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543 Keisler Drive, Suite 204, We present an efficient and accurate continuum-mechanics approach to predict the elastic
Cary, NC 27511 fields in multilayered semiconductors due to buried quantum dots (QDs). Our approach is
e-mail: boyang@boulder.nist. gov based on a novel Green’s function solution in anisotropic and linearly elastic multilayers,
Mem. ASME derived within the framework of generalized Stroh formalism and Fourier transforms, in

conjunction with the Betti’s reciprocal theorem. By using this approach, the induced
elastic fields due to QDs with general misfit strains are expressed as a volume integral

N Ej Pan over the QDs domains. For QDs with uniform misfit strains, the volume integral involved

Department of Q'VH E_ngmeenng, is reduced to a surface integral over the QDs boundaries. Further, for QDs that can be
University of Akron, modeled as point sources, the induced elastic fields are then derived as a sum of the

Akron, OH 44325 point-force Green’s functions. In the last case, the solution of the QD-induced elastic field

Mem. ASME is analytical, involving no numerical integration, except for the evaluation of the Green's

functions. As numerical examples, we have studied a multilayered semiconductor system
of QDs made of alternating GaAs-spacer and InAs-wetting layers on a GaAs substrate,
plus a freshly deposited InAs-wetting layer on the top. The effects of vertical and hori-
zontal arrays of QDs and of thickness of the top wetting layer on the QD-induced elastic
fields are examined and some new features are observed that may be of interest to the
designers of semiconductor QD superlatticH30I: 10.1115/1.1544540

1 Introduction cult to perform parametric studies in order to interpret the experi-
(r)m_ental phenomena or to reach an economic design strategy. This

Owing to their great advantages over those processed by lith ficulty is manifested especially in the case of multilayered het-

raphy and etching, self-assembled guantum semiconductor het tructures. Recently, various analytical and semi-analytical
structures have attracted tremendous attention in recent years. T : Y, y y

processing of the heterostructures is based on the spontanégﬁ hoc:]s, in %artlcular, thosz rela:jted tol.thc? ?rettra]ns qunctloré slglu-
growth of small islands from a wetting layer due to its mismatc ons, have been proposed and applied to the QD modeling,

strain to the substrate, i.e., a Stranski-Krastanow growth mec 81§Z Because of thgir robust features _in terms of accuracy and
nism. The islands include quasi-zero-dimensional dotsquan- efficiency, these analytical methods, particularly the Green’s func-

