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Elastic Fields of Quantum Dots in
Multilayered Semiconductors: A
Novel Green’s Function Approach
We present an efficient and accurate continuum-mechanics approach to predict the e
fields in multilayered semiconductors due to buried quantum dots (QDs). Our approa
based on a novel Green’s function solution in anisotropic and linearly elastic multilay
derived within the framework of generalized Stroh formalism and Fourier transform
conjunction with the Betti’s reciprocal theorem. By using this approach, the indu
elastic fields due to QDs with general misfit strains are expressed as a volume int
over the QDs domains. For QDs with uniform misfit strains, the volume integral invo
is reduced to a surface integral over the QDs boundaries. Further, for QDs that ca
modeled as point sources, the induced elastic fields are then derived as a sum
point-force Green’s functions. In the last case, the solution of the QD-induced elastic
is analytical, involving no numerical integration, except for the evaluation of the Gre
functions. As numerical examples, we have studied a multilayered semiconductor s
of QDs made of alternating GaAs-spacer and InAs-wetting layers on a GaAs subs
plus a freshly deposited InAs-wetting layer on the top. The effects of vertical and
zontal arrays of QDs and of thickness of the top wetting layer on the QD-induced e
fields are examined and some new features are observed that may be of interest
designers of semiconductor QD superlattices.@DOI: 10.1115/1.1544540#
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1 Introduction
Owing to their great advantages over those processed by lit

raphy and etching, self-assembled quantum semiconductor he
structures have attracted tremendous attention in recent years
processing of the heterostructures is based on the spontan
growth of small islands from a wetting layer due to its misma
strain to the substrate, i.e., a Stranski-Krastanow growth me
nism. The islands include quasi-zero-dimensional dots~or quan-
tum dots~QDs!! and quasi-one-dimensional wires, on the scale
1–100 nanometers. Experimental studies have shown that
QD nanostructures possess certain special electronic and op
features, rendering fascinating and novel devices, such as the
threshold laser, resonant tunneling device, and huge-cap
memory media, possible,@1,2#. These features are in part relate
to the strain fields induced by the QDs and thus it is importan
understand the latter before the design of devices,@1–3#. In their
device applications, it is often desirable to fabricate the QDs
successive stacks with both vertical and lateral orderings,@4–8#.
The final product is then a multilayered structure with buried
rays of QDs and with each layer being anisotropic. Therefore
efficient and accurate numerical tool for predicting the mechan
fields, based on the theory of generally anisotropic elasticity
layered media, would be much appreciated.

To quantitatively explain and numerically model the QD nan
structures, various numerical methods have been proposed
cluding the continuum finite element~FE! and finite difference
~FD! methods,@9–14#, and the discrete atomic-level simulation
@15–17#. However, the domain-based FE and FD methods and
atomic models are computationally expensive, making them d
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cult to perform parametric studies in order to interpret the exp
mental phenomena or to reach an economic design strategy.
difficulty is manifested especially in the case of multilayered h
erostructures. Recently, various analytical and semi-analyt
methods, in particular, those related to the Green’s function s
tions, have been proposed and applied to the QD model
@18,19#. Because of their robust features in terms of accuracy
efficiency, these analytical methods, particularly the Green’s fu
tion method, have been found to be very useful in the study of
structures,@18–24#. For QDs in a three-dimensional isotropic in
finite space, Pearson and Faux@23# derived the exact-closed-form
solution for the QD-induced strain when the QDs are in the fo
of pyramids. When the infinite domain is anisotropic, Faux a
Pearson@19# and Andreev et al.@22# derived the induced strain
using, respectively, the Fourier transform method and the se
expansion method. More recently, Pan and Yang@24# examined
the elastic field due to a buried QD in an anisotropic half-sp
substrate using the point-force Green’s function, which is deriv
within the framework of generalized Stroh formalism and Four
transforms, in conjunction with the Betti’s reciprocal theore
Their result has shown clearly the effects of material anisotro
and free surface on the elastic fields.

