-dimensional deformation, however, they depend als
the Fourier transform variableu. We further emphasize that, fo
both the two-dimensional and three-dimensional deformations,
modified eigenmatrices are used only in the process of determ
ing the involved complex constants.

With the bimaterial Green’s displacements and stress funct
being given by Eqs.~A1! and ~A2!, their derivatives with respec
to the field and source points can be analytically carried out
MARCH 2003, Vol. 70 Õ 189
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the resulting Green’s functions can then be applied to vari
problems involving bimaterial plane with imperfect interfaces.
for the corresponding three-dimensional deformation, the tw
dimensional bimaterial Green’s functions for the three imperf
interface models have not been reported in the literature.
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