tum dots(QDs)) and quasi-one-dimensional wires, on the scale den method, have been foun_d to be very_usefu_l In th? study_ OT QD
1-100 nanometers. Experimental studies have shown that s ghjctures[ls—zzﬂ. For QDs in a thrge-d|men5|onal Isotropic in-
QD nanostructures possess certain special electronic and opt }e_space, Pearso_n and Fa[lzs]_derlved the exact-clo_sed-form
features, rendering fascinating and novel devices, such as the | iution f_or the QD-|nduc_:e(_1 _straln Wh_en_the QDS arein the form
threshold laser, resonant tunneling device, and huge-capa& yramids. When the infinite domaln_ IS anisotropic, Faux _and
memory media, possibl§l,2]. These features are in part related” arsor{19] and Andreev et al[22] derived the induced strain
to the strain fields induced by the QDs and thus it is important #5iN9, respectively, the Fourier transform method and the series
understand the latter before the design of devigks3). In their ~€XPansion method. More recently, Pan and Yé24| examined
device applications, it is often desirable to fabricate the QDs [R€ €lastic field due to a buried QD in an anisotropic half-space
successive stacks with both vertical and lateral orderipgsg].  Substrate using the point-force Green's function, which is derived
The final product is then a multilayered structure with buried alithin the framework of generalized Stroh formalism and Fourier
rays of QDs and with each layer being anisotropic. Therefore, §&nsforms, in conjunction with the Betti's reciprocal theorem.
efficient and accurate numerical tool for predicting the mechanichi€ir result has shown clearly the effects of material anisotropy
fields, based on the theory of generally anisotropic elasticity f@hd free surface on the elastic fields. _
layered media, would be much appreciated. In this paper, we propose a novel Green’s function approach for
To quantitatively explain and numerically model the QD nandhe elastic analyses of buried QDs in multilayered semiconduc-
structures, various numerical methods have been proposed, tifs, advanced from the authors’ previous work&4,25. The
cluding the continuum finite elemerFE) and finite difference QDs and surrounding matrix are assumed to have the same mate-
(FD) methods[9-14], and the discrete atomic-level simulationsfial property, within the classical inclusion approach of eigen-
[15—17. However, the domain-based FE and FD methods and th&ain, [26]. In this approach, the elastic fields induced by QDs
atomic models are computationally expensive, making them diffvith general misfit straingi.e., eigenstrainsare expressed as a
volume integral over the QDs domains. For QDs with a uniform
To whom correspondence should be addressed. Present address: Materials R&isfit strain, the volume integral can be reduced to a surface in-
s b St o e Co a1 QD3 boundas Furer, o QDS al can be
MEC(:&IIIIICL,{-\L EN)(lBINEERpSpfOIr publicatio:1 in tr|1\:al ASMEOURNAL OF APPLIED ME- moqleled as point sources,_the induced elastic f'elds can then be
CHANICS. Manuscript received by the Applied Mechanics Division, Dec. 16, 20016lerived as a sum of the point-force Green’s functions. In the last
final revision, June 8, 2002. Associate Editor: H. Gao. Discussion on the pamase, the QD solution is ana|yti(;a|, except for the numerical evalu-

should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departmen Iy ) H
Mechanics and Environmental Engineering, University of California—Santa Barbaté)ﬁon of the point force Green's functions. The proposed approach
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Fig. 1 A multilayered heterostructure with embedded islands of misfit strains

strate, plus a “freshly” deposited wetting layer on the top. Thenly in the QDs is in fact the part of a total field induced by the

theory is described in Section 2. The numerical results are pi@DPs. The total field can be obtained by applying the rule of su-

sented and discussed in Section 3. Conclusions are drawn in Sserposition of the induced field to the homogeneous field that is

tion 4. caused by the nonzero matrix eigenstrain aléne, in the ab-

sence of the QDsunder the same boundary and interfacial con-

ditions. For the present multilayered structure, the homogeneous

elastic field can be solved by applying the classical laminate
2.1 Integral Equation Formulation of Quantum Dots. In-  theory, [27].

clusion problem of misfit strain$26], in a heterogeneous, aniso- Under these assumptions, E@) can be simplified. First, by

tropic, linearly elastic matrix can be described in terms of awsing the fact that the misfit strain along the domain boundary

integral-equation formulation with the integral kernel being thé zero, the term of boundary integral in E@) is eliminated,

point-force Green’s function in the same media. This integraWhich yields

equation formulation is a consequence of the Betti’s reciprocal

theorem. Let us assume that there are two states associated with — * (e 0

the matrix domairD: one for the misfit-strain problem due to a Up(Y) JDU”"J(X’y)C”'m(X)S'm(X)dV(X)' 3

given misfit straine?j(x), and the other for the Green'’s function ] ) ] -

problem due to a point force at In these two problems, the Then, reducing the integral domain frond to QY (n

boundary conditions alongD (boundary ofD) are identical. Ap- =1, - - N), Eq.(3) is rewritten as

plying the Betti's reciprocal theorem, we find that the displace- N

ment u,(y) due to the misfit strairs®(x) can be expressed in _ Xy O 0

terms cF;f the following integral-equatlijon formulation, 26, Up(Y) nZl mn)up,,J(x,y)C,”m(x)sm(x)dV(x). )