In this paper, we propose a novel Green’s function approach
the elastic analyses of buried QDs in multilayered semicond
tors, advanced from the authors’ previous works,@24,25#. The
QDs and surrounding matrix are assumed to have the same m
rial property, within the classical inclusion approach of eige
strain, @26#. In this approach, the elastic fields induced by Q
with general misfit strains~i.e., eigenstrains! are expressed as
volume integral over the QDs domains. For QDs with a unifo
misfit strain, the volume integral can be reduced to a surface
tegral over the QDs boundaries. Further, for QDs that can
modeled as point sources, the induced elastic fields can the
derived as a sum of the point-force Green’s functions. In the
case, the QD solution is analytical, except for the numerical ev
ation of the point-force Green’s functions. The proposed appro
then is applied to examine a multilayered system of QDs w
alternating GaAs-spacer and InAs-wetting layers on a GaAs s
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Fig. 1 A multilayered heterostructure with embedded islands of misfit strains
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strate, plus a ‘‘freshly’’ deposited wetting layer on the top. T
theory is described in Section 2. The numerical results are
sented and discussed in Section 3. Conclusions are drawn in
tion 4.

2 Theory

2.1 Integral Equation Formulation of Quantum Dots. In-
clusion problem of misfit strains,@26#, in a heterogeneous, aniso
tropic, linearly elastic matrix can be described in terms of
integral-equation formulation with the integral kernel being t
point-force Green’s function in the same media. This integr
equation formulation is a consequence of the Betti’s recipro
theorem. Let us assume that there are two states associated
the matrix domainD: one for the misfit-strain problem due to
given misfit strain« i j

0 (x), and the other for the Green’s functio
problem due to a point force aty. In these two problems, the
boundary conditions along]D ~boundary ofD! are identical. Ap-
plying the Betti’s reciprocal theorem, we find that the displac
ment up(y) due to the misfit strain« i j

0 (x) can be expressed in
terms of the following integral-equation formulation, as,@26#,

up~y!5E
D
upi* ~x;y!@2Ci jlm~x!« lm

0 ~x!# , jdV~x!, (1)

where upi* (x;y) is the Green’sith displacement component atx
due to a point force in thepth direction applied aty, Ci jlm is the
elastic stiffness, heterogeneous in general, and a repeated
implies the conventional summation over its range. Note tha, j
indicates the partial derivative with respect to field coordinatexj
while ,yp

is used for the partial derivative with respect to sour
coordinateyp . Making use of the Gauss theorem, Eq.~1! can be
rewritten as

up~y!5E
D
upi, j* ~x;y!Ci jlm~x!« lm

0 ~x!dV~x!

2E
]D

upi* ~x;y!Ci jlm~x!« lm
0 ~x!nj~x!dG~x!, (2)

wherenj is the outward normal at a boundary point.
We now consider a special heterogeneous matrix structure a

special misfit strain distribution, as shown in Fig. 1. The spec
heterogeneous matrix structure consists of multiple planar la
of different media. They are homogeneous, anisotropic, and
early elastic. The special misfit-strain field is nonzero only in
number of interior islandsV (n) (n51, . . . ,N). To apply the
above theory, we assume that the islands have the same e
property as their surrounding layer media. This special sys
represents a multilayered semiconductor with coherently stra
QDs, @1#. We remark that there should exist nonzero eigenstr
field in some of the layers~i.e., wetting layers from which the
QDs grow!, similar to that in the QDs. In this case, the elastic fie
to be derived under the above assumption of nonzero eigens
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only in the QDs is in fact the part of a total field induced by t
QDs. The total field can be obtained by applying the rule of
perposition of the induced field to the homogeneous field tha
caused by the nonzero matrix eigenstrain alone~i.e., in the ab-
sence of the QDs! under the same boundary and interfacial co
ditions. For the present multilayered structure, the homogene
elastic field can be solved by applying the classical lamin
theory,@27#.