2 Theory

Further, the domain integrals in E@}) can be reduced to the
surface ofQ(™ for those QDs in which the misfit strain distribu-
tion is uniform. Assuming that all of the islands have a uniform
where u;i(x;y) is the Green'sth displacement component &t misfit strain field, we arrive at
due to a point force in theth direction applied ay, Cyj, is the N
elastic stiffness, heterogeneous in general, and a repeated index ) _om) .
implies the conventional summation over its range. Note that Up(y)=2 Cijim&im (n)upi(X;y)nj(X)dS(X)! %)
indicates the partial derivative with respect to field coordinate n=t a0

while Yo is used for the partial derivative with respect to Sourcﬁ/herecimn ands,%”) are, respectively, theuniform) elastic stiff-

coordinatey,, . Making use of the Gauss theorem, Ef). can be ness and misfit strain in theth island. Note that a uniform distri-

up(y):JDu;i(X;y)[_Cijlm(x)slom(x)],jdv(x)v (1)

rewritten as bution of misfit strain in a QD may occur when the QD and matrix
(generally mismatched in thermal expansion coefficieats sub-
up(y):f U;i,j(X2Y)Cij|m(X)SPm(X)dV(X) jected to a uniform temperature change and if their mismatch of
D elastic constants can be neglected.

~In order_ to find the_ induce_d elastic strain field, the di_splace_ment
,J' u;i(x;y)Cmm(x)st(x)nj(x)dF(x), (2 In Eqg.(5) is dlﬁerentlated with respect to the.observatlo.n pgint
D (i.e., the source point where the point force is located in the cor-

i s functi I@mwhich yiel
wheren; is the outward normal at a boundary point. responding Green's function problgmwhich yields

We now consider a special heterogeneous matrix structure and a N
special misfit strain distribution, as shown in Fig. 1. The special szq(y)=2 Eci(mngﬂ;mj [k, (XY)
heterogeneous matrix structure consists of multiple planar layers n=1 a0 d
of different media. They are homogeneous, anisotropic, and lin- % .
early elastic. The special misfit-strain field is nonzero only in a +uqi’yp(x,y)]nj(x)d8(x). ®)

i i i M (n= ) . .

number of interior islands)™ (n= L... N). To apply the Subsequently, the stress field is obtained as
above theory, we assume that the islands have the same elastic
property as their surrounding layer media. This special system gpq(y):cpqsl(y)[gst(y)_agl(y)]_ (7)
represents a multilayered semiconductor with coherently strained
QDs, [1]. We remark that there should exist nonzero eigenstraiote thatsgt(y) in Eq. (7) is nonzero only ify is within a QD.
field in some of the layersi.e., wetting layers from which the Finally, the above expressions can be further reduced if the
QDs grow, similar to that in the QDs. In this case, the elastic fieldbservation poiny is remote to some or all of the QDs compared
to be derived under the above assumption of nonzero eigenstrartheir individual sizes. These remote QDs can be modeled as
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The equilibrium of a multilayered system subjected to a point

— X3 = Ao .
: force requires that
‘f = P Cpjim(X)Uj mj(x) = —fpé(x=y), (11)
n Layer (1) / _'_hM wheref, is the pth component of a point force applied yat To
Ve solve this problem, the following two-dimensional Fourier trans-

(m) €y form (kq,k») is first applied to the in-plane variableg,(,x,) of

Ui (X1,X2,X3),

X2 % il |( 1,72 3)
Fig. 2 Point-force Green’s function problem of a multilayered ai(klvk21X3):J J Ui(Xq . Xp, Xg) € akad Xy dXp,  (12)

heterostructure (Fig. 1)
wheree stands for theexponentiafunction, and in the exponent
denotes the unit of imaginary number-1, and the Greek index
takes a value in the range from 1 to 2. The integral limits are

8%~ o0,:0) along both the coordinates andx,. Thus, in the Fourier

S transformed domain, the governing E@1) becomes

point sources of misfit strain. Without the loss of generality,
suming the remoteness gfto all QDs, the misfit strain field i
then expressed as