Under these assumptions, Eq.~2! can be simplified. First, by
using the fact that the misfit strain along the domain boundary]D
is zero, the term of boundary integral in Eq.~2! is eliminated,
which yields

up~y!5E
D
upi, j* ~x;y!Ci jlm~x!« lm

0 ~x!dV~x!. (3)

Then, reducing the integral domain fromD to V (n) (n
51, . . . ,N), Eq. ~3! is rewritten as

up~y!5(
n51

N E
V~n!

upi, j* ~x;y!Ci jlm~x!« lm
0 ~x!dV~x!. (4)

Further, the domain integrals in Eq.~4! can be reduced to the
surface ofV (n) for those QDs in which the misfit strain distribu
tion is uniform. Assuming that all of the islands have a unifor
misfit strain field, we arrive at

up~y!5(
n51

N

Ci jlm
~n! « lm

0~n!E
]V~n!

upi* ~x;y!nj~x!dS~x!, (5)

whereCi jlm
(n) and« lm

0(n) are, respectively, the~uniform! elastic stiff-
ness and misfit strain in thenth island. Note that a uniform distri-
bution of misfit strain in a QD may occur when the QD and mat
~generally mismatched in thermal expansion coefficients! are sub-
jected to a uniform temperature change and if their mismatch
elastic constants can be neglected.

In order to find the induced elastic strain field, the displacem
in Eq. ~5! is differentiated with respect to the observation poiny
~i.e., the source point where the point force is located in the c
responding Green’s function problem!, which yields

«pq* ~y!5(
n51

N
1

2
Ci jlm

~n! « lm
0~n!E

]V~n!
@upi,yq

* ~x;y!

1uqi,yp
* ~x;y!#nj~x!dS~x!. (6)

Subsequently, the stress field is obtained as

spq~y!5Cpqst~y!@«st~y!2«st
0 ~y!#. (7)

Note that«st
0 (y) in Eq. ~7! is nonzero only ify is within a QD.

Finally, the above expressions can be further reduced if
observation pointy is remote to some or all of the QDs compare
to their individual sizes. These remote QDs can be modeled
Transactions of the ASME
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point sources of misfit strain. Without the loss of generality, a
suming the remoteness ofy to all QDs, the misfit strain field is
then expressed as

« lm
0 ~x!5(

n51

N

« lm
0~n!V~n!d~x2x~n!!, (8)

whereV(n) andx(n) are, respectively, the volume and location
the nth QD, andd~x! is the Dirac delta function. By substituting
Eq. ~8! in Eq. ~3!, the induced displacement and strain aty due to
the point sources of misfit strain are analytically found to be

up~y!5(
n51

N

upi, j* ~x~n!;y!Ci jlm
~n! « lm

0~n!V~n!

5(
n51

N

splm* ~x~n!;y!« lm
0~n!V~n!, (9)

«pq~y!5(
n51

N
1

2
@splm,yq

* ~x~n!;y!1sqlm,yp
* ~x~n!;y!#« lm

0~n!V~n!.

(10)

In the derivation of the right-hand side of Eq.~9!, the Hooke’s
law, s lm5Ci jlmui , j , was effected. It is observed in Eq.~9! that the
displacement field in thepth direction aty due to point sources of
misfit strain with components (lm) at x(n) (n51, . . . ,N) is
equivalent to the stress field with components (lm) at x(n) due to
a point force in thepth direction aty, @28#.

We remark that Eqs.~4!, ~5!, and~9! ~and their corresponding
expressions for strain and stress! can be used whenever and whe
ever applicable to most efficiently compute the elastic fields d
to a QD. The idea of applying the point-source approach to
scribe the elastic field remote to a QD, the inclusion approach
describe the field in an intermediate distance to a QD, and
imhomogeneity approach to describe the field close to or insid
QD, has been elaborated recently by Romanov et al.@29#. The
different approaches require different computational tools to e
ciently and accurately solve the problem. The present work p
poses to apply a special Green’s function for anisotropic multil
ers to solve the problem of QDs approached as inclusions
enables a simulation of a relatively large system of QDs in m
tilayered semiconductors. This special Green’s function is
scribed next.