Cpaiali 33~ 1(Cpaiat Cpaia)Kali 3= Cpai

N Bkakﬁﬁi
0 — 0(n)y /() 5y — x(N) i
e2.(X) Zl epMV §(x—x(M), (8) = —feVeked(x3—y3), (13)

whereV(™ andx(" are, respectively, the volume and location ofvhich is valid for each individual homogeneous layer in the sys-
the nth QD, and&(x) is the Dirac delta function. By substituting €M- , ) ) , o )
Eq. (8) in Eq. (3), the induced displacement and strairyatue to  S°Iving this ordinary differential equation in termsaf with f
the point sources of misfit strain are analytically found to be ~ P&ing a unit force in thepth direction yields the general expres-

sion for the transformed-domain Green'’s displacement initthe
direction,ﬁi*p, as

N
up(y)=2 U;i,j(x(n)?y)ci(j%slon(nn)v(n) ) — =
A=1 Un(xa) = €V TL (x3) +im H(Ap(e™ P70 -V,

N )
=2 Ty elmv, ) +An(e P )W) |, (14)
=1

" where the subscriph indicates the association of a quantity to the
N mth layer where the field point residesU?, is a function ofk,,

Spq(y)ZE E[a;|m,yq(x(”>;y)+a’q]m,yp(x<”);y)]eﬂ$1”)V<”). k, andy as well asxs; U5, a special solution, is a given

n=t 10 function ofkq, k, andy as well asx3; andV,, andW, are a pair
(10) of unknown tensors, being functions &f, k, andy;, to be

In the derivation of the right-hand side of E(), the Hooke’s determined by imposing boundary and interfacial conditions. The

law, o, = Cij;imV; ; , was effected. Itis observed in E@®) thatthe dummy arguments in these functions, which are not relevant di-

displacement field in thpth direction aty due to point sources of rectly to the enforcement of boundary and interfacial conditions,

misfit strain with componentsif) at x" (n=1,... N) is are omitted for simplicity. In addition, the overbar denotes the
equivalent to the stress field with componerits) atx™ due to complex conjugate(#,0) are the polar coordinates related to
a point force in thepth direction aty, [28]. (kq1,kp) by k=7 cos6 andk,= » sing, and

We remark that Eq94), (5), and(9) (and their corresponding
expressions for strain and stresan be used whenever and wher-
ever applicable to most efficiently compute the elastic fields dyg addition,p and A= (a, ,a,,as) are, respectively, the eigenval-

to a QD. The idea of applying the point-source approach 10 dfag ang eigenmatrix, related to each other by the following char-
scribe the elastic field remote to a QD, the inclusion approachfr%

(e71Ps)=diad e~ P17s @~ 1P27s @ iPs7Ys] (15)

teristic ei lati 3-35, i bli | db
describe the field in an intermediate distance to a QD, and t| eristic eigenrelatior3 3, in an oblique plane spanned by

— —ci T

imhomogeneity approach to describe the field close to or insid L= cosfn=sin 6,0)" and (00,1, as
QD, has been elaborated recently by Romanov ef2#]]. The [Q+pi(R+RT)+p2T]a=0, (16)
different approaches require different computational tools to effi-
ciently and accurately solve the problem. The present work pr&ith Q;;=C;,;sN.Ng, Rij=Cj,j3n,, andT;;=Cis;3.
poses to apply a special Green’s function for anisotropic multilay- Let us defines as a vector consisting of the in-plane stress
ers to solve the problem of QDs approached as inclusions.cimponents in the horizontal plane, arabs a vector consisting of
enables a simulation of a relatively large system of QDs in muihe corresponding out-of-plane stress components. The combina-
tilayered semiconductors. This special Green’s function is déen of these two vectors represents the full stress tensor because
scribed next. of its symmetry. The corresponding Green’s functions are given
Three- by _S*E(Uf_lp v(_7"1€2p ,a'gzp) _and_t* E(0'1’3p ,.0'33’).,0';3’)), with _sub-
script p indicating the unit point-force direction. By applying the

ooke’s law,t* and s* can be derived from Eq(14), in the
ransformed domain, as

2.2 Green’s Function for Anisotropic Multilayers.
dimensional point-force Green’s function in anisotropic multilay
ers, as shown in Fig. 2, can be solved within the framework
generalized Stroh formalism and Fourier transforf2§,30. The
elegancy of the formulation has been demonstrated by applying