2.2 Green’s Function for Anisotropic Multilayers. Three-
dimensional point-force Green’s function in anisotropic multila
ers, as shown in Fig. 2, can be solved within the framework
generalized Stroh formalism and Fourier transforms,@25,30#. The
elegancy of the formulation has been demonstrated by apply
the derived Green’s functions to the boundary element analyse
stress around a hole in a composite laminate,@31#, and the corre-
sponding delamination crack problem,@32#. In the following, we
summarize the Green’s functions for anisotropic elastostatic m
tilayers. For details of the theory, one may refer to the autho
previous work,@25#, and articles cited therein.

Fig. 2 Point-force Green’s function problem of a multilayered
heterostructure „Fig. 1 …
Journal of Applied Mechanics
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The equilibrium of a multilayered system subjected to a po
force requires that

Cp jlm~x!ul ,m j~x!52 f pd~x2y!, (11)

where f p is the pth component of a point force applied aty. To
solve this problem, the following two-dimensional Fourier tran
form (k1 ,k2) is first applied to the in-plane variables (x1 ,x2) of
ui(x1 ,x2 ,x3),

ũi~k1 ,k2 ,x3!5E E ui~x1 ,x2 ,x3!eixakadx1dx2 , (12)

wheree stands for theexponentialfunction, andi in the exponent
denotes the unit of imaginary number,A21, and the Greek index
takes a value in the range from 1 to 2. The integral limits a
~2`,`! along both the coordinatesx1 andx2 . Thus, in the Fourier
transformed domain, the governing Eq.~11! becomes

Cp3i3ũi ,332 i ~Cpa i31Cp3ia!kaũi ,32Cpa ibkakbũi

52 f peiyakad~x32y3!, (13)

which is valid for each individual homogeneous layer in the s
tem.

Solving this ordinary differential equation in terms ofx3 with f
being a unit force in thepth direction yields the general expres
sion for the transformed-domain Green’s displacement in theith
direction,ũip* , as

ũm* ~x3!5eikayabũm*
~s!~x3!1 ih21~Ām^e2 i p̄mh~x32hm21!&Vm

1Am^e2 ipmh~x32hm!&Wm!c, (14)

where the subscriptm indicates the association of a quantity to th
mth layer where the field pointx resides;ũm* is a function ofk1 ,
k2 and y as well asx3 ; ũm*

(s) , a special solution, is a given
function ofk1 , k2 andy as well asx3 ; andVm andWm are a pair
of unknown tensors, being functions ofk1 , k2 and y3 , to be
determined by imposing boundary and interfacial conditions. T
dummy arguments in these functions, which are not relevant
rectly to the enforcement of boundary and interfacial conditio
are omitted for simplicity. In addition, the overbar denotes t
complex conjugate,~h,u! are the polar coordinates related
(k1 ,k2) by k15h cosu andk25h sinu, and

^e2 iphx3&[diag@e2 ip1hx3,e2 ip2hx3,e2 ip3hx3#. (15)

In addition,p andA5(a1 ,a2 ,a3) are, respectively, the eigenva
ues and eigenmatrix, related to each other by the following ch
acteristic eigenrelation,@33–35#, in an oblique plane spanned b
(n15cosu,n25sinu,0)T and (0,0,1)T, as

@Q1pi~R1RT!1pi
2T#ai50, (16)

with Qi j [Cia j bnanb , Ri j [Cia j 3na , andTi j [Ci3 j 3 .
Let us defines as a vector consisting of the in-plane stre

components in the horizontal plane, andt as a vector consisting o
the corresponding out-of-plane stress components. The comb
tion of these two vectors represents the full stress tensor bec
of its symmetry. The corresponding Green’s functions are giv
by s* [(s11p* ,s12p* ,s22p* ) and t* [(s13p* ,s23p* ,s33p* ), with sub-
script p indicating the unit point-force direction. By applying th
Hooke’s law, t* and s* can be derived from Eq.~14!, in the
transformed domain, as

t̃m* ~x3!5eikayab t̃m*
~s!~x3!1~B̄m^e2 i p̄mh~x32hm21!&Vm

1Bm^e2 ipmh~x32hm!&Wm!c, (17)

s̃m* ~x3!5eikayab s̃m*
~s!~x3!1~C̄m^e2 i p̄mh~x32hm21!&Vm

1Cm^e2 ipmh~x32hm!&Wm!c, (18)
MARCH 2003, Vol. 70 Õ 163
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Fig. 3 Four examples of a heterostructure with alternating layers of GaAs-spacer and InAs-
wetting on a GaAs substrate, plus a fresh wetting layer on the top: „a… a single QD; „b… a vertical
array of QDs; „c… a horizontal rectangular array of QDs; „d… a single QD with varying ratio of
thickness between top wetting and spacer layers
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where t̃m*
(s) and s̃m*

(s) are derived fromũm*
(s) and matrixB andC

are related toA andp, @35#. The matrixC here is different from
the fourth-rank tensor of elastic stiffnessCi jkl .

The derivatives ofũ* , t̃* , and s̃* with respect to source coor
dinatesy can be obtained from the above expressions, as

ũm,ya
* ~x3!5 ikaũm* ~x3!, t̃m,ya

* ~x3!5 ika t̃m* ~x3!,

s̃m,ya
* ~x3!5 ikas̃m* ~x3!, (19)

ũm,y3
* ~x3!5eikayabũm,y3

* ~s!~x3!1 ih21~Ām^e2 i p̄mh~x32hm21!&Vm8

1Am^e2 ipmh~x32hm!&Wm8 !c, (20)

t̃m,y3
* ~x3!5eikayab t̃m,y3

* ~s!~x3!1~B̄m^e2 i p̄mh~x32hm21!&Vm8

1Bm^e2 ipmh~x32hm!&Wm8 !c, (21)

s̃m,y3
* ~x3!5eikayab s̃m,y3

* ~s!~x3!1~C̄m^e2 i p̄mh~x32hm21!&Vm8

1Cm^e2 ipmh~x32hm!&Wm8 !c, (22)

whereVm8 andWm8 are a new pair of unknown tensors, as a fun
tion of k1 , k2 andy3 .

The above unknown tensorsVm , Wm , Vm8 , and Wm8 can be
solved by imposing appropriate boundary and interfacial con
tions provided that the special solutions are given. Yang and
@25# took the first few terms of the expansion solution of trima
rials, @36#, to be the special solutions and solved the problem w
traction-free top-boundary and symmetric bottom-boundary c
ditions and with the perfectly bonded interfacial conditions. T
special solutions may also be taken as the infinite-space Gre
function, @37#, or the bimaterials solution,@30#. The difference
would be in the resulting efficiency in evaluating the physic
domain Green’s functions,@25#. By applying the boundary and
interfacial conditions to the multilayers, a linear system of eq
tions with the same number of unknowns can be formed
solved for each set of (k1 ,k2) in the transformed plane. Then, th
MARCH 2003
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physical-domain Green’s functions are obtained by using the F
rier inverse transform, for example, the displacement field, as

ui~x1 ,x2 ,x3!5
1

~2p!2 E E ũi~k1 ,k2 ,x3!e2 ixakadk1dk2 ,

(23)

where the integral limits in bothk1 andk2 are ~2`,`!.
Above, we have only described the key steps in the deriva

of the three-dimensional Green’s functions for anisotropic elas
static multilayers within the framework of generalized Stroh fo
malism and Fourier transforms. For details of the theory and
evant computational issues, one may refer to@25,30,35,36#, and
articles cited therein.