C ! Tk _ aik Y Tx (s) R (a=iPm7(%3—hm_1)
the derived Green'’s functions to the boundary element analyses of tm(Xa) = €%l I ™ (x3) + (Byn(e™Pm ")V

stress around a hole in a composite lamingg&], and the corre- + B Pm7Cs T myw |, (17)
sponding delamination crack problef32]. In the following, we

summarize the Green’s functions for anisotropic elastostatic mul- 3,’;(x3):e‘knya[’é,;(s)(x?,)+(Em(e“5m’7(x3‘hmfl)>vm
tilayers. For details of the theory, one may refer to the authors’ _

previous work[25], and articles cited therein. + Cpp(e™ Pm7a=Mmy\ |, (18)
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lw =0.1a
L=a InAs-wetting /,,
o GaAs-spacer
wi=f.1a InAs-wetting /,

GaAs-spacer

InAs-wetting /,, InAs-wetting /,,

GaAs-spacer /;
InAs-wetting /,,

GaAs-spacer [,
InAs-wetting /,,

GaAs-substrate

GaAs-substrate

(a) (b)

=a Ly+L;=1la
ly=0.1a ly=0.1a
InAs-wetting /,, InAs-wetting L,
GaAs-spacer /; GaAs-spacer [,
InAs-wetting /,, InAs-wetting /,,
GaAs-substrate GaAs-substrate
(c) (d)

Fig. 3 Four examples of a heterostructure with alternating layers of GaAs-spacer and InAs-
wetting on a GaAs substrate, plus a fresh wetting layer on the top: (a) a single QD; (b) a vertical
array of QDs; (c) a horizontal rectangular array of QDs;  (d) a single QD with varying ratio of
thickness between top wetting and spacer layers

wheret*® ands:(® are derived fromi%(® and matrixB andC ~ physical-domain Green'’s functions are obtained by using the Fou-
are related toA andp, [35]. The matrixC here is different from rier inverse transform, for example, the displacement field, as
the fourth-rank tensor of elastic stiffne€gy . 1
The derivatives ofi*, t*, ands* with respect to source coor-  yi(x,,X,,X3) = —zf fﬁi(kl,kz,xg)e‘ixa"ad kodks,
dinatesy can be obtained from the above expressions, as (2m) (23)
T* —ilk Ti* Tx —il T*
Uy, (Xa) =1KoUm(X3), Ty (X3) =iKatm(Xs), where the integral limits in botk; andk, are (—o,»).
~ T Above, we have only described the key steps in the derivation
sﬁ,yya(x3) ik oSh(Xa), (19) of the three-dimensional Green'’s functions for anisotropic elasto-
T* — aikeYo T* (5) i YA (e Pmr(3=hm_Dy\/’ static multilayers within the framework of generalized Stroh for-
um,yg(xg) € [um,ya(x3)+| 7 (Ane : UV malism and Fourier transforms. For details of the theory and rel-
evant computational issues, one may refef26,30,35,3¢ and

+Ap(e” P70 im W (20) articles cited therein.

Ty (%) = €XYalT2(5) (x5) + (B @™ P70~ hm- )y 1

3 Results and Discussions

—ipmn(Xz—hy) /
*+Bne SImWi)l, (@1) In this section, we apply the integral-equation formulation, de-
% , (XS):eikayal~S§1<ys)(X3) Jr(Em<e—iEmn(><3—hm,1)>Vrrn scribed in the previoius section, to investiga}te the elastic fields due
73 73 to embedded QDs in a multilayered semiconductor system. Ef-
+Cple Pmrs W ) | (22) fects of vertical and lateral orderings of QDs and of thickness of

wetting layer on the elastic fields will be addressed. The multilay-

whereV, andW,, are a new pair of unknown tensors, as a funcered semiconductor consists of up to four sets of alternating
tion of ky, k, andys;. GaAs-spacer and InAs-wetting layers on a GaAs substrate, plus a

The above unknown tensoks,,, W,,, V,, andW,, can be “freshly” deposited InAs-wetting layer on the top. Four different
solved by imposing appropriate boundary and interfacial condixamples as shown in Figsie3-d) are studied. The top surface is
tions provided that the special solutions are given. Yang and Pagsumed to be traction-free while the interfaces are in the perfect-
[25] took the first few terms of the expansion solution of trimatebonding condition. The far-field stress and displacement are zero.
rials, [36], to be the special solutions and solved the problem withhe thickness of the wetting and spacer layers is denoteld, by
traction-free top-boundary and symmetric bottom-boundary co@indl, respectively. It is taken thaf,=0.1a andl;=a with the
ditions and with the perfectly bonded interfacial conditions. Thexception in the last exampl&ig. 3(d)). The QDs are assumed to
special solutions may also be taken as the infinite-space Gredpescuboidal with dimensionaxaxa/2. They are seated on the
function, [37], or the bimaterials solution,30]. The difference top of a wetting layer and embedded in the above adjacent GaAs-
would be in the resulting efficiency in evaluating the physicalspacer, as shown in Fig(&-d). It is mentioned that the sides of
domain Green’s functiond25]. By applying the boundary and the QDs are taken to be along the global coordinaxgsxt ,Xs).
interfacial conditions to the multilayers, a linear system of equé&or simplicity, we also assume that the QDs have the same elastic
tions with the same number of unknowns can be formed afoperty as its surrounding GaAs-spacer, and the misfit strain in
solved for each set ok ,k,) in the transformed plane. Then, thethe QDs is hydrostatic, i.ea?j =e°5ij . The elastic constants for
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(Fig. 3a): (a) normalized hydrostatic strain  &,,/£°%; (b) normal- %
ized vertical displacement component  —u4/(£%a) g ]
8 Jp2+—————vT—"T—"T— r
“ 0 0.1 0.2 0.3
x3/a

(b)

GaAs areC,,=118, C4,=54, C4,=59 and for InAsC,,=83,
C,,=45, C,,=40(GPa), with their crystallographic directionsFig. 5 Vertical variation of normalized nonzero strain and
[100], [010], and[001] coinciding with the global coordinateg, stress components over a single QD  (Fig. 3a): (a) €11(&y;
X,, andxs, respectively. We remark that there should exist norr €11) and e33/€°% (b) o13(0,=071y) and o53/€° in 101 Pa
zero eigenstrain in the wetting layers, similar to that in the QDs.
Because of the linearity of the problem, the QD-induced elastic
field discussed below and the homogenous field due to the neated to the electronic and optical behaviors of the semiconductor
zero eigenstrain in the wetting layers can be superposed. In #y&tem, and to the growth direction and vertical correlation of new
present multilayer structure, the homogenous field can be obtaingds, [38,39.
by applying the classical laminate theof7]. Due to the mismatch between the wetting and spacer layer crys-
tals, the out-of-plane strain componert;, and the in-plane
qs,tress components;;; and oy, are discontinuous across the in-
erface, as shown in Fig. 5. However, the other in-plane strain and
ecgyt-of-plane stress components, as well as all the displacement

is first studied. The cuboidal QD is seated on the top of the int . . , .
nal wetting layer and embedded in the spacer, with its cenfefMPONents, are continuous, as enforced in the Green's function
' solution, and in turn reflected in the inclusion solution of eigen-

located at (0,0,0.85. The top InAs layer represents a “freshly” . . ; : ) .
deposited wetting layer where a next generation of QDs is e§t_rf;1t|ns,[|26]. Itt'hs also |n{e(rjest|??hto' notle frorrt] F.'g' 5dth?t in the
pected to grow. Figures(d) and 4b) show, respectively, the con- wetling fayer, theé magnitude of the in-plané strain and stress com-