3 Results and Discussions
In this section, we apply the integral-equation formulation, d

scribed in the previous section, to investigate the elastic fields
to embedded QDs in a multilayered semiconductor system.
fects of vertical and lateral orderings of QDs and of thickness
wetting layer on the elastic fields will be addressed. The multil
ered semiconductor consists of up to four sets of alterna
GaAs-spacer and InAs-wetting layers on a GaAs substrate, pl
‘‘freshly’’ deposited InAs-wetting layer on the top. Four differen
examples as shown in Figs. 3~a–d! are studied. The top surface i
assumed to be traction-free while the interfaces are in the per
bonding condition. The far-field stress and displacement are z
The thickness of the wetting and spacer layers is denoted bl w
and l s , respectively. It is taken thatl w50.1a and l s5a with the
exception in the last example~Fig. 3~d!!. The QDs are assumed t
be cuboidal with dimensionsa3a3a/2. They are seated on th
top of a wetting layer and embedded in the above adjacent Ga
spacer, as shown in Fig. 3~a–d!. It is mentioned that the sides o
the QDs are taken to be along the global coordinates (x1 ,x2 ,x3).
For simplicity, we also assume that the QDs have the same el
property as its surrounding GaAs-spacer, and the misfit strai
the QDs is hydrostatic, i.e.,« i j

0 5«0d i j . The elastic constants fo
Transactions of the ASME
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GaAs areC115118, C12554, C44559 and for InAsC11583,
C12545, C44540 (GPa), with their crystallographic direction
@100#, @010#, and@001# coinciding with the global coordinatesx1 ,
x2 , andx3 , respectively. We remark that there should exist no
zero eigenstrain in the wetting layers, similar to that in the Q
Because of the linearity of the problem, the QD-induced ela
field discussed below and the homogenous field due to the
zero eigenstrain in the wetting layers can be superposed. In
present multilayer structure, the homogenous field can be obta
by applying the classical laminate theory,@27#.

3.1 Example 1: A Single Quantum Dot. A buried single
QD in the layered semiconductor system of top-InAs-wettin
GaAs-spacer/InAs-wetting/GaAs-substrate, as shown in Fig. 3~a!,
is first studied. The cuboidal QD is seated on the top of the in
nal wetting layer and embedded in the spacer, with its ce
located at (0,0,0.85a). The top InAs layer represents a ‘‘freshly
deposited wetting layer where a next generation of QDs is
pected to grow. Figures 4~a! and 4~b! show, respectively, the con
tour plots of the normalized hydrostatic strain«kk /«0 and normal-
ized vertical displacement2u3 /(«0a) on the top surface~i.e., the
free surface of the freshly deposited InAs-wetting layer! above the
QD. Figure 5 shows the vertical variation of the normalized no
zero strain and stress components over the center of the QD.
noted that, in this example, only the diagonal components,«11,
«22(5«11), «33, s11, s22(5s11), ands33, are nonzero.

It is observed from Fig. 4 that due to the coincidence of
crystallographic orientations of the wetting and spacer crys
with the side orientations of the cuboidal QD, the normaliz
hydrostatic strain and vertical displacement are symmetric rela
to the in-plane axes. They reach their maximum values at
origin, ~0,0,0!, right above the QD center on the free surface. W
remark, however, that should the GaAs~111! be used in place of
GaAs~001! for the spacer, the contour plots will be distorted wi
completely different features. The characteristics may be co

Fig. 4 Elastic fields on top surface induced by a single QD
„Fig. 3a…: „a… normalized hydrostatic strain «kk Õ«

0; „b… normal-
ized vertical displacement component Àu 3 Õ„«0a…
Journal of Applied Mechanics
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lated to the electronic and optical behaviors of the semicondu
system, and to the growth direction and vertical correlation of n
QDs, @38,39#.

Due to the mismatch between the wetting and spacer layer c
tals, the out-of-plane strain component,«33, and the in-plane
stress components,s11 ands22, are discontinuous across the in
terface, as shown in Fig. 5. However, the other in-plane strain
out-of-plane stress components, as well as all the displacem
components, are continuous, as enforced in the Green’s func
solution, and in turn reflected in the inclusion solution of eige
strains,@26#. It is also interesting to note from Fig. 5 that in th
wetting layer, the magnitude of the in-plane strain and stress c
ponents increases when the observation point approaches
traction-free top surface, a phenomenon that may be explaine
the free-surface bending effect.