tour plots of the normalized hydrostatic straig,/e° and normal- ponents increases when the observation point approaches the
. - . 0 . traction-free top surface, a phenomenon that may be explained by
ized vertical displacement u;/(¢"a) on the top surfacé.e., the

free surface of the freshly deposited InAs-wetting layrove the the free-surface bending effect
QD. Figure 5 shows the vertical variation of the normalized non- 3.2 Example 2: A Vertical Array of Quantum Dots. Effect
zero strain and stress components over the center of the QD. lbfsa vertical array of QDs on the elastic fields is examined in this
noted that, in this example, only the diagonal componesits, example. Figure @) schematically shows the geometry of the
eo(=€11), €33, 011, O2o(=0711), @andoss, are nonzero. problem. Simulations were performed with repeated sets of alter-
It is observed from Fig. 4 that due to the coincidence of theating spacer and wetting layers with a QD embedded in each set.
crystallographic orientations of the wetting and spacer crystalfie variation of the normalized hydrostatic strain and vertical
with the side orientations of the cuboidal QD, the normalizedisplacement along a linex{,0,0) on the top surface is shown in
hydrostatic strain and vertical displacement are symmetric relatiFggs. §a) and Gb). In these two figures, the results farQD
to the in-plane axes. They reach their maximum values at therrespond to a semiconductor model mada sét of GaAs/InAs
origin, (0,0,0, right above the QD center on the free surface. Wiplus a fresh InAs on the top and a GaAs substrate on the bpttom
remark, however, that should the Ga#ld1) be used in place of For instance, the results for one QD correspond to a semiconduc-
GaAs(001) for the spacer, the contour plots will be distorted wititor model with only one set of GaAs/InAglus a fresh InAs on
completely different features. The characteristics may be cortie top and a GaAs substrate on the bottom, exactly the same as in

3.1 Example 1: A Single Quantum Dot. A buried single
QD in the layered semiconductor system of top-InAs-wettin
GaAs-spacer/InAs-wetting/GaAs-substrate, as shown in Fa, 3
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Fig. 6 Induced elastic fields along a line  (x4,0,0) on top sur-  Fig. 7 Induced elastic fields along a line  (x;,0,0) on top sur-
face due to a vertical array of up to nine QDs (Fig. 3b): (a) face due to a horizontal rectangular array of up to 9 X9 QDs
normalized hydrostatic strain  £,,/£% (b) normalized vertical (Fig. 3¢): (a) normalized hydrostatic strain &, /% (b) normal-
displacement component —u3/(£%a) ized vertical displacement component  —u5/(£%a)

the previous cageand results for four QDs correspond to a semi-
conductor model consisting of four sets of GaAs/InAs, i.e., to
InAs/GaAs/InAs/GaAs/InAs/GaAs/InAs/GaAs-substrate, with
QD in each GaAs-spacer layer.

It can be observed from Fig.(® that the magnitude of the
hydrostatic strain on the surface increases with increasing num
of QDs and converges quickly to the maximum values. This su
gests that a vertical array of QDs should sum up their effects

Rtrain field decreases and converges to its minimum value. There-
fbre, the surrounding QDs in the lateral directions play a role in
relaxing the induced elastic field due to the central QD, an effect
opposite to that of a vertical array of QDs as observed earlier.
nsequently, the existence of laterally neighboring QDs would
g%ppress the effect of the central QD on the growth of a new QD

lastic rel . he freshiv d ited ing | ove it. The vertical displacement component converges with
elastic relaxation on the freshly deposited wetting layep wet- j,reasing number of QDs, again in contrast to that in the case of
ting layen where a new generation of QDs is expected to 9row yertical array of QDs.

The displacement field, on the contrary, has not shown its ten-
dency of convergence with the number of QDs of the vertical

array so far. 3.4 Example 4: A Single QD With Varied Thickness of Top

3.3 Example 3: A Horizontal Array of Quantum Dots. Wetting Layer. At last, effect of top wetting layer thickness on
Now, effect of a horizontal array of QDs on the elastic fields ihe QD-induced elastic field is studied. The geometry is similar to
studied. Simulations were performed with a horizontal rectangultiyat studied in the first examp{€&ig. 3(a)), but with varied thick-
array of QDs located in the spacer. The semiconductor systé@@ss of the top-wetting layer and spacer layer. The total thickness
consists of only one set of alternating spacer and wetting layers,aighese two layers is fixed at ;alas shown in Fig. @). Similar
shown in Fig. &). The spacing between the adjacent Qfbem to that in the first example, a single QD is located at the bottom of
center to centérin both in-plane directions is& with size of the spacer layer. To distinguish this example from the previous
array varying from X3 to 9x9. Variations of the normalized ones, the varied thicknesses of the top wetting and spacer layers
hydrostatic strain and vertical displacement on the surface abdy€ now indicated by, andL, respectively. On the top surface
the central QD are plotted in Fig. 7. at three location$0,0,0, (0.52,0,0), and &,0,0), the normalized

These results show that, with increasing number of QDs latdrydrostatic straing, /¢, and vertical displacement component,
ally around the central one, the magnitude of the surface elastieu,/(£%), are evaluated with various combinations of thickness
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problem of eigenstrain$26]. The unique feature of the approach
is that the point-force Green’s function used for the multilayer
system satisfies the boundary and interfacial-continuity condi-
tions. By applying the Betti’s reciprocal theorem, the elastic field
induced by QDs with general misfit strains is expressed in terms
of a domain integral with the point-force Green’s function as in-
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?é ' tegral kernel. The domain integral is reduced to a surface integral
: v Evaluated at along the boundary of a QD that has a uniform misfit-strain dis-
| 01 (0,0,0) tribution. Further, for QDs that can be modeled as point sources,
s 1 . (053, 0, 0) the induced elastic field is then derived as a sum of the point-force
'§ ] . (a' 0 ’0), Green’s functions. These novel features make the present
Z 0057 T continuum-mechanics approach both accurate and efficient for
g L S ke carrying out a parametric study of QDs-induced elastic field in
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Fig. 8 Variation of elastic fields at three locations on top sur-

multilayered semiconductors.

By applying the Green’s function approach, we have analyzed
the elastic field due to embedded QDs in a system of alternating
GaAs-spacer and InAs-wetting layers on a GaAs substrate, plus a
freshly deposited InAs-wetting layer on the top. The QDs embed-
ded in the spacer layers are assumed to have the same elastic
constants as the spacer medium. The effects of vertical and hori-
zontal arrays of QDs and of thickness of the top wetting layer on
the elastic fields are examined and discussed in detail. The follow-
ing features have been observed:

« First, the QD-induced out-of-plane strain and in-plane stress
components exhibit discontinuities across the interface between
the wetting and spacer layers due to the materials mismatch be-
tween these layers.

» Second, the magnitude of the induced in-plane strain and
stress components increases when the observation point moves
away from the QD source towards the top free surface. This may
be explained by the free-surface bending effect.

 Third, a vertical array of QDs sums up their effects of elastic
relaxation on the freshly deposited wetting layer, where a new
generation of QDs is expected to grow. However, a horizontal
array of QDs plays a role in deducting the elastic relaxation effect
of the central QD on the top wetting layer, in contrast to that of a
vertical array of QDs.

« Finally, when the thickness of the top wetting layer varies, the
induced elastic field on the top surface changes continuously.

face with top wetting layer thickness L, (Fig. 3d): (a) normal-
ized hydrostatic strain £, /£°; (b) normalized vertical displace-
ment component —ug/(g%a). The results for the extreme case
L,=0 are indicated by symbols.

However, when the top wetting layer totally disappears, some of

the elastic strain and stress components exhibit a jump, due to the
difference of elastic property between the wetting and spacer

layers.

of these two layers. In addition, the extreme case without the t%ﬂ:knowledgment

wetting layer(i.e., L,=0) is solved. The results are shown in

Fig. 8. The authors would like to thank Dr. Vinod Tewary of the NIST
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