3.2 Example 2: A Vertical Array of Quantum Dots. Effect
of a vertical array of QDs on the elastic fields is examined in t
example. Figure 3~b! schematically shows the geometry of th
problem. Simulations were performed with repeated sets of a
nating spacer and wetting layers with a QD embedded in each
The variation of the normalized hydrostatic strain and verti
displacement along a line (x1,0,0) on the top surface is shown i
Figs. 6~a! and 6~b!. In these two figures, the results forn QD
correspond to a semiconductor model made ofn set of GaAs/InAs
~plus a fresh InAs on the top and a GaAs substrate on the botto!.
For instance, the results for one QD correspond to a semicon
tor model with only one set of GaAs/InAs~plus a fresh InAs on
the top and a GaAs substrate on the bottom, exactly the same

Fig. 5 Vertical variation of normalized nonzero strain and
stress components over a single QD „Fig. 3a…: „a… «11„«22
Ä«11… and «33 Õ«

0; „b… s11„s22Äs11… and s33 Õ«
0 in 1011 Pa
MARCH 2003, Vol. 70 Õ 165
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the previous case!, and results for four QDs correspond to a sem
conductor model consisting of four sets of GaAs/InAs, i.e., to
InAs/GaAs/InAs/GaAs/InAs/GaAs/InAs/GaAs-substrate, with
QD in each GaAs-spacer layer.

It can be observed from Fig. 6~a! that the magnitude of the
hydrostatic strain on the surface increases with increasing num
of QDs and converges quickly to the maximum values. This s
gests that a vertical array of QDs should sum up their effects
elastic relaxation on the freshly deposited wetting layer~top wet-
ting layer! where a new generation of QDs is expected to gro
The displacement field, on the contrary, has not shown its
dency of convergence with the number of QDs of the verti
array so far.

3.3 Example 3: A Horizontal Array of Quantum Dots.
Now, effect of a horizontal array of QDs on the elastic fields
studied. Simulations were performed with a horizontal rectang
array of QDs located in the spacer. The semiconductor sys
consists of only one set of alternating spacer and wetting layer
shown in Fig. 3~c!. The spacing between the adjacent QDs~from
center to center! in both in-plane directions is 2a, with size of
array varying from 333 to 939. Variations of the normalized
hydrostatic strain and vertical displacement on the surface ab
the central QD are plotted in Fig. 7.

These results show that, with increasing number of QDs la
ally around the central one, the magnitude of the surface ela

Fig. 6 Induced elastic fields along a line „x 1,0,0… on top sur-
face due to a vertical array of up to nine QDs „Fig. 3b…: „a…
normalized hydrostatic strain «kk Õ«

0; „b… normalized vertical
displacement component Àu 3 Õ„«0a…
166 Õ Vol. 70, MARCH 2003
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strain field decreases and converges to its minimum value. Th
fore, the surrounding QDs in the lateral directions play a role
relaxing the induced elastic field due to the central QD, an eff
opposite to that of a vertical array of QDs as observed ear
Consequently, the existence of laterally neighboring QDs wo
suppress the effect of the central QD on the growth of a new
above it. The vertical displacement component converges w
increasing number of QDs, again in contrast to that in the cas
a vertical array of QDs.

3.4 Example 4: A Single QD With Varied Thickness of Top
Wetting Layer. At last, effect of top wetting layer thickness o
the QD-induced elastic field is studied. The geometry is simila
that studied in the first example~Fig. 3~a!!, but with varied thick-
ness of the top-wetting layer and spacer layer. The total thickn
of these two layers is fixed at 1.1a, as shown in Fig. 3~d!. Similar
to that in the first example, a single QD is located at the bottom
the spacer layer. To distinguish this example from the previ
ones, the varied thicknesses of the top wetting and spacer la
are now indicated byLw andLs , respectively. On the top surfac
at three locations~0,0,0!, (0.5a,0,0), and (a,0,0), the normalized
hydrostatic strain,«kk /«0, and vertical displacement componen
2u3 /(«0a), are evaluated with various combinations of thickne

Fig. 7 Induced elastic fields along a line „x 1,0,0… on top sur-
face due to a horizontal rectangular array of up to 9 Ã9 QDs
„Fig. 3c…: „a… normalized hydrostatic strain «kk Õ«

0; „b… normal-
ized vertical displacement component Àu 3 Õ„«0a…
Transactions of the ASME
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of these two layers. In addition, the extreme case without the
wetting layer ~i.e., Lw50) is solved. The results are shown
Fig. 8.

It can be seen that the variations of these quantities are con
ous with thickness ratio between the top wetting and spacer
ers. However, whenLw50, the strain, as well as stress which
not shown, exhibits a jump. Meanwhile, the vertical displacem
converges atLw50. The jumps in the strain and stress fields
Lw50 are due to the material mismatch between the wetting
spacer layers. It is also observed that the variations of these
induced elastic fields may not be monotonic with the vary
thickness ratio. This may be due not only to the materials m
match between the wetting and spacer layers but also to the
surface bending effect. Therefore, these elastic fields in the fre
deposited wetting layer cannot be modeled accurately by ass
ing identical elastic property to the wetting and spacer layers
matter how thin the wetting layer is, in the multilayered semico
ductor system of InAs and GaAs.

4 Conclusions
In this paper, we have proposed a novel Green’s function

proach to the elastic field in multilayered semiconductors w
embedded coherently strained QDs. The problem of QDs w
misfit strains is modeled as an anisotropic elastostatic inclu

Fig. 8 Variation of elastic fields at three locations on top sur-
face with top wetting layer thickness L w „Fig. 3d…: „a… normal-
ized hydrostatic strain «kk Õ«

0; „b… normalized vertical displace-
ment component Àu 3 Õ„«0a…. The results for the extreme case
L wÄ0 are indicated by symbols.
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problem of eigenstrains,@26#. The unique feature of the approac
is that the point-force Green’s function used for the multilay
system satisfies the boundary and interfacial-continuity con
tions. By applying the Betti’s reciprocal theorem, the elastic fie
induced by QDs with general misfit strains is expressed in te
of a domain integral with the point-force Green’s function as
tegral kernel. The domain integral is reduced to a surface inte
along the boundary of a QD that has a uniform misfit-strain d
tribution. Further, for QDs that can be modeled as point sourc
the induced elastic field is then derived as a sum of the point-fo
Green’s functions. These novel features make the pre
continuum-mechanics approach both accurate and efficient
carrying out a parametric study of QDs-induced elastic field
multilayered semiconductors.

By applying the Green’s function approach, we have analy
the elastic field due to embedded QDs in a system of alterna
GaAs-spacer and InAs-wetting layers on a GaAs substrate, pl
freshly deposited InAs-wetting layer on the top. The QDs emb
ded in the spacer layers are assumed to have the same e
constants as the spacer medium. The effects of vertical and h
zontal arrays of QDs and of thickness of the top wetting layer
the elastic fields are examined and discussed in detail. The foll
ing features have been observed:

• First, the QD-induced out-of-plane strain and in-plane str
components exhibit discontinuities across the interface betw
the wetting and spacer layers due to the materials mismatch
tween these layers.

• Second, the magnitude of the induced in-plane strain
stress components increases when the observation point m
away from the QD source towards the top free surface. This m
be explained by the free-surface bending effect.

• Third, a vertical array of QDs sums up their effects of elas
relaxation on the freshly deposited wetting layer, where a n
generation of QDs is expected to grow. However, a horizon
array of QDs plays a role in deducting the elastic relaxation eff
of the central QD on the top wetting layer, in contrast to that o
vertical array of QDs.

• Finally, when the thickness of the top wetting layer varies,
induced elastic field on the top surface changes continuou
However, when the top wetting layer totally disappears, some
the elastic strain and stress components exhibit a jump, due to
difference of elastic property between the wetting and spa
layers.